/* * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * Copyright (c) 2014 Andrey Semashev */ /*! * \file atomic/detail/ops_gcc_atomic.hpp * * This header contains implementation of the \c operations template. */ #ifndef BOOST_ATOMIC_DETAIL_OPS_GCC_ATOMIC_HPP_INCLUDED_ #define BOOST_ATOMIC_DETAIL_OPS_GCC_ATOMIC_HPP_INCLUDED_ #include #include #include #include #include #if defined(__clang__) && (defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG8B) || defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG16B)) #include #include #endif #ifdef BOOST_HAS_PRAGMA_ONCE #pragma once #endif #if defined(__INTEL_COMPILER) // This is used to suppress warning #32013 described below for Intel Compiler. // In debug builds the compiler does not inline any functions, so basically // every atomic function call results in this warning. I don't know any other // way to selectively disable just this one warning. #pragma system_header #endif namespace boost { namespace atomics { namespace detail { /*! * The function converts \c boost::memory_order values to the compiler-specific constants. * * NOTE: The intention is that the function is optimized away by the compiler, and the * compiler-specific constants are passed to the intrinsics. I know constexpr doesn't * work in this case because the standard atomics interface require memory ordering * constants to be passed as function arguments, at which point they stop being constexpr. * However it is crucial that the compiler sees constants and not runtime values, * because otherwise it just ignores the ordering value and always uses seq_cst. * This is the case with Intel C++ Compiler 14.0.3 (Composer XE 2013 SP1, update 3) and * gcc 4.8.2. Intel Compiler issues a warning in this case: * * warning #32013: Invalid memory order specified. Defaulting to seq_cst memory order. * * while gcc acts silently. * * To mitigate the problem ALL functions, including the atomic<> members must be * declared with BOOST_FORCEINLINE. In this case the compilers are able to see that * all functions are called with constant orderings and call intrinstcts properly. * * Unfortunately, this still doesn't work in debug mode as the compiler doesn't * inline functions even when marked with BOOST_FORCEINLINE. In this case all atomic * operaions will be executed with seq_cst semantics. */ BOOST_FORCEINLINE BOOST_CONSTEXPR int convert_memory_order_to_gcc(memory_order order) BOOST_NOEXCEPT { return (order == memory_order_relaxed ? __ATOMIC_RELAXED : (order == memory_order_consume ? __ATOMIC_CONSUME : (order == memory_order_acquire ? __ATOMIC_ACQUIRE : (order == memory_order_release ? __ATOMIC_RELEASE : (order == memory_order_acq_rel ? __ATOMIC_ACQ_REL : __ATOMIC_SEQ_CST))))); } template< typename T > struct gcc_atomic_operations { typedef T storage_type; static BOOST_FORCEINLINE void store(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { __atomic_store_n(&storage, v, atomics::detail::convert_memory_order_to_gcc(order)); } static BOOST_FORCEINLINE storage_type load(storage_type const volatile& storage, memory_order order) BOOST_NOEXCEPT { return __atomic_load_n(&storage, atomics::detail::convert_memory_order_to_gcc(order)); } static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { return __atomic_fetch_add(&storage, v, atomics::detail::convert_memory_order_to_gcc(order)); } static BOOST_FORCEINLINE storage_type fetch_sub(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { return __atomic_fetch_sub(&storage, v, atomics::detail::convert_memory_order_to_gcc(order)); } static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { return __atomic_exchange_n(&storage, v, atomics::detail::convert_memory_order_to_gcc(order)); } static BOOST_FORCEINLINE bool compare_exchange_strong( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order failure_order) BOOST_NOEXCEPT { return __atomic_compare_exchange_n ( &storage, &expected, desired, false, atomics::detail::convert_memory_order_to_gcc(success_order), atomics::detail::convert_memory_order_to_gcc(failure_order) ); } static BOOST_FORCEINLINE bool compare_exchange_weak( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order failure_order) BOOST_NOEXCEPT { return __atomic_compare_exchange_n ( &storage, &expected, desired, true, atomics::detail::convert_memory_order_to_gcc(success_order), atomics::detail::convert_memory_order_to_gcc(failure_order) ); } static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { return __atomic_fetch_and(&storage, v, atomics::detail::convert_memory_order_to_gcc(order)); } static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { return __atomic_fetch_or(&storage, v, atomics::detail::convert_memory_order_to_gcc(order)); } static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { return __atomic_fetch_xor(&storage, v, atomics::detail::convert_memory_order_to_gcc(order)); } static BOOST_FORCEINLINE bool test_and_set(storage_type volatile& storage, memory_order order) BOOST_NOEXCEPT { return __atomic_test_and_set(&storage, atomics::detail::convert_memory_order_to_gcc(order)); } static BOOST_FORCEINLINE void clear(storage_type volatile& storage, memory_order order) BOOST_NOEXCEPT { __atomic_clear(const_cast< storage_type* >(&storage), atomics::detail::convert_memory_order_to_gcc(order)); } static BOOST_FORCEINLINE bool is_lock_free(storage_type const volatile& storage) BOOST_NOEXCEPT { return __atomic_is_lock_free(sizeof(storage_type), &storage); } }; #if BOOST_ATOMIC_INT8_LOCK_FREE > 0 template< bool Signed > struct operations< 1u, Signed > : public gcc_atomic_operations< typename make_storage_type< 1u, Signed >::type > { }; #endif #if BOOST_ATOMIC_INT16_LOCK_FREE > 0 template< bool Signed > struct operations< 2u, Signed > : public gcc_atomic_operations< typename make_storage_type< 2u, Signed >::type > { }; #endif #if BOOST_ATOMIC_INT32_LOCK_FREE > 0 template< bool Signed > struct operations< 4u, Signed > : public gcc_atomic_operations< typename make_storage_type< 4u, Signed >::type > { }; #endif #if BOOST_ATOMIC_INT64_LOCK_FREE > 0 #if defined(__clang__) && defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG8B) // Workaround for clang bug http://llvm.org/bugs/show_bug.cgi?id=19355 template< bool Signed > struct operations< 8u, Signed > : public cas_based_operations< gcc_dcas_x86< Signed > > { }; #else template< bool Signed > struct operations< 8u, Signed > : public gcc_atomic_operations< typename make_storage_type< 8u, Signed >::type > { }; #endif #endif #if BOOST_ATOMIC_INT128_LOCK_FREE > 0 #if defined(__clang__) && defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG16B) // Workaround for clang bug: http://llvm.org/bugs/show_bug.cgi?id=19149 // Clang 3.4 does not implement 128-bit __atomic* intrinsics even though it defines __GCC_HAVE_SYNC_COMPARE_AND_SWAP_16 template< bool Signed > struct operations< 16u, Signed > : public cas_based_operations< gcc_dcas_x86_64< Signed > > { }; #else template< bool Signed > struct operations< 16u, Signed > : public gcc_atomic_operations< typename make_storage_type< 16u, Signed >::type > { }; #endif #endif BOOST_FORCEINLINE void thread_fence(memory_order order) BOOST_NOEXCEPT { __atomic_thread_fence(atomics::detail::convert_memory_order_to_gcc(order)); } BOOST_FORCEINLINE void signal_fence(memory_order order) BOOST_NOEXCEPT { __atomic_signal_fence(atomics::detail::convert_memory_order_to_gcc(order)); } } // namespace detail } // namespace atomics } // namespace boost #endif // BOOST_ATOMIC_DETAIL_OPS_GCC_ATOMIC_HPP_INCLUDED_