/* * util/module.h - DNS handling module interface * * Copyright (c) 2007, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains the interface for DNS handling modules. */ #ifndef UTIL_MODULE_H #define UTIL_MODULE_H #include "util/storage/lruhash.h" #include "util/data/msgreply.h" #include "util/data/msgparse.h" struct alloc_cache; struct rrset_cache; struct key_cache; struct config_file; struct slabhash; struct query_info; struct edns_data; struct regional; struct worker; struct module_qstate; struct ub_randstate; struct mesh_area; struct mesh_state; struct val_anchors; struct val_neg_cache; struct iter_forwards; /** Maximum number of modules in operation */ #define MAX_MODULE 5 /** * Module environment. * Services and data provided to the module. */ struct module_env { /* --- data --- */ /** config file with config options */ struct config_file* cfg; /** shared message cache */ struct slabhash* msg_cache; /** shared rrset cache */ struct rrset_cache* rrset_cache; /** shared infrastructure cache (edns, lameness) */ struct infra_cache* infra_cache; /** shared key cache */ struct key_cache* key_cache; /* --- services --- */ /** * Send serviced DNS query to server. UDP/TCP and EDNS is handled. * operate() should return with wait_reply. Later on a callback * will cause operate() to be called with event timeout or reply. * The time until a timeout is calculated from roundtrip timing, * several UDP retries are attempted. * @param qname: query name. (host order) * @param qnamelen: length in bytes of qname, including trailing 0. * @param qtype: query type. (host order) * @param qclass: query class. (host order) * @param flags: host order flags word, with opcode and CD bit. * @param dnssec: if set, EDNS record will have bits set. * If EDNS_DO bit is set, DO bit is set in EDNS records. * If BIT_CD is set, CD bit is set in queries with EDNS records. * @param want_dnssec: if set, the validator wants DNSSEC. Without * EDNS, the answer is likely to be useless for this domain. * @param addr: where to. * @param addrlen: length of addr. * @param zone: delegation point name. * @param zonelen: length of zone name. * @param q: wich query state to reactivate upon return. * @return: false on failure (memory or socket related). no query was * sent. Or returns an outbound entry with qsent and qstate set. * This outbound_entry will be used on later module invocations * that involve this query (timeout, error or reply). */ struct outbound_entry* (*send_query)(uint8_t* qname, size_t qnamelen, uint16_t qtype, uint16_t qclass, uint16_t flags, int dnssec, int want_dnssec, struct sockaddr_storage* addr, socklen_t addrlen, uint8_t* zone, size_t zonelen, struct module_qstate* q); /** * Detach-subqueries. * Remove all sub-query references from this query state. * Keeps super-references of those sub-queries correct. * Updates stat items in mesh_area structure. * @param qstate: used to find mesh state. */ void (*detach_subs)(struct module_qstate* qstate); /** * Attach subquery. * Creates it if it does not exist already. * Keeps sub and super references correct. * Updates stat items in mesh_area structure. * Pass if it is priming query or not. * return: * o if error (malloc) happened. * o need to initialise the new state (module init; it is a new state). * so that the next run of the query with this module is successful. * o no init needed, attachment successful. * * @param qstate: the state to find mesh state, and that wants to * receive the results from the new subquery. * @param qinfo: what to query for (copied). * @param qflags: what flags to use (RD, CD flag or not). * @param prime: if it is a (stub) priming query. * @param newq: If the new subquery needs initialisation, it is * returned, otherwise NULL is returned. * @return: false on error, true if success (and init may be needed). */ int (*attach_sub)(struct module_qstate* qstate, struct query_info* qinfo, uint16_t qflags, int prime, struct module_qstate** newq); /** * Kill newly attached sub. If attach_sub returns newq for * initialisation, but that fails, then this routine will cleanup and * delete the fresly created sub. * @param newq: the new subquery that is no longer needed. * It is removed. */ void (*kill_sub)(struct module_qstate* newq); /** * Detect if adding a dependency for qstate on name,type,class will * create a dependency cycle. * @param qstate: given mesh querystate. * @param qinfo: query info for dependency. * @param flags: query flags of dependency, RD/CD flags. * @param prime: if dependency is a priming query or not. * @return true if the name,type,class exists and the given * qstate mesh exists as a dependency of that name. Thus * if qstate becomes dependent on name,type,class then a * cycle is created. */ int (*detect_cycle)(struct module_qstate* qstate, struct query_info* qinfo, uint16_t flags, int prime); /** region for temporary usage. May be cleared after operate() call. */ struct regional* scratch; /** buffer for temporary usage. May be cleared after operate() call. */ ldns_buffer* scratch_buffer; /** internal data for daemon - worker thread. */ struct worker* worker; /** mesh area with query state dependencies */ struct mesh_area* mesh; /** allocation service */ struct alloc_cache* alloc; /** random table to generate random numbers */ struct ub_randstate* rnd; /** time in seconds, converted to integer */ uint32_t* now; /** time in microseconds. Relatively recent. */ struct timeval* now_tv; /** is validation required for messages, controls client-facing * validation status (AD bits) and servfails */ int need_to_validate; /** trusted key storage; these are the configured keys, if not NULL, * otherwise configured by validator. These are the trust anchors, * and are not primed and ready for validation, but on the bright * side, they are read only memory, thus no locks and fast. */ struct val_anchors* anchors; /** negative cache, configured by the validator. if not NULL, * contains NSEC record lookup trees. */ struct val_neg_cache* neg_cache; /** the 5011-probe timer (if any) */ struct comm_timer* probe_timer; /** Mapping of forwarding zones to targets. * iterator forwarder information. per-thread, created by worker */ struct iter_forwards* fwds; /** module specific data. indexed by module id. */ void* modinfo[MAX_MODULE]; }; /** * External visible states of the module state machine * Modules may also have an internal state. * Modules are supposed to run to completion or until blocked. */ enum module_ext_state { /** initial state - new query */ module_state_initial = 0, /** waiting for reply to outgoing network query */ module_wait_reply, /** module is waiting for another module */ module_wait_module, /** module is waiting for another module; that other is restarted */ module_restart_next, /** module is waiting for sub-query */ module_wait_subquery, /** module could not finish the query */ module_error, /** module is finished with query */ module_finished }; /** * Events that happen to modules, that start or wakeup modules. */ enum module_ev { /** new query */ module_event_new = 0, /** query passed by other module */ module_event_pass, /** reply inbound from server */ module_event_reply, /** no reply, timeout or other error */ module_event_noreply, /** reply is there, but capitalisation check failed */ module_event_capsfail, /** next module is done, and its reply is awaiting you */ module_event_moddone, /** error */ module_event_error }; /** * Linked list of sockaddrs * May be allocated such that only 'len' bytes of addr exist for the structure. */ struct sock_list { /** next in list */ struct sock_list* next; /** length of addr */ socklen_t len; /** sockaddr */ struct sockaddr_storage addr; }; /** * Module state, per query. */ struct module_qstate { /** which query is being answered: name, type, class */ struct query_info qinfo; /** flags uint16 from query */ uint16_t query_flags; /** if this is a (stub or root) priming query (with hints) */ int is_priming; /** comm_reply contains server replies */ struct comm_reply* reply; /** the reply message, with message for client and calling module */ struct dns_msg* return_msg; /** the rcode, in case of error, instead of a reply message */ int return_rcode; /** origin of the reply (can be NULL from cache, list for cnames) */ struct sock_list* reply_origin; /** IP blacklist for queries */ struct sock_list* blacklist; /** region for this query. Cleared when query process finishes. */ struct regional* region; /** failure reason information if val-log-level is high */ struct config_strlist* errinf; /** which module is executing */ int curmod; /** module states */ enum module_ext_state ext_state[MAX_MODULE]; /** module specific data for query. indexed by module id. */ void* minfo[MAX_MODULE]; /** environment for this query */ struct module_env* env; /** mesh related information for this query */ struct mesh_state* mesh_info; /** how many seconds before expiry is this prefetched (0 if not) */ uint32_t prefetch_leeway; }; /** * Module functionality block */ struct module_func_block { /** text string name of module */ const char* name; /** * init the module. Called once for the global state. * This is the place to apply settings from the config file. * @param env: module environment. * @param id: module id number. * return: 0 on error */ int (*init)(struct module_env* env, int id); /** * de-init, delete, the module. Called once for the global state. * @param env: module environment. * @param id: module id number. */ void (*deinit)(struct module_env* env, int id); /** * accept a new query, or work further on existing query. * Changes the qstate->ext_state to be correct on exit. * @param ev: event that causes the module state machine to * (re-)activate. * @param qstate: the query state. * Note that this method is not allowed to change the * query state 'identity', that is query info, qflags, * and priming status. * Attach a subquery to get results to a different query. * @param id: module id number that operate() is called on. * @param outbound: if not NULL this event is due to the reply/timeout * or error on this outbound query. * @return: if at exit the ext_state is: * o wait_module: next module is started. (with pass event). * o error or finished: previous module is resumed. * o otherwise it waits until that event happens (assumes * the service routine to make subrequest or send message * have been called. */ void (*operate)(struct module_qstate* qstate, enum module_ev event, int id, struct outbound_entry* outbound); /** * inform super querystate about the results from this subquerystate. * Is called when the querystate is finished. The method invoked is * the one from the current module active in the super querystate. * @param qstate: the query state that is finished. * Examine return_rcode and return_reply in the qstate. * @param id: module id for this module. * This coincides with the current module for the super qstate. * @param super: the super querystate that needs to be informed. */ void (*inform_super)(struct module_qstate* qstate, int id, struct module_qstate* super); /** * clear module specific data */ void (*clear)(struct module_qstate* qstate, int id); /** * How much memory is the module specific data using. * @param env: module environment. * @param id: the module id. * @return the number of bytes that are alloced. */ size_t (*get_mem)(struct module_env* env, int id); }; /** * Debug utility: module external qstate to string * @param s: the state value. * @return descriptive string. */ const char* strextstate(enum module_ext_state s); /** * Debug utility: module event to string * @param e: the module event value. * @return descriptive string. */ const char* strmodulevent(enum module_ev e); #endif /* UTIL_MODULE_H */