diff options
Diffstat (limited to '3rdParty/Breakpad/src/common/dwarf')
-rw-r--r-- | 3rdParty/Breakpad/src/common/dwarf/bytereader-inl.h | 175 | ||||
-rw-r--r-- | 3rdParty/Breakpad/src/common/dwarf/bytereader.cc | 245 | ||||
-rw-r--r-- | 3rdParty/Breakpad/src/common/dwarf/bytereader.h | 310 | ||||
-rw-r--r-- | 3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.cc | 199 | ||||
-rw-r--r-- | 3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.h | 367 | ||||
-rw-r--r-- | 3rdParty/Breakpad/src/common/dwarf/dwarf2enums.h | 650 | ||||
-rw-r--r-- | 3rdParty/Breakpad/src/common/dwarf/dwarf2reader.cc | 2340 | ||||
-rw-r--r-- | 3rdParty/Breakpad/src/common/dwarf/dwarf2reader.h | 1051 | ||||
-rw-r--r-- | 3rdParty/Breakpad/src/common/dwarf/line_state_machine.h | 61 | ||||
-rw-r--r-- | 3rdParty/Breakpad/src/common/dwarf/types.h | 55 |
10 files changed, 5453 insertions, 0 deletions
diff --git a/3rdParty/Breakpad/src/common/dwarf/bytereader-inl.h b/3rdParty/Breakpad/src/common/dwarf/bytereader-inl.h new file mode 100644 index 0000000..3c16708 --- /dev/null +++ b/3rdParty/Breakpad/src/common/dwarf/bytereader-inl.h @@ -0,0 +1,175 @@ +// Copyright 2006 Google Inc. All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef UTIL_DEBUGINFO_BYTEREADER_INL_H__ +#define UTIL_DEBUGINFO_BYTEREADER_INL_H__ + +#include "common/dwarf/bytereader.h" + +#include <assert.h> + +namespace dwarf2reader { + +inline uint8 ByteReader::ReadOneByte(const char* buffer) const { + return buffer[0]; +} + +inline uint16 ByteReader::ReadTwoBytes(const char* signed_buffer) const { + const unsigned char *buffer + = reinterpret_cast<const unsigned char *>(signed_buffer); + const uint16 buffer0 = buffer[0]; + const uint16 buffer1 = buffer[1]; + if (endian_ == ENDIANNESS_LITTLE) { + return buffer0 | buffer1 << 8; + } else { + return buffer1 | buffer0 << 8; + } +} + +inline uint64 ByteReader::ReadFourBytes(const char* signed_buffer) const { + const unsigned char *buffer + = reinterpret_cast<const unsigned char *>(signed_buffer); + const uint32 buffer0 = buffer[0]; + const uint32 buffer1 = buffer[1]; + const uint32 buffer2 = buffer[2]; + const uint32 buffer3 = buffer[3]; + if (endian_ == ENDIANNESS_LITTLE) { + return buffer0 | buffer1 << 8 | buffer2 << 16 | buffer3 << 24; + } else { + return buffer3 | buffer2 << 8 | buffer1 << 16 | buffer0 << 24; + } +} + +inline uint64 ByteReader::ReadEightBytes(const char* signed_buffer) const { + const unsigned char *buffer + = reinterpret_cast<const unsigned char *>(signed_buffer); + const uint64 buffer0 = buffer[0]; + const uint64 buffer1 = buffer[1]; + const uint64 buffer2 = buffer[2]; + const uint64 buffer3 = buffer[3]; + const uint64 buffer4 = buffer[4]; + const uint64 buffer5 = buffer[5]; + const uint64 buffer6 = buffer[6]; + const uint64 buffer7 = buffer[7]; + if (endian_ == ENDIANNESS_LITTLE) { + return buffer0 | buffer1 << 8 | buffer2 << 16 | buffer3 << 24 | + buffer4 << 32 | buffer5 << 40 | buffer6 << 48 | buffer7 << 56; + } else { + return buffer7 | buffer6 << 8 | buffer5 << 16 | buffer4 << 24 | + buffer3 << 32 | buffer2 << 40 | buffer1 << 48 | buffer0 << 56; + } +} + +// Read an unsigned LEB128 number. Each byte contains 7 bits of +// information, plus one bit saying whether the number continues or +// not. + +inline uint64 ByteReader::ReadUnsignedLEB128(const char* buffer, + size_t* len) const { + uint64 result = 0; + size_t num_read = 0; + unsigned int shift = 0; + unsigned char byte; + + do { + byte = *buffer++; + num_read++; + + result |= (static_cast<uint64>(byte & 0x7f)) << shift; + + shift += 7; + + } while (byte & 0x80); + + *len = num_read; + + return result; +} + +// Read a signed LEB128 number. These are like regular LEB128 +// numbers, except the last byte may have a sign bit set. + +inline int64 ByteReader::ReadSignedLEB128(const char* buffer, + size_t* len) const { + int64 result = 0; + unsigned int shift = 0; + size_t num_read = 0; + unsigned char byte; + + do { + byte = *buffer++; + num_read++; + result |= (static_cast<uint64>(byte & 0x7f) << shift); + shift += 7; + } while (byte & 0x80); + + if ((shift < 8 * sizeof (result)) && (byte & 0x40)) + result |= -((static_cast<int64>(1)) << shift); + *len = num_read; + return result; +} + +inline uint64 ByteReader::ReadOffset(const char* buffer) const { + assert(this->offset_reader_); + return (this->*offset_reader_)(buffer); +} + +inline uint64 ByteReader::ReadAddress(const char* buffer) const { + assert(this->address_reader_); + return (this->*address_reader_)(buffer); +} + +inline void ByteReader::SetCFIDataBase(uint64 section_base, + const char *buffer_base) { + section_base_ = section_base; + buffer_base_ = buffer_base; + have_section_base_ = true; +} + +inline void ByteReader::SetTextBase(uint64 text_base) { + text_base_ = text_base; + have_text_base_ = true; +} + +inline void ByteReader::SetDataBase(uint64 data_base) { + data_base_ = data_base; + have_data_base_ = true; +} + +inline void ByteReader::SetFunctionBase(uint64 function_base) { + function_base_ = function_base; + have_function_base_ = true; +} + +inline void ByteReader::ClearFunctionBase() { + have_function_base_ = false; +} + +} // namespace dwarf2reader + +#endif // UTIL_DEBUGINFO_BYTEREADER_INL_H__ diff --git a/3rdParty/Breakpad/src/common/dwarf/bytereader.cc b/3rdParty/Breakpad/src/common/dwarf/bytereader.cc new file mode 100644 index 0000000..6802026 --- /dev/null +++ b/3rdParty/Breakpad/src/common/dwarf/bytereader.cc @@ -0,0 +1,245 @@ +// Copyright (c) 2010 Google Inc. All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include <assert.h> +#include <stdlib.h> + +#include "common/dwarf/bytereader-inl.h" +#include "common/dwarf/bytereader.h" + +namespace dwarf2reader { + +ByteReader::ByteReader(enum Endianness endian) + :offset_reader_(NULL), address_reader_(NULL), endian_(endian), + address_size_(0), offset_size_(0), + have_section_base_(), have_text_base_(), have_data_base_(), + have_function_base_() { } + +ByteReader::~ByteReader() { } + +void ByteReader::SetOffsetSize(uint8 size) { + offset_size_ = size; + assert(size == 4 || size == 8); + if (size == 4) { + this->offset_reader_ = &ByteReader::ReadFourBytes; + } else { + this->offset_reader_ = &ByteReader::ReadEightBytes; + } +} + +void ByteReader::SetAddressSize(uint8 size) { + address_size_ = size; + assert(size == 4 || size == 8); + if (size == 4) { + this->address_reader_ = &ByteReader::ReadFourBytes; + } else { + this->address_reader_ = &ByteReader::ReadEightBytes; + } +} + +uint64 ByteReader::ReadInitialLength(const char* start, size_t* len) { + const uint64 initial_length = ReadFourBytes(start); + start += 4; + + // In DWARF2/3, if the initial length is all 1 bits, then the offset + // size is 8 and we need to read the next 8 bytes for the real length. + if (initial_length == 0xffffffff) { + SetOffsetSize(8); + *len = 12; + return ReadOffset(start); + } else { + SetOffsetSize(4); + *len = 4; + } + return initial_length; +} + +bool ByteReader::ValidEncoding(DwarfPointerEncoding encoding) const { + if (encoding == DW_EH_PE_omit) return true; + if (encoding == DW_EH_PE_aligned) return true; + if ((encoding & 0x7) > DW_EH_PE_udata8) + return false; + if ((encoding & 0x70) > DW_EH_PE_funcrel) + return false; + return true; +} + +bool ByteReader::UsableEncoding(DwarfPointerEncoding encoding) const { + switch (encoding & 0x70) { + case DW_EH_PE_absptr: return true; + case DW_EH_PE_pcrel: return have_section_base_; + case DW_EH_PE_textrel: return have_text_base_; + case DW_EH_PE_datarel: return have_data_base_; + case DW_EH_PE_funcrel: return have_function_base_; + default: return false; + } +} + +uint64 ByteReader::ReadEncodedPointer(const char *buffer, + DwarfPointerEncoding encoding, + size_t *len) const { + // UsableEncoding doesn't approve of DW_EH_PE_omit, so we shouldn't + // see it here. + assert(encoding != DW_EH_PE_omit); + + // The Linux Standards Base 4.0 does not make this clear, but the + // GNU tools (gcc/unwind-pe.h; readelf/dwarf.c; gdb/dwarf2-frame.c) + // agree that aligned pointers are always absolute, machine-sized, + // machine-signed pointers. + if (encoding == DW_EH_PE_aligned) { + assert(have_section_base_); + + // We don't need to align BUFFER in *our* address space. Rather, we + // need to find the next position in our buffer that would be aligned + // when the .eh_frame section the buffer contains is loaded into the + // program's memory. So align assuming that buffer_base_ gets loaded at + // address section_base_, where section_base_ itself may or may not be + // aligned. + + // First, find the offset to START from the closest prior aligned + // address. + uint64 skew = section_base_ & (AddressSize() - 1); + // Now find the offset from that aligned address to buffer. + uint64 offset = skew + (buffer - buffer_base_); + // Round up to the next boundary. + uint64 aligned = (offset + AddressSize() - 1) & -AddressSize(); + // Convert back to a pointer. + const char *aligned_buffer = buffer_base_ + (aligned - skew); + // Finally, store the length and actually fetch the pointer. + *len = aligned_buffer - buffer + AddressSize(); + return ReadAddress(aligned_buffer); + } + + // Extract the value first, ignoring whether it's a pointer or an + // offset relative to some base. + uint64 offset; + switch (encoding & 0x0f) { + case DW_EH_PE_absptr: + // DW_EH_PE_absptr is weird, as it is used as a meaningful value for + // both the high and low nybble of encoding bytes. When it appears in + // the high nybble, it means that the pointer is absolute, not an + // offset from some base address. When it appears in the low nybble, + // as here, it means that the pointer is stored as a normal + // machine-sized and machine-signed address. A low nybble of + // DW_EH_PE_absptr does not imply that the pointer is absolute; it is + // correct for us to treat the value as an offset from a base address + // if the upper nybble is not DW_EH_PE_absptr. + offset = ReadAddress(buffer); + *len = AddressSize(); + break; + + case DW_EH_PE_uleb128: + offset = ReadUnsignedLEB128(buffer, len); + break; + + case DW_EH_PE_udata2: + offset = ReadTwoBytes(buffer); + *len = 2; + break; + + case DW_EH_PE_udata4: + offset = ReadFourBytes(buffer); + *len = 4; + break; + + case DW_EH_PE_udata8: + offset = ReadEightBytes(buffer); + *len = 8; + break; + + case DW_EH_PE_sleb128: + offset = ReadSignedLEB128(buffer, len); + break; + + case DW_EH_PE_sdata2: + offset = ReadTwoBytes(buffer); + // Sign-extend from 16 bits. + offset = (offset ^ 0x8000) - 0x8000; + *len = 2; + break; + + case DW_EH_PE_sdata4: + offset = ReadFourBytes(buffer); + // Sign-extend from 32 bits. + offset = (offset ^ 0x80000000ULL) - 0x80000000ULL; + *len = 4; + break; + + case DW_EH_PE_sdata8: + // No need to sign-extend; this is the full width of our type. + offset = ReadEightBytes(buffer); + *len = 8; + break; + + default: + abort(); + } + + // Find the appropriate base address. + uint64 base; + switch (encoding & 0x70) { + case DW_EH_PE_absptr: + base = 0; + break; + + case DW_EH_PE_pcrel: + assert(have_section_base_); + base = section_base_ + (buffer - buffer_base_); + break; + + case DW_EH_PE_textrel: + assert(have_text_base_); + base = text_base_; + break; + + case DW_EH_PE_datarel: + assert(have_data_base_); + base = data_base_; + break; + + case DW_EH_PE_funcrel: + assert(have_function_base_); + base = function_base_; + break; + + default: + abort(); + } + + uint64 pointer = base + offset; + + // Remove inappropriate upper bits. + if (AddressSize() == 4) + pointer = pointer & 0xffffffff; + else + assert(AddressSize() == sizeof(uint64)); + + return pointer; +} + +} // namespace dwarf2reader diff --git a/3rdParty/Breakpad/src/common/dwarf/bytereader.h b/3rdParty/Breakpad/src/common/dwarf/bytereader.h new file mode 100644 index 0000000..e389427 --- /dev/null +++ b/3rdParty/Breakpad/src/common/dwarf/bytereader.h @@ -0,0 +1,310 @@ +// -*- mode: C++ -*- + +// Copyright (c) 2010 Google Inc. All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef COMMON_DWARF_BYTEREADER_H__ +#define COMMON_DWARF_BYTEREADER_H__ + +#include <string> +#include "common/dwarf/types.h" +#include "common/dwarf/dwarf2enums.h" + +namespace dwarf2reader { + +// We can't use the obvious name of LITTLE_ENDIAN and BIG_ENDIAN +// because it conflicts with a macro +enum Endianness { + ENDIANNESS_BIG, + ENDIANNESS_LITTLE +}; + +// A ByteReader knows how to read single- and multi-byte values of +// various endiannesses, sizes, and encodings, as used in DWARF +// debugging information and Linux C++ exception handling data. +class ByteReader { + public: + // Construct a ByteReader capable of reading one-, two-, four-, and + // eight-byte values according to ENDIANNESS, absolute machine-sized + // addresses, DWARF-style "initial length" values, signed and + // unsigned LEB128 numbers, and Linux C++ exception handling data's + // encoded pointers. + explicit ByteReader(enum Endianness endianness); + virtual ~ByteReader(); + + // Read a single byte from BUFFER and return it as an unsigned 8 bit + // number. + uint8 ReadOneByte(const char* buffer) const; + + // Read two bytes from BUFFER and return them as an unsigned 16 bit + // number, using this ByteReader's endianness. + uint16 ReadTwoBytes(const char* buffer) const; + + // Read four bytes from BUFFER and return them as an unsigned 32 bit + // number, using this ByteReader's endianness. This function returns + // a uint64 so that it is compatible with ReadAddress and + // ReadOffset. The number it returns will never be outside the range + // of an unsigned 32 bit integer. + uint64 ReadFourBytes(const char* buffer) const; + + // Read eight bytes from BUFFER and return them as an unsigned 64 + // bit number, using this ByteReader's endianness. + uint64 ReadEightBytes(const char* buffer) const; + + // Read an unsigned LEB128 (Little Endian Base 128) number from + // BUFFER and return it as an unsigned 64 bit integer. Set LEN to + // the number of bytes read. + // + // The unsigned LEB128 representation of an integer N is a variable + // number of bytes: + // + // - If N is between 0 and 0x7f, then its unsigned LEB128 + // representation is a single byte whose value is N. + // + // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) | + // 0x80, followed by the unsigned LEB128 representation of N / + // 128, rounded towards negative infinity. + // + // In other words, we break VALUE into groups of seven bits, put + // them in little-endian order, and then write them as eight-bit + // bytes with the high bit on all but the last. + uint64 ReadUnsignedLEB128(const char* buffer, size_t* len) const; + + // Read a signed LEB128 number from BUFFER and return it as an + // signed 64 bit integer. Set LEN to the number of bytes read. + // + // The signed LEB128 representation of an integer N is a variable + // number of bytes: + // + // - If N is between -0x40 and 0x3f, then its signed LEB128 + // representation is a single byte whose value is N in two's + // complement. + // + // - Otherwise, its signed LEB128 representation is (N & 0x7f) | + // 0x80, followed by the signed LEB128 representation of N / 128, + // rounded towards negative infinity. + // + // In other words, we break VALUE into groups of seven bits, put + // them in little-endian order, and then write them as eight-bit + // bytes with the high bit on all but the last. + int64 ReadSignedLEB128(const char* buffer, size_t* len) const; + + // Indicate that addresses on this architecture are SIZE bytes long. SIZE + // must be either 4 or 8. (DWARF allows addresses to be any number of + // bytes in length from 1 to 255, but we only support 32- and 64-bit + // addresses at the moment.) You must call this before using the + // ReadAddress member function. + // + // For data in a .debug_info section, or something that .debug_info + // refers to like line number or macro data, the compilation unit + // header's address_size field indicates the address size to use. Call + // frame information doesn't indicate its address size (a shortcoming of + // the spec); you must supply the appropriate size based on the + // architecture of the target machine. + void SetAddressSize(uint8 size); + + // Return the current address size, in bytes. This is either 4, + // indicating 32-bit addresses, or 8, indicating 64-bit addresses. + uint8 AddressSize() const { return address_size_; } + + // Read an address from BUFFER and return it as an unsigned 64 bit + // integer, respecting this ByteReader's endianness and address size. You + // must call SetAddressSize before calling this function. + uint64 ReadAddress(const char* buffer) const; + + // DWARF actually defines two slightly different formats: 32-bit DWARF + // and 64-bit DWARF. This is *not* related to the size of registers or + // addresses on the target machine; it refers only to the size of section + // offsets and data lengths appearing in the DWARF data. One only needs + // 64-bit DWARF when the debugging data itself is larger than 4GiB. + // 32-bit DWARF can handle x86_64 or PPC64 code just fine, unless the + // debugging data itself is very large. + // + // DWARF information identifies itself as 32-bit or 64-bit DWARF: each + // compilation unit and call frame information entry begins with an + // "initial length" field, which, in addition to giving the length of the + // data, also indicates the size of section offsets and lengths appearing + // in that data. The ReadInitialLength member function, below, reads an + // initial length and sets the ByteReader's offset size as a side effect. + // Thus, in the normal process of reading DWARF data, the appropriate + // offset size is set automatically. So, you should only need to call + // SetOffsetSize if you are using the same ByteReader to jump from the + // midst of one block of DWARF data into another. + + // Read a DWARF "initial length" field from START, and return it as + // an unsigned 64 bit integer, respecting this ByteReader's + // endianness. Set *LEN to the length of the initial length in + // bytes, either four or twelve. As a side effect, set this + // ByteReader's offset size to either 4 (if we see a 32-bit DWARF + // initial length) or 8 (if we see a 64-bit DWARF initial length). + // + // A DWARF initial length is either: + // + // - a byte count stored as an unsigned 32-bit value less than + // 0xffffff00, indicating that the data whose length is being + // measured uses the 32-bit DWARF format, or + // + // - The 32-bit value 0xffffffff, followed by a 64-bit byte count, + // indicating that the data whose length is being measured uses + // the 64-bit DWARF format. + uint64 ReadInitialLength(const char* start, size_t* len); + + // Read an offset from BUFFER and return it as an unsigned 64 bit + // integer, respecting the ByteReader's endianness. In 32-bit DWARF, the + // offset is 4 bytes long; in 64-bit DWARF, the offset is eight bytes + // long. You must call ReadInitialLength or SetOffsetSize before calling + // this function; see the comments above for details. + uint64 ReadOffset(const char* buffer) const; + + // Return the current offset size, in bytes. + // A return value of 4 indicates that we are reading 32-bit DWARF. + // A return value of 8 indicates that we are reading 64-bit DWARF. + uint8 OffsetSize() const { return offset_size_; } + + // Indicate that section offsets and lengths are SIZE bytes long. SIZE + // must be either 4 (meaning 32-bit DWARF) or 8 (meaning 64-bit DWARF). + // Usually, you should not call this function yourself; instead, let a + // call to ReadInitialLength establish the data's offset size + // automatically. + void SetOffsetSize(uint8 size); + + // The Linux C++ ABI uses a variant of DWARF call frame information + // for exception handling. This data is included in the program's + // address space as the ".eh_frame" section, and intepreted at + // runtime to walk the stack, find exception handlers, and run + // cleanup code. The format is mostly the same as DWARF CFI, with + // some adjustments made to provide the additional + // exception-handling data, and to make the data easier to work with + // in memory --- for example, to allow it to be placed in read-only + // memory even when describing position-independent code. + // + // In particular, exception handling data can select a number of + // different encodings for pointers that appear in the data, as + // described by the DwarfPointerEncoding enum. There are actually + // four axes(!) to the encoding: + // + // - The pointer size: pointers can be 2, 4, or 8 bytes long, or use + // the DWARF LEB128 encoding. + // + // - The pointer's signedness: pointers can be signed or unsigned. + // + // - The pointer's base address: the data stored in the exception + // handling data can be the actual address (that is, an absolute + // pointer), or relative to one of a number of different base + // addreses --- including that of the encoded pointer itself, for + // a form of "pc-relative" addressing. + // + // - The pointer may be indirect: it may be the address where the + // true pointer is stored. (This is used to refer to things via + // global offset table entries, program linkage table entries, or + // other tricks used in position-independent code.) + // + // There are also two options that fall outside that matrix + // altogether: the pointer may be omitted, or it may have padding to + // align it on an appropriate address boundary. (That last option + // may seem like it should be just another axis, but it is not.) + + // Indicate that the exception handling data is loaded starting at + // SECTION_BASE, and that the start of its buffer in our own memory + // is BUFFER_BASE. This allows us to find the address that a given + // byte in our buffer would have when loaded into the program the + // data describes. We need this to resolve DW_EH_PE_pcrel pointers. + void SetCFIDataBase(uint64 section_base, const char *buffer_base); + + // Indicate that the base address of the program's ".text" section + // is TEXT_BASE. We need this to resolve DW_EH_PE_textrel pointers. + void SetTextBase(uint64 text_base); + + // Indicate that the base address for DW_EH_PE_datarel pointers is + // DATA_BASE. The proper value depends on the ABI; it is usually the + // address of the global offset table, held in a designated register in + // position-independent code. You will need to look at the startup code + // for the target system to be sure. I tried; my eyes bled. + void SetDataBase(uint64 data_base); + + // Indicate that the base address for the FDE we are processing is + // FUNCTION_BASE. This is the start address of DW_EH_PE_funcrel + // pointers. (This encoding does not seem to be used by the GNU + // toolchain.) + void SetFunctionBase(uint64 function_base); + + // Indicate that we are no longer processing any FDE, so any use of + // a DW_EH_PE_funcrel encoding is an error. + void ClearFunctionBase(); + + // Return true if ENCODING is a valid pointer encoding. + bool ValidEncoding(DwarfPointerEncoding encoding) const; + + // Return true if we have all the information we need to read a + // pointer that uses ENCODING. This checks that the appropriate + // SetFooBase function for ENCODING has been called. + bool UsableEncoding(DwarfPointerEncoding encoding) const; + + // Read an encoded pointer from BUFFER using ENCODING; return the + // absolute address it represents, and set *LEN to the pointer's + // length in bytes, including any padding for aligned pointers. + // + // This function calls 'abort' if ENCODING is invalid or refers to a + // base address this reader hasn't been given, so you should check + // with ValidEncoding and UsableEncoding first if you would rather + // die in a more helpful way. + uint64 ReadEncodedPointer(const char *buffer, DwarfPointerEncoding encoding, + size_t *len) const; + + private: + + // Function pointer type for our address and offset readers. + typedef uint64 (ByteReader::*AddressReader)(const char*) const; + + // Read an offset from BUFFER and return it as an unsigned 64 bit + // integer. DWARF2/3 define offsets as either 4 or 8 bytes, + // generally depending on the amount of DWARF2/3 info present. + // This function pointer gets set by SetOffsetSize. + AddressReader offset_reader_; + + // Read an address from BUFFER and return it as an unsigned 64 bit + // integer. DWARF2/3 allow addresses to be any size from 0-255 + // bytes currently. Internally we support 4 and 8 byte addresses, + // and will CHECK on anything else. + // This function pointer gets set by SetAddressSize. + AddressReader address_reader_; + + Endianness endian_; + uint8 address_size_; + uint8 offset_size_; + + // Base addresses for Linux C++ exception handling data's encoded pointers. + bool have_section_base_, have_text_base_, have_data_base_; + bool have_function_base_; + uint64 section_base_, text_base_, data_base_, function_base_; + const char *buffer_base_; +}; + +} // namespace dwarf2reader + +#endif // COMMON_DWARF_BYTEREADER_H__ diff --git a/3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.cc b/3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.cc new file mode 100644 index 0000000..c741d69 --- /dev/null +++ b/3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.cc @@ -0,0 +1,199 @@ +// Copyright (c) 2010 Google Inc. All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com> + +// dwarf2diehandler.cc: Implement the dwarf2reader::DieDispatcher class. +// See dwarf2diehandler.h for details. + +#include <assert.h> + +#include <string> + +#include "common/dwarf/dwarf2diehandler.h" +#include "common/using_std_string.h" + +namespace dwarf2reader { + +DIEDispatcher::~DIEDispatcher() { + while (!die_handlers_.empty()) { + HandlerStack &entry = die_handlers_.top(); + if (entry.handler_ != root_handler_) + delete entry.handler_; + die_handlers_.pop(); + } +} + +bool DIEDispatcher::StartCompilationUnit(uint64 offset, uint8 address_size, + uint8 offset_size, uint64 cu_length, + uint8 dwarf_version) { + return root_handler_->StartCompilationUnit(offset, address_size, + offset_size, cu_length, + dwarf_version); +} + +bool DIEDispatcher::StartDIE(uint64 offset, enum DwarfTag tag, + const AttributeList& attrs) { + // The stack entry for the parent of this DIE, if there is one. + HandlerStack *parent = die_handlers_.empty() ? NULL : &die_handlers_.top(); + + // Does this call indicate that we're done receiving the parent's + // attributes' values? If so, call its EndAttributes member function. + if (parent && parent->handler_ && !parent->reported_attributes_end_) { + parent->reported_attributes_end_ = true; + if (!parent->handler_->EndAttributes()) { + // Finish off this handler now. and edit *PARENT to indicate that + // we don't want to visit any of the children. + parent->handler_->Finish(); + if (parent->handler_ != root_handler_) + delete parent->handler_; + parent->handler_ = NULL; + return false; + } + } + + // Find a handler for this DIE. + DIEHandler *handler; + if (parent) { + if (parent->handler_) + // Ask the parent to find a handler. + handler = parent->handler_->FindChildHandler(offset, tag, attrs); + else + // No parent handler means we're not interested in any of our + // children. + handler = NULL; + } else { + // This is the root DIE. For a non-root DIE, the parent's handler + // decides whether to visit it, but the root DIE has no parent + // handler, so we have a special method on the root DIE handler + // itself to decide. + if (root_handler_->StartRootDIE(offset, tag, attrs)) + handler = root_handler_; + else + handler = NULL; + } + + // Push a handler stack entry for this new handler. As an + // optimization, we don't push NULL-handler entries on top of other + // NULL-handler entries; we just let the oldest such entry stand for + // the whole subtree. + if (handler || !parent || parent->handler_) { + HandlerStack entry; + entry.offset_ = offset; + entry.handler_ = handler; + entry.reported_attributes_end_ = false; + die_handlers_.push(entry); + } + + return handler != NULL; +} + +void DIEDispatcher::EndDIE(uint64 offset) { + assert(!die_handlers_.empty()); + HandlerStack *entry = &die_handlers_.top(); + if (entry->handler_) { + // This entry had better be the handler for this DIE. + assert(entry->offset_ == offset); + // If a DIE has no children, this EndDIE call indicates that we're + // done receiving its attributes' values. + if (!entry->reported_attributes_end_) + entry->handler_->EndAttributes(); // Ignore return value: no children. + entry->handler_->Finish(); + if (entry->handler_ != root_handler_) + delete entry->handler_; + } else { + // If this DIE is within a tree we're ignoring, then don't pop the + // handler stack: that entry stands for the whole tree. + if (entry->offset_ != offset) + return; + } + die_handlers_.pop(); +} + +void DIEDispatcher::ProcessAttributeUnsigned(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + uint64 data) { + HandlerStack ¤t = die_handlers_.top(); + // This had better be an attribute of the DIE we were meant to handle. + assert(offset == current.offset_); + current.handler_->ProcessAttributeUnsigned(attr, form, data); +} + +void DIEDispatcher::ProcessAttributeSigned(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + int64 data) { + HandlerStack ¤t = die_handlers_.top(); + // This had better be an attribute of the DIE we were meant to handle. + assert(offset == current.offset_); + current.handler_->ProcessAttributeSigned(attr, form, data); +} + +void DIEDispatcher::ProcessAttributeReference(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + uint64 data) { + HandlerStack ¤t = die_handlers_.top(); + // This had better be an attribute of the DIE we were meant to handle. + assert(offset == current.offset_); + current.handler_->ProcessAttributeReference(attr, form, data); +} + +void DIEDispatcher::ProcessAttributeBuffer(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + const char* data, + uint64 len) { + HandlerStack ¤t = die_handlers_.top(); + // This had better be an attribute of the DIE we were meant to handle. + assert(offset == current.offset_); + current.handler_->ProcessAttributeBuffer(attr, form, data, len); +} + +void DIEDispatcher::ProcessAttributeString(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + const string& data) { + HandlerStack ¤t = die_handlers_.top(); + // This had better be an attribute of the DIE we were meant to handle. + assert(offset == current.offset_); + current.handler_->ProcessAttributeString(attr, form, data); +} + +void DIEDispatcher::ProcessAttributeSignature(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + uint64 signature) { + HandlerStack ¤t = die_handlers_.top(); + // This had better be an attribute of the DIE we were meant to handle. + assert(offset == current.offset_); + current.handler_->ProcessAttributeSignature(attr, form, signature); +} + +} // namespace dwarf2reader diff --git a/3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.h b/3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.h new file mode 100644 index 0000000..12b8d3a --- /dev/null +++ b/3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.h @@ -0,0 +1,367 @@ +// -*- mode: c++ -*- + +// Copyright (c) 2010 Google Inc. All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com> + +// dwarf2reader::CompilationUnit is a simple and direct parser for +// DWARF data, but its handler interface is not convenient to use. In +// particular: +// +// - CompilationUnit calls Dwarf2Handler's member functions to report +// every attribute's value, regardless of what sort of DIE it is. +// As a result, the ProcessAttributeX functions end up looking like +// this: +// +// switch (parent_die_tag) { +// case DW_TAG_x: +// switch (attribute_name) { +// case DW_AT_y: +// handle attribute y of DIE type x +// ... +// } break; +// ... +// } +// +// In C++ it's much nicer to use virtual function dispatch to find +// the right code for a given case than to switch on the DIE tag +// like this. +// +// - Processing different kinds of DIEs requires different sets of +// data: lexical block DIEs have start and end addresses, but struct +// type DIEs don't. It would be nice to be able to have separate +// handler classes for separate kinds of DIEs, each with the members +// appropriate to its role, instead of having one handler class that +// needs to hold data for every DIE type. +// +// - There should be a separate instance of the appropriate handler +// class for each DIE, instead of a single object with tables +// tracking all the dies in the compilation unit. +// +// - It's not convenient to take some action after all a DIE's +// attributes have been seen, but before visiting any of its +// children. The only indication you have that a DIE's attribute +// list is complete is that you get either a StartDIE or an EndDIE +// call. +// +// - It's not convenient to make use of the tree structure of the +// DIEs. Skipping all the children of a given die requires +// maintaining state and returning false from StartDIE until we get +// an EndDIE call with the appropriate offset. +// +// This interface tries to take care of all that. (You're shocked, I'm sure.) +// +// Using the classes here, you provide an initial handler for the root +// DIE of the compilation unit. Each handler receives its DIE's +// attributes, and provides fresh handler objects for children of +// interest, if any. The three classes are: +// +// - DIEHandler: the base class for your DIE-type-specific handler +// classes. +// +// - RootDIEHandler: derived from DIEHandler, the base class for your +// root DIE handler class. +// +// - DIEDispatcher: derived from Dwarf2Handler, an instance of this +// invokes your DIE-type-specific handler objects. +// +// In detail: +// +// - Define handler classes specialized for the DIE types you're +// interested in. These handler classes must inherit from +// DIEHandler. Thus: +// +// class My_DW_TAG_X_Handler: public DIEHandler { ... }; +// class My_DW_TAG_Y_Handler: public DIEHandler { ... }; +// +// DIEHandler subclasses needn't correspond exactly to single DIE +// types, as shown here; the point is that you can have several +// different classes appropriate to different kinds of DIEs. +// +// - In particular, define a handler class for the compilation +// unit's root DIE, that inherits from RootDIEHandler: +// +// class My_DW_TAG_compile_unit_Handler: public RootDIEHandler { ... }; +// +// RootDIEHandler inherits from DIEHandler, adding a few additional +// member functions for examining the compilation unit as a whole, +// and other quirks of rootness. +// +// - Then, create a DIEDispatcher instance, passing it an instance of +// your root DIE handler class, and use that DIEDispatcher as the +// dwarf2reader::CompilationUnit's handler: +// +// My_DW_TAG_compile_unit_Handler root_die_handler(...); +// DIEDispatcher die_dispatcher(&root_die_handler); +// CompilationUnit reader(sections, offset, bytereader, &die_dispatcher); +// +// Here, 'die_dispatcher' acts as a shim between 'reader' and the +// various DIE-specific handlers you have defined. +// +// - When you call reader.Start(), die_dispatcher behaves as follows, +// starting with your root die handler and the compilation unit's +// root DIE: +// +// - It calls the handler's ProcessAttributeX member functions for +// each of the DIE's attributes. +// +// - It calls the handler's EndAttributes member function. This +// should return true if any of the DIE's children should be +// visited, in which case: +// +// - For each of the DIE's children, die_dispatcher calls the +// DIE's handler's FindChildHandler member function. If that +// returns a pointer to a DIEHandler instance, then +// die_dispatcher uses that handler to process the child, using +// this procedure recursively. Alternatively, if +// FindChildHandler returns NULL, die_dispatcher ignores that +// child and its descendants. +// +// - When die_dispatcher has finished processing all the DIE's +// children, it invokes the handler's Finish() member function, +// and destroys the handler. (As a special case, it doesn't +// destroy the root DIE handler.) +// +// This allows the code for handling a particular kind of DIE to be +// gathered together in a single class, makes it easy to skip all the +// children or individual children of a particular DIE, and provides +// appropriate parental context for each die. + +#ifndef COMMON_DWARF_DWARF2DIEHANDLER_H__ +#define COMMON_DWARF_DWARF2DIEHANDLER_H__ + +#include <stack> +#include <string> + +#include "common/dwarf/types.h" +#include "common/dwarf/dwarf2enums.h" +#include "common/dwarf/dwarf2reader.h" +#include "common/using_std_string.h" + +namespace dwarf2reader { + +// A base class for handlers for specific DIE types. The series of +// calls made on a DIE handler is as follows: +// +// - for each attribute of the DIE: +// - ProcessAttributeX() +// - EndAttributes() +// - if that returned true, then for each child: +// - FindChildHandler() +// - if that returns a non-NULL pointer to a new handler: +// - recurse, with the new handler and the child die +// - Finish() +// - destruction +class DIEHandler { + public: + DIEHandler() { } + virtual ~DIEHandler() { } + + // When we visit a DIE, we first use these member functions to + // report the DIE's attributes and their values. These have the + // same restrictions as the corresponding member functions of + // dwarf2reader::Dwarf2Handler. + // + // Since DWARF does not specify in what order attributes must + // appear, avoid making decisions in these functions that would be + // affected by the presence of other attributes. The EndAttributes + // function is a more appropriate place for such work, as all the + // DIE's attributes have been seen at that point. + // + // The default definitions ignore the values they are passed. + virtual void ProcessAttributeUnsigned(enum DwarfAttribute attr, + enum DwarfForm form, + uint64 data) { } + virtual void ProcessAttributeSigned(enum DwarfAttribute attr, + enum DwarfForm form, + int64 data) { } + virtual void ProcessAttributeReference(enum DwarfAttribute attr, + enum DwarfForm form, + uint64 data) { } + virtual void ProcessAttributeBuffer(enum DwarfAttribute attr, + enum DwarfForm form, + const char* data, + uint64 len) { } + virtual void ProcessAttributeString(enum DwarfAttribute attr, + enum DwarfForm form, + const string& data) { } + virtual void ProcessAttributeSignature(enum DwarfAttribute attr, + enum DwarfForm form, + uint64 signture) { } + + // Once we have reported all the DIE's attributes' values, we call + // this member function. If it returns false, we skip all the DIE's + // children. If it returns true, we call FindChildHandler on each + // child. If that returns a handler object, we use that to visit + // the child; otherwise, we skip the child. + // + // This is a good place to make decisions that depend on more than + // one attribute. DWARF does not specify in what order attributes + // must appear, so only when the EndAttributes function is called + // does the handler have a complete picture of the DIE's attributes. + // + // The default definition elects to ignore the DIE's children. + // You'll need to override this if you override FindChildHandler, + // but at least the default behavior isn't to pass the children to + // FindChildHandler, which then ignores them all. + virtual bool EndAttributes() { return false; } + + // If EndAttributes returns true to indicate that some of the DIE's + // children might be of interest, then we apply this function to + // each of the DIE's children. If it returns a handler object, then + // we use that to visit the child DIE. If it returns NULL, we skip + // that child DIE (and all its descendants). + // + // OFFSET is the offset of the child; TAG indicates what kind of DIE + // it is; and ATTRS is the list of attributes the DIE will have, and + // their forms (their values are not provided). + // + // The default definition skips all children. + virtual DIEHandler *FindChildHandler(uint64 offset, enum DwarfTag tag, + const AttributeList &attrs) { + return NULL; + } + + // When we are done processing a DIE, we call this member function. + // This happens after the EndAttributes call, all FindChildHandler + // calls (if any), and all operations on the children themselves (if + // any). We call Finish on every handler --- even if EndAttributes + // returns false. + virtual void Finish() { }; +}; + +// A subclass of DIEHandler, with additional kludges for handling the +// compilation unit's root die. +class RootDIEHandler: public DIEHandler { + public: + RootDIEHandler() { } + virtual ~RootDIEHandler() { } + + // We pass the values reported via Dwarf2Handler::StartCompilationUnit + // to this member function, and skip the entire compilation unit if it + // returns false. So the root DIE handler is actually also + // responsible for handling the compilation unit metadata. + // The default definition always visits the compilation unit. + virtual bool StartCompilationUnit(uint64 offset, uint8 address_size, + uint8 offset_size, uint64 cu_length, + uint8 dwarf_version) { return true; } + + // For the root DIE handler only, we pass the offset, tag and + // attributes of the compilation unit's root DIE. This is the only + // way the root DIE handler can find the root DIE's tag. If this + // function returns true, we will visit the root DIE using the usual + // DIEHandler methods; otherwise, we skip the entire compilation + // unit. + // + // The default definition elects to visit the root DIE. + virtual bool StartRootDIE(uint64 offset, enum DwarfTag tag, + const AttributeList& attrs) { return true; } +}; + +class DIEDispatcher: public Dwarf2Handler { + public: + // Create a Dwarf2Handler which uses ROOT_HANDLER as the handler for + // the compilation unit's root die, as described for the DIEHandler + // class. + DIEDispatcher(RootDIEHandler *root_handler) : root_handler_(root_handler) { } + // Destroying a DIEDispatcher destroys all active handler objects + // except the root handler. + ~DIEDispatcher(); + bool StartCompilationUnit(uint64 offset, uint8 address_size, + uint8 offset_size, uint64 cu_length, + uint8 dwarf_version); + bool StartDIE(uint64 offset, enum DwarfTag tag, + const AttributeList &attrs); + void ProcessAttributeUnsigned(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + uint64 data); + void ProcessAttributeSigned(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + int64 data); + void ProcessAttributeReference(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + uint64 data); + void ProcessAttributeBuffer(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + const char* data, + uint64 len); + void ProcessAttributeString(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + const string &data); + void ProcessAttributeSignature(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + uint64 signature); + void EndDIE(uint64 offset); + + private: + + // The type of a handler stack entry. This includes some fields + // which don't really need to be on the stack --- they could just be + // single data members of DIEDispatcher --- but putting them here + // makes it easier to see that the code is correct. + struct HandlerStack { + // The offset of the DIE for this handler stack entry. + uint64 offset_; + + // The handler object interested in this DIE's attributes and + // children. If NULL, we're not interested in either. + DIEHandler *handler_; + + // Have we reported the end of this DIE's attributes to the handler? + bool reported_attributes_end_; + }; + + // Stack of DIE attribute handlers. At StartDIE(D), the top of the + // stack is the handler of D's parent, whom we may ask for a handler + // for D itself. At EndDIE(D), the top of the stack is D's handler. + // Special cases: + // + // - Before we've seen the compilation unit's root DIE, the stack is + // empty; we'll call root_handler_'s special member functions, and + // perhaps push root_handler_ on the stack to look at the root's + // immediate children. + // + // - When we decide to ignore a subtree, we only push an entry on + // the stack for the root of the tree being ignored, rather than + // pushing lots of stack entries with handler_ set to NULL. + std::stack<HandlerStack> die_handlers_; + + // The root handler. We don't push it on die_handlers_ until we + // actually get the StartDIE call for the root. + RootDIEHandler *root_handler_; +}; + +} // namespace dwarf2reader +#endif // COMMON_DWARF_DWARF2DIEHANDLER_H__ diff --git a/3rdParty/Breakpad/src/common/dwarf/dwarf2enums.h b/3rdParty/Breakpad/src/common/dwarf/dwarf2enums.h new file mode 100644 index 0000000..5565d66 --- /dev/null +++ b/3rdParty/Breakpad/src/common/dwarf/dwarf2enums.h @@ -0,0 +1,650 @@ +// -*- mode: c++ -*- + +// Copyright (c) 2010 Google Inc. All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef COMMON_DWARF_DWARF2ENUMS_H__ +#define COMMON_DWARF_DWARF2ENUMS_H__ + +namespace dwarf2reader { + +// These enums do not follow the google3 style only because they are +// known universally (specs, other implementations) by the names in +// exactly this capitalization. +// Tag names and codes. +enum DwarfTag { + DW_TAG_padding = 0x00, + DW_TAG_array_type = 0x01, + DW_TAG_class_type = 0x02, + DW_TAG_entry_point = 0x03, + DW_TAG_enumeration_type = 0x04, + DW_TAG_formal_parameter = 0x05, + DW_TAG_imported_declaration = 0x08, + DW_TAG_label = 0x0a, + DW_TAG_lexical_block = 0x0b, + DW_TAG_member = 0x0d, + DW_TAG_pointer_type = 0x0f, + DW_TAG_reference_type = 0x10, + DW_TAG_compile_unit = 0x11, + DW_TAG_string_type = 0x12, + DW_TAG_structure_type = 0x13, + DW_TAG_subroutine_type = 0x15, + DW_TAG_typedef = 0x16, + DW_TAG_union_type = 0x17, + DW_TAG_unspecified_parameters = 0x18, + DW_TAG_variant = 0x19, + DW_TAG_common_block = 0x1a, + DW_TAG_common_inclusion = 0x1b, + DW_TAG_inheritance = 0x1c, + DW_TAG_inlined_subroutine = 0x1d, + DW_TAG_module = 0x1e, + DW_TAG_ptr_to_member_type = 0x1f, + DW_TAG_set_type = 0x20, + DW_TAG_subrange_type = 0x21, + DW_TAG_with_stmt = 0x22, + DW_TAG_access_declaration = 0x23, + DW_TAG_base_type = 0x24, + DW_TAG_catch_block = 0x25, + DW_TAG_const_type = 0x26, + DW_TAG_constant = 0x27, + DW_TAG_enumerator = 0x28, + DW_TAG_file_type = 0x29, + DW_TAG_friend = 0x2a, + DW_TAG_namelist = 0x2b, + DW_TAG_namelist_item = 0x2c, + DW_TAG_packed_type = 0x2d, + DW_TAG_subprogram = 0x2e, + DW_TAG_template_type_param = 0x2f, + DW_TAG_template_value_param = 0x30, + DW_TAG_thrown_type = 0x31, + DW_TAG_try_block = 0x32, + DW_TAG_variant_part = 0x33, + DW_TAG_variable = 0x34, + DW_TAG_volatile_type = 0x35, + // DWARF 3. + DW_TAG_dwarf_procedure = 0x36, + DW_TAG_restrict_type = 0x37, + DW_TAG_interface_type = 0x38, + DW_TAG_namespace = 0x39, + DW_TAG_imported_module = 0x3a, + DW_TAG_unspecified_type = 0x3b, + DW_TAG_partial_unit = 0x3c, + DW_TAG_imported_unit = 0x3d, + // SGI/MIPS Extensions. + DW_TAG_MIPS_loop = 0x4081, + // HP extensions. See: + // ftp://ftp.hp.com/pub/lang/tools/WDB/wdb-4.0.tar.gz + DW_TAG_HP_array_descriptor = 0x4090, + // GNU extensions. + DW_TAG_format_label = 0x4101, // For FORTRAN 77 and Fortran 90. + DW_TAG_function_template = 0x4102, // For C++. + DW_TAG_class_template = 0x4103, // For C++. + DW_TAG_GNU_BINCL = 0x4104, + DW_TAG_GNU_EINCL = 0x4105, + // Extensions for UPC. See: http://upc.gwu.edu/~upc. + DW_TAG_upc_shared_type = 0x8765, + DW_TAG_upc_strict_type = 0x8766, + DW_TAG_upc_relaxed_type = 0x8767, + // PGI (STMicroelectronics) extensions. No documentation available. + DW_TAG_PGI_kanji_type = 0xA000, + DW_TAG_PGI_interface_block = 0xA020 +}; + + +enum DwarfHasChild { + DW_children_no = 0, + DW_children_yes = 1 +}; + +// Form names and codes. +enum DwarfForm { + DW_FORM_addr = 0x01, + DW_FORM_block2 = 0x03, + DW_FORM_block4 = 0x04, + DW_FORM_data2 = 0x05, + DW_FORM_data4 = 0x06, + DW_FORM_data8 = 0x07, + DW_FORM_string = 0x08, + DW_FORM_block = 0x09, + DW_FORM_block1 = 0x0a, + DW_FORM_data1 = 0x0b, + DW_FORM_flag = 0x0c, + DW_FORM_sdata = 0x0d, + DW_FORM_strp = 0x0e, + DW_FORM_udata = 0x0f, + DW_FORM_ref_addr = 0x10, + DW_FORM_ref1 = 0x11, + DW_FORM_ref2 = 0x12, + DW_FORM_ref4 = 0x13, + DW_FORM_ref8 = 0x14, + DW_FORM_ref_udata = 0x15, + DW_FORM_indirect = 0x16, + + // Added in DWARF 4: + DW_FORM_sec_offset = 0x17, + DW_FORM_exprloc = 0x18, + DW_FORM_flag_present = 0x19, + DW_FORM_ref_sig8 = 0x20 +}; + +// Attribute names and codes +enum DwarfAttribute { + DW_AT_sibling = 0x01, + DW_AT_location = 0x02, + DW_AT_name = 0x03, + DW_AT_ordering = 0x09, + DW_AT_subscr_data = 0x0a, + DW_AT_byte_size = 0x0b, + DW_AT_bit_offset = 0x0c, + DW_AT_bit_size = 0x0d, + DW_AT_element_list = 0x0f, + DW_AT_stmt_list = 0x10, + DW_AT_low_pc = 0x11, + DW_AT_high_pc = 0x12, + DW_AT_language = 0x13, + DW_AT_member = 0x14, + DW_AT_discr = 0x15, + DW_AT_discr_value = 0x16, + DW_AT_visibility = 0x17, + DW_AT_import = 0x18, + DW_AT_string_length = 0x19, + DW_AT_common_reference = 0x1a, + DW_AT_comp_dir = 0x1b, + DW_AT_const_value = 0x1c, + DW_AT_containing_type = 0x1d, + DW_AT_default_value = 0x1e, + DW_AT_inline = 0x20, + DW_AT_is_optional = 0x21, + DW_AT_lower_bound = 0x22, + DW_AT_producer = 0x25, + DW_AT_prototyped = 0x27, + DW_AT_return_addr = 0x2a, + DW_AT_start_scope = 0x2c, + DW_AT_stride_size = 0x2e, + DW_AT_upper_bound = 0x2f, + DW_AT_abstract_origin = 0x31, + DW_AT_accessibility = 0x32, + DW_AT_address_class = 0x33, + DW_AT_artificial = 0x34, + DW_AT_base_types = 0x35, + DW_AT_calling_convention = 0x36, + DW_AT_count = 0x37, + DW_AT_data_member_location = 0x38, + DW_AT_decl_column = 0x39, + DW_AT_decl_file = 0x3a, + DW_AT_decl_line = 0x3b, + DW_AT_declaration = 0x3c, + DW_AT_discr_list = 0x3d, + DW_AT_encoding = 0x3e, + DW_AT_external = 0x3f, + DW_AT_frame_base = 0x40, + DW_AT_friend = 0x41, + DW_AT_identifier_case = 0x42, + DW_AT_macro_info = 0x43, + DW_AT_namelist_items = 0x44, + DW_AT_priority = 0x45, + DW_AT_segment = 0x46, + DW_AT_specification = 0x47, + DW_AT_static_link = 0x48, + DW_AT_type = 0x49, + DW_AT_use_location = 0x4a, + DW_AT_variable_parameter = 0x4b, + DW_AT_virtuality = 0x4c, + DW_AT_vtable_elem_location = 0x4d, + // DWARF 3 values. + DW_AT_allocated = 0x4e, + DW_AT_associated = 0x4f, + DW_AT_data_location = 0x50, + DW_AT_stride = 0x51, + DW_AT_entry_pc = 0x52, + DW_AT_use_UTF8 = 0x53, + DW_AT_extension = 0x54, + DW_AT_ranges = 0x55, + DW_AT_trampoline = 0x56, + DW_AT_call_column = 0x57, + DW_AT_call_file = 0x58, + DW_AT_call_line = 0x59, + // SGI/MIPS extensions. + DW_AT_MIPS_fde = 0x2001, + DW_AT_MIPS_loop_begin = 0x2002, + DW_AT_MIPS_tail_loop_begin = 0x2003, + DW_AT_MIPS_epilog_begin = 0x2004, + DW_AT_MIPS_loop_unroll_factor = 0x2005, + DW_AT_MIPS_software_pipeline_depth = 0x2006, + DW_AT_MIPS_linkage_name = 0x2007, + DW_AT_MIPS_stride = 0x2008, + DW_AT_MIPS_abstract_name = 0x2009, + DW_AT_MIPS_clone_origin = 0x200a, + DW_AT_MIPS_has_inlines = 0x200b, + // HP extensions. + DW_AT_HP_block_index = 0x2000, + DW_AT_HP_unmodifiable = 0x2001, // Same as DW_AT_MIPS_fde. + DW_AT_HP_actuals_stmt_list = 0x2010, + DW_AT_HP_proc_per_section = 0x2011, + DW_AT_HP_raw_data_ptr = 0x2012, + DW_AT_HP_pass_by_reference = 0x2013, + DW_AT_HP_opt_level = 0x2014, + DW_AT_HP_prof_version_id = 0x2015, + DW_AT_HP_opt_flags = 0x2016, + DW_AT_HP_cold_region_low_pc = 0x2017, + DW_AT_HP_cold_region_high_pc = 0x2018, + DW_AT_HP_all_variables_modifiable = 0x2019, + DW_AT_HP_linkage_name = 0x201a, + DW_AT_HP_prof_flags = 0x201b, // In comp unit of procs_info for -g. + // GNU extensions. + DW_AT_sf_names = 0x2101, + DW_AT_src_info = 0x2102, + DW_AT_mac_info = 0x2103, + DW_AT_src_coords = 0x2104, + DW_AT_body_begin = 0x2105, + DW_AT_body_end = 0x2106, + DW_AT_GNU_vector = 0x2107, + // VMS extensions. + DW_AT_VMS_rtnbeg_pd_address = 0x2201, + // UPC extension. + DW_AT_upc_threads_scaled = 0x3210, + // PGI (STMicroelectronics) extensions. + DW_AT_PGI_lbase = 0x3a00, + DW_AT_PGI_soffset = 0x3a01, + DW_AT_PGI_lstride = 0x3a02 +}; + + +// Line number opcodes. +enum DwarfLineNumberOps { + DW_LNS_extended_op = 0, + DW_LNS_copy = 1, + DW_LNS_advance_pc = 2, + DW_LNS_advance_line = 3, + DW_LNS_set_file = 4, + DW_LNS_set_column = 5, + DW_LNS_negate_stmt = 6, + DW_LNS_set_basic_block = 7, + DW_LNS_const_add_pc = 8, + DW_LNS_fixed_advance_pc = 9, + // DWARF 3. + DW_LNS_set_prologue_end = 10, + DW_LNS_set_epilogue_begin = 11, + DW_LNS_set_isa = 12 +}; + +// Line number extended opcodes. +enum DwarfLineNumberExtendedOps { + DW_LNE_end_sequence = 1, + DW_LNE_set_address = 2, + DW_LNE_define_file = 3, + // HP extensions. + DW_LNE_HP_negate_is_UV_update = 0x11, + DW_LNE_HP_push_context = 0x12, + DW_LNE_HP_pop_context = 0x13, + DW_LNE_HP_set_file_line_column = 0x14, + DW_LNE_HP_set_routine_name = 0x15, + DW_LNE_HP_set_sequence = 0x16, + DW_LNE_HP_negate_post_semantics = 0x17, + DW_LNE_HP_negate_function_exit = 0x18, + DW_LNE_HP_negate_front_end_logical = 0x19, + DW_LNE_HP_define_proc = 0x20 +}; + +// Type encoding names and codes +enum DwarfEncoding { + DW_ATE_address =0x1, + DW_ATE_boolean =0x2, + DW_ATE_complex_float =0x3, + DW_ATE_float =0x4, + DW_ATE_signed =0x5, + DW_ATE_signed_char =0x6, + DW_ATE_unsigned =0x7, + DW_ATE_unsigned_char =0x8, + // DWARF3/DWARF3f + DW_ATE_imaginary_float =0x9, + DW_ATE_packed_decimal =0xa, + DW_ATE_numeric_string =0xb, + DW_ATE_edited =0xc, + DW_ATE_signed_fixed =0xd, + DW_ATE_unsigned_fixed =0xe, + DW_ATE_decimal_float =0xf, + DW_ATE_lo_user =0x80, + DW_ATE_hi_user =0xff +}; + +// Location virtual machine opcodes +enum DwarfOpcode { + DW_OP_addr =0x03, + DW_OP_deref =0x06, + DW_OP_const1u =0x08, + DW_OP_const1s =0x09, + DW_OP_const2u =0x0a, + DW_OP_const2s =0x0b, + DW_OP_const4u =0x0c, + DW_OP_const4s =0x0d, + DW_OP_const8u =0x0e, + DW_OP_const8s =0x0f, + DW_OP_constu =0x10, + DW_OP_consts =0x11, + DW_OP_dup =0x12, + DW_OP_drop =0x13, + DW_OP_over =0x14, + DW_OP_pick =0x15, + DW_OP_swap =0x16, + DW_OP_rot =0x17, + DW_OP_xderef =0x18, + DW_OP_abs =0x19, + DW_OP_and =0x1a, + DW_OP_div =0x1b, + DW_OP_minus =0x1c, + DW_OP_mod =0x1d, + DW_OP_mul =0x1e, + DW_OP_neg =0x1f, + DW_OP_not =0x20, + DW_OP_or =0x21, + DW_OP_plus =0x22, + DW_OP_plus_uconst =0x23, + DW_OP_shl =0x24, + DW_OP_shr =0x25, + DW_OP_shra =0x26, + DW_OP_xor =0x27, + DW_OP_bra =0x28, + DW_OP_eq =0x29, + DW_OP_ge =0x2a, + DW_OP_gt =0x2b, + DW_OP_le =0x2c, + DW_OP_lt =0x2d, + DW_OP_ne =0x2e, + DW_OP_skip =0x2f, + DW_OP_lit0 =0x30, + DW_OP_lit1 =0x31, + DW_OP_lit2 =0x32, + DW_OP_lit3 =0x33, + DW_OP_lit4 =0x34, + DW_OP_lit5 =0x35, + DW_OP_lit6 =0x36, + DW_OP_lit7 =0x37, + DW_OP_lit8 =0x38, + DW_OP_lit9 =0x39, + DW_OP_lit10 =0x3a, + DW_OP_lit11 =0x3b, + DW_OP_lit12 =0x3c, + DW_OP_lit13 =0x3d, + DW_OP_lit14 =0x3e, + DW_OP_lit15 =0x3f, + DW_OP_lit16 =0x40, + DW_OP_lit17 =0x41, + DW_OP_lit18 =0x42, + DW_OP_lit19 =0x43, + DW_OP_lit20 =0x44, + DW_OP_lit21 =0x45, + DW_OP_lit22 =0x46, + DW_OP_lit23 =0x47, + DW_OP_lit24 =0x48, + DW_OP_lit25 =0x49, + DW_OP_lit26 =0x4a, + DW_OP_lit27 =0x4b, + DW_OP_lit28 =0x4c, + DW_OP_lit29 =0x4d, + DW_OP_lit30 =0x4e, + DW_OP_lit31 =0x4f, + DW_OP_reg0 =0x50, + DW_OP_reg1 =0x51, + DW_OP_reg2 =0x52, + DW_OP_reg3 =0x53, + DW_OP_reg4 =0x54, + DW_OP_reg5 =0x55, + DW_OP_reg6 =0x56, + DW_OP_reg7 =0x57, + DW_OP_reg8 =0x58, + DW_OP_reg9 =0x59, + DW_OP_reg10 =0x5a, + DW_OP_reg11 =0x5b, + DW_OP_reg12 =0x5c, + DW_OP_reg13 =0x5d, + DW_OP_reg14 =0x5e, + DW_OP_reg15 =0x5f, + DW_OP_reg16 =0x60, + DW_OP_reg17 =0x61, + DW_OP_reg18 =0x62, + DW_OP_reg19 =0x63, + DW_OP_reg20 =0x64, + DW_OP_reg21 =0x65, + DW_OP_reg22 =0x66, + DW_OP_reg23 =0x67, + DW_OP_reg24 =0x68, + DW_OP_reg25 =0x69, + DW_OP_reg26 =0x6a, + DW_OP_reg27 =0x6b, + DW_OP_reg28 =0x6c, + DW_OP_reg29 =0x6d, + DW_OP_reg30 =0x6e, + DW_OP_reg31 =0x6f, + DW_OP_breg0 =0x70, + DW_OP_breg1 =0x71, + DW_OP_breg2 =0x72, + DW_OP_breg3 =0x73, + DW_OP_breg4 =0x74, + DW_OP_breg5 =0x75, + DW_OP_breg6 =0x76, + DW_OP_breg7 =0x77, + DW_OP_breg8 =0x78, + DW_OP_breg9 =0x79, + DW_OP_breg10 =0x7a, + DW_OP_breg11 =0x7b, + DW_OP_breg12 =0x7c, + DW_OP_breg13 =0x7d, + DW_OP_breg14 =0x7e, + DW_OP_breg15 =0x7f, + DW_OP_breg16 =0x80, + DW_OP_breg17 =0x81, + DW_OP_breg18 =0x82, + DW_OP_breg19 =0x83, + DW_OP_breg20 =0x84, + DW_OP_breg21 =0x85, + DW_OP_breg22 =0x86, + DW_OP_breg23 =0x87, + DW_OP_breg24 =0x88, + DW_OP_breg25 =0x89, + DW_OP_breg26 =0x8a, + DW_OP_breg27 =0x8b, + DW_OP_breg28 =0x8c, + DW_OP_breg29 =0x8d, + DW_OP_breg30 =0x8e, + DW_OP_breg31 =0x8f, + DW_OP_regX =0x90, + DW_OP_fbreg =0x91, + DW_OP_bregX =0x92, + DW_OP_piece =0x93, + DW_OP_deref_size =0x94, + DW_OP_xderef_size =0x95, + DW_OP_nop =0x96, + // DWARF3/DWARF3f + DW_OP_push_object_address =0x97, + DW_OP_call2 =0x98, + DW_OP_call4 =0x99, + DW_OP_call_ref =0x9a, + DW_OP_form_tls_address =0x9b, + DW_OP_call_frame_cfa =0x9c, + DW_OP_bit_piece =0x9d, + DW_OP_lo_user =0xe0, + DW_OP_hi_user =0xff, + // GNU extensions + DW_OP_GNU_push_tls_address =0xe0 +}; + +// Source languages. These are values for DW_AT_language. +enum DwarfLanguage + { + DW_LANG_none =0x0000, + DW_LANG_C89 =0x0001, + DW_LANG_C =0x0002, + DW_LANG_Ada83 =0x0003, + DW_LANG_C_plus_plus =0x0004, + DW_LANG_Cobol74 =0x0005, + DW_LANG_Cobol85 =0x0006, + DW_LANG_Fortran77 =0x0007, + DW_LANG_Fortran90 =0x0008, + DW_LANG_Pascal83 =0x0009, + DW_LANG_Modula2 =0x000a, + DW_LANG_Java =0x000b, + DW_LANG_C99 =0x000c, + DW_LANG_Ada95 =0x000d, + DW_LANG_Fortran95 =0x000e, + DW_LANG_PLI =0x000f, + DW_LANG_ObjC =0x0010, + DW_LANG_ObjC_plus_plus =0x0011, + DW_LANG_UPC =0x0012, + DW_LANG_D =0x0013, + // Implementation-defined language code range. + DW_LANG_lo_user = 0x8000, + DW_LANG_hi_user = 0xffff, + + // Extensions. + + // MIPS assembly language. The GNU toolchain uses this for all + // assembly languages, since there's no generic DW_LANG_ value for that. + // See include/dwarf2.h in the binutils, gdb, or gcc source trees. + DW_LANG_Mips_Assembler =0x8001, + DW_LANG_Upc =0x8765 // Unified Parallel C + }; + +// Inline codes. These are values for DW_AT_inline. +enum DwarfInline { + DW_INL_not_inlined =0x0, + DW_INL_inlined =0x1, + DW_INL_declared_not_inlined =0x2, + DW_INL_declared_inlined =0x3 +}; + +// Call Frame Info instructions. +enum DwarfCFI + { + DW_CFA_advance_loc = 0x40, + DW_CFA_offset = 0x80, + DW_CFA_restore = 0xc0, + DW_CFA_nop = 0x00, + DW_CFA_set_loc = 0x01, + DW_CFA_advance_loc1 = 0x02, + DW_CFA_advance_loc2 = 0x03, + DW_CFA_advance_loc4 = 0x04, + DW_CFA_offset_extended = 0x05, + DW_CFA_restore_extended = 0x06, + DW_CFA_undefined = 0x07, + DW_CFA_same_value = 0x08, + DW_CFA_register = 0x09, + DW_CFA_remember_state = 0x0a, + DW_CFA_restore_state = 0x0b, + DW_CFA_def_cfa = 0x0c, + DW_CFA_def_cfa_register = 0x0d, + DW_CFA_def_cfa_offset = 0x0e, + DW_CFA_def_cfa_expression = 0x0f, + DW_CFA_expression = 0x10, + DW_CFA_offset_extended_sf = 0x11, + DW_CFA_def_cfa_sf = 0x12, + DW_CFA_def_cfa_offset_sf = 0x13, + DW_CFA_val_offset = 0x14, + DW_CFA_val_offset_sf = 0x15, + DW_CFA_val_expression = 0x16, + + // Opcodes in this range are reserved for user extensions. + DW_CFA_lo_user = 0x1c, + DW_CFA_hi_user = 0x3f, + + // SGI/MIPS specific. + DW_CFA_MIPS_advance_loc8 = 0x1d, + + // GNU extensions. + DW_CFA_GNU_window_save = 0x2d, + DW_CFA_GNU_args_size = 0x2e, + DW_CFA_GNU_negative_offset_extended = 0x2f + }; + +// Exception handling 'z' augmentation letters. +enum DwarfZAugmentationCodes { + // If the CFI augmentation string begins with 'z', then the CIE and FDE + // have an augmentation data area just before the instructions, whose + // contents are determined by the subsequent augmentation letters. + DW_Z_augmentation_start = 'z', + + // If this letter is present in a 'z' augmentation string, the CIE + // augmentation data includes a pointer encoding, and the FDE + // augmentation data includes a language-specific data area pointer, + // represented using that encoding. + DW_Z_has_LSDA = 'L', + + // If this letter is present in a 'z' augmentation string, the CIE + // augmentation data includes a pointer encoding, followed by a pointer + // to a personality routine, represented using that encoding. + DW_Z_has_personality_routine = 'P', + + // If this letter is present in a 'z' augmentation string, the CIE + // augmentation data includes a pointer encoding describing how the FDE's + // initial location, address range, and DW_CFA_set_loc operands are + // encoded. + DW_Z_has_FDE_address_encoding = 'R', + + // If this letter is present in a 'z' augmentation string, then code + // addresses covered by FDEs that cite this CIE are signal delivery + // trampolines. Return addresses of frames in trampolines should not be + // adjusted as described in section 6.4.4 of the DWARF 3 spec. + DW_Z_is_signal_trampoline = 'S' +}; + +// Exception handling frame description pointer formats, as described +// by the Linux Standard Base Core Specification 4.0, section 11.5, +// DWARF Extensions. +enum DwarfPointerEncoding + { + DW_EH_PE_absptr = 0x00, + DW_EH_PE_omit = 0xff, + DW_EH_PE_uleb128 = 0x01, + DW_EH_PE_udata2 = 0x02, + DW_EH_PE_udata4 = 0x03, + DW_EH_PE_udata8 = 0x04, + DW_EH_PE_sleb128 = 0x09, + DW_EH_PE_sdata2 = 0x0A, + DW_EH_PE_sdata4 = 0x0B, + DW_EH_PE_sdata8 = 0x0C, + DW_EH_PE_pcrel = 0x10, + DW_EH_PE_textrel = 0x20, + DW_EH_PE_datarel = 0x30, + DW_EH_PE_funcrel = 0x40, + DW_EH_PE_aligned = 0x50, + + // The GNU toolchain sources define this enum value as well, + // simply to help classify the lower nybble values into signed and + // unsigned groups. + DW_EH_PE_signed = 0x08, + + // This is not documented in LSB 4.0, but it is used in both the + // Linux and OS X toolchains. It can be added to any other + // encoding (except DW_EH_PE_aligned), and indicates that the + // encoded value represents the address at which the true address + // is stored, not the true address itself. + DW_EH_PE_indirect = 0x80 + }; + +} // namespace dwarf2reader +#endif // COMMON_DWARF_DWARF2ENUMS_H__ diff --git a/3rdParty/Breakpad/src/common/dwarf/dwarf2reader.cc b/3rdParty/Breakpad/src/common/dwarf/dwarf2reader.cc new file mode 100644 index 0000000..7c1a29d --- /dev/null +++ b/3rdParty/Breakpad/src/common/dwarf/dwarf2reader.cc @@ -0,0 +1,2340 @@ +// Copyright (c) 2010 Google Inc. All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// CFI reader author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com> + +// Implementation of dwarf2reader::LineInfo, dwarf2reader::CompilationUnit, +// and dwarf2reader::CallFrameInfo. See dwarf2reader.h for details. + +#include "common/dwarf/dwarf2reader.h" + +#include <assert.h> +#include <stdint.h> +#include <stdio.h> +#include <string.h> + +#include <map> +#include <memory> +#include <stack> +#include <string> +#include <utility> + +#include "common/dwarf/bytereader-inl.h" +#include "common/dwarf/bytereader.h" +#include "common/dwarf/line_state_machine.h" +#include "common/using_std_string.h" + +namespace dwarf2reader { + +CompilationUnit::CompilationUnit(const SectionMap& sections, uint64 offset, + ByteReader* reader, Dwarf2Handler* handler) + : offset_from_section_start_(offset), reader_(reader), + sections_(sections), handler_(handler), abbrevs_(NULL), + string_buffer_(NULL), string_buffer_length_(0) {} + +// Read a DWARF2/3 abbreviation section. +// Each abbrev consists of a abbreviation number, a tag, a byte +// specifying whether the tag has children, and a list of +// attribute/form pairs. +// The list of forms is terminated by a 0 for the attribute, and a +// zero for the form. The entire abbreviation section is terminated +// by a zero for the code. + +void CompilationUnit::ReadAbbrevs() { + if (abbrevs_) + return; + + // First get the debug_abbrev section. ".debug_abbrev" is the name + // recommended in the DWARF spec, and used on Linux; + // "__debug_abbrev" is the name used in Mac OS X Mach-O files. + SectionMap::const_iterator iter = sections_.find(".debug_abbrev"); + if (iter == sections_.end()) + iter = sections_.find("__debug_abbrev"); + assert(iter != sections_.end()); + + abbrevs_ = new std::vector<Abbrev>; + abbrevs_->resize(1); + + // The only way to check whether we are reading over the end of the + // buffer would be to first compute the size of the leb128 data by + // reading it, then go back and read it again. + const char* abbrev_start = iter->second.first + + header_.abbrev_offset; + const char* abbrevptr = abbrev_start; +#ifndef NDEBUG + const uint64 abbrev_length = iter->second.second - header_.abbrev_offset; +#endif + + while (1) { + CompilationUnit::Abbrev abbrev; + size_t len; + const uint64 number = reader_->ReadUnsignedLEB128(abbrevptr, &len); + + if (number == 0) + break; + abbrev.number = number; + abbrevptr += len; + + assert(abbrevptr < abbrev_start + abbrev_length); + const uint64 tag = reader_->ReadUnsignedLEB128(abbrevptr, &len); + abbrevptr += len; + abbrev.tag = static_cast<enum DwarfTag>(tag); + + assert(abbrevptr < abbrev_start + abbrev_length); + abbrev.has_children = reader_->ReadOneByte(abbrevptr); + abbrevptr += 1; + + assert(abbrevptr < abbrev_start + abbrev_length); + + while (1) { + const uint64 nametemp = reader_->ReadUnsignedLEB128(abbrevptr, &len); + abbrevptr += len; + + assert(abbrevptr < abbrev_start + abbrev_length); + const uint64 formtemp = reader_->ReadUnsignedLEB128(abbrevptr, &len); + abbrevptr += len; + if (nametemp == 0 && formtemp == 0) + break; + + const enum DwarfAttribute name = + static_cast<enum DwarfAttribute>(nametemp); + const enum DwarfForm form = static_cast<enum DwarfForm>(formtemp); + abbrev.attributes.push_back(std::make_pair(name, form)); + } + assert(abbrev.number == abbrevs_->size()); + abbrevs_->push_back(abbrev); + } +} + +// Skips a single DIE's attributes. +const char* CompilationUnit::SkipDIE(const char* start, + const Abbrev& abbrev) { + for (AttributeList::const_iterator i = abbrev.attributes.begin(); + i != abbrev.attributes.end(); + i++) { + start = SkipAttribute(start, i->second); + } + return start; +} + +// Skips a single attribute form's data. +const char* CompilationUnit::SkipAttribute(const char* start, + enum DwarfForm form) { + size_t len; + + switch (form) { + case DW_FORM_indirect: + form = static_cast<enum DwarfForm>(reader_->ReadUnsignedLEB128(start, + &len)); + start += len; + return SkipAttribute(start, form); + + case DW_FORM_flag_present: + return start; + case DW_FORM_data1: + case DW_FORM_flag: + case DW_FORM_ref1: + return start + 1; + case DW_FORM_ref2: + case DW_FORM_data2: + return start + 2; + case DW_FORM_ref4: + case DW_FORM_data4: + return start + 4; + case DW_FORM_ref8: + case DW_FORM_data8: + case DW_FORM_ref_sig8: + return start + 8; + case DW_FORM_string: + return start + strlen(start) + 1; + case DW_FORM_udata: + case DW_FORM_ref_udata: + reader_->ReadUnsignedLEB128(start, &len); + return start + len; + + case DW_FORM_sdata: + reader_->ReadSignedLEB128(start, &len); + return start + len; + case DW_FORM_addr: + return start + reader_->AddressSize(); + case DW_FORM_ref_addr: + // DWARF2 and 3 differ on whether ref_addr is address size or + // offset size. + assert(header_.version == 2 || header_.version == 3); + if (header_.version == 2) { + return start + reader_->AddressSize(); + } else if (header_.version == 3) { + return start + reader_->OffsetSize(); + } + + case DW_FORM_block1: + return start + 1 + reader_->ReadOneByte(start); + case DW_FORM_block2: + return start + 2 + reader_->ReadTwoBytes(start); + case DW_FORM_block4: + return start + 4 + reader_->ReadFourBytes(start); + case DW_FORM_block: + case DW_FORM_exprloc: { + uint64 size = reader_->ReadUnsignedLEB128(start, &len); + return start + size + len; + } + case DW_FORM_strp: + case DW_FORM_sec_offset: + return start + reader_->OffsetSize(); + } + fprintf(stderr,"Unhandled form type"); + return NULL; +} + +// Read a DWARF2/3 header. +// The header is variable length in DWARF3 (and DWARF2 as extended by +// most compilers), and consists of an length field, a version number, +// the offset in the .debug_abbrev section for our abbrevs, and an +// address size. +void CompilationUnit::ReadHeader() { + const char* headerptr = buffer_; + size_t initial_length_size; + + assert(headerptr + 4 < buffer_ + buffer_length_); + const uint64 initial_length + = reader_->ReadInitialLength(headerptr, &initial_length_size); + headerptr += initial_length_size; + header_.length = initial_length; + + assert(headerptr + 2 < buffer_ + buffer_length_); + header_.version = reader_->ReadTwoBytes(headerptr); + headerptr += 2; + + assert(headerptr + reader_->OffsetSize() < buffer_ + buffer_length_); + header_.abbrev_offset = reader_->ReadOffset(headerptr); + headerptr += reader_->OffsetSize(); + + assert(headerptr + 1 < buffer_ + buffer_length_); + header_.address_size = reader_->ReadOneByte(headerptr); + reader_->SetAddressSize(header_.address_size); + headerptr += 1; + + after_header_ = headerptr; + + // This check ensures that we don't have to do checking during the + // reading of DIEs. header_.length does not include the size of the + // initial length. + assert(buffer_ + initial_length_size + header_.length <= + buffer_ + buffer_length_); +} + +uint64 CompilationUnit::Start() { + // First get the debug_info section. ".debug_info" is the name + // recommended in the DWARF spec, and used on Linux; "__debug_info" + // is the name used in Mac OS X Mach-O files. + SectionMap::const_iterator iter = sections_.find(".debug_info"); + if (iter == sections_.end()) + iter = sections_.find("__debug_info"); + assert(iter != sections_.end()); + + // Set up our buffer + buffer_ = iter->second.first + offset_from_section_start_; + buffer_length_ = iter->second.second - offset_from_section_start_; + + // Read the header + ReadHeader(); + + // Figure out the real length from the end of the initial length to + // the end of the compilation unit, since that is the value we + // return. + uint64 ourlength = header_.length; + if (reader_->OffsetSize() == 8) + ourlength += 12; + else + ourlength += 4; + + // See if the user wants this compilation unit, and if not, just return. + if (!handler_->StartCompilationUnit(offset_from_section_start_, + reader_->AddressSize(), + reader_->OffsetSize(), + header_.length, + header_.version)) + return ourlength; + + // Otherwise, continue by reading our abbreviation entries. + ReadAbbrevs(); + + // Set the string section if we have one. ".debug_str" is the name + // recommended in the DWARF spec, and used on Linux; "__debug_str" + // is the name used in Mac OS X Mach-O files. + iter = sections_.find(".debug_str"); + if (iter == sections_.end()) + iter = sections_.find("__debug_str"); + if (iter != sections_.end()) { + string_buffer_ = iter->second.first; + string_buffer_length_ = iter->second.second; + } + + // Now that we have our abbreviations, start processing DIE's. + ProcessDIEs(); + + return ourlength; +} + +// If one really wanted, you could merge SkipAttribute and +// ProcessAttribute +// This is all boring data manipulation and calling of the handler. +const char* CompilationUnit::ProcessAttribute( + uint64 dieoffset, const char* start, enum DwarfAttribute attr, + enum DwarfForm form) { + size_t len; + + switch (form) { + // DW_FORM_indirect is never used because it is such a space + // waster. + case DW_FORM_indirect: + form = static_cast<enum DwarfForm>(reader_->ReadUnsignedLEB128(start, + &len)); + start += len; + return ProcessAttribute(dieoffset, start, attr, form); + + case DW_FORM_flag_present: + handler_->ProcessAttributeUnsigned(dieoffset, attr, form, 1); + return start; + case DW_FORM_data1: + case DW_FORM_flag: + handler_->ProcessAttributeUnsigned(dieoffset, attr, form, + reader_->ReadOneByte(start)); + return start + 1; + case DW_FORM_data2: + handler_->ProcessAttributeUnsigned(dieoffset, attr, form, + reader_->ReadTwoBytes(start)); + return start + 2; + case DW_FORM_data4: + handler_->ProcessAttributeUnsigned(dieoffset, attr, form, + reader_->ReadFourBytes(start)); + return start + 4; + case DW_FORM_data8: + handler_->ProcessAttributeUnsigned(dieoffset, attr, form, + reader_->ReadEightBytes(start)); + return start + 8; + case DW_FORM_string: { + const char* str = start; + handler_->ProcessAttributeString(dieoffset, attr, form, + str); + return start + strlen(str) + 1; + } + case DW_FORM_udata: + handler_->ProcessAttributeUnsigned(dieoffset, attr, form, + reader_->ReadUnsignedLEB128(start, + &len)); + return start + len; + + case DW_FORM_sdata: + handler_->ProcessAttributeSigned(dieoffset, attr, form, + reader_->ReadSignedLEB128(start, &len)); + return start + len; + case DW_FORM_addr: + handler_->ProcessAttributeUnsigned(dieoffset, attr, form, + reader_->ReadAddress(start)); + return start + reader_->AddressSize(); + case DW_FORM_sec_offset: + handler_->ProcessAttributeUnsigned(dieoffset, attr, form, + reader_->ReadOffset(start)); + return start + reader_->OffsetSize(); + + case DW_FORM_ref1: + handler_->ProcessAttributeReference(dieoffset, attr, form, + reader_->ReadOneByte(start) + + offset_from_section_start_); + return start + 1; + case DW_FORM_ref2: + handler_->ProcessAttributeReference(dieoffset, attr, form, + reader_->ReadTwoBytes(start) + + offset_from_section_start_); + return start + 2; + case DW_FORM_ref4: + handler_->ProcessAttributeReference(dieoffset, attr, form, + reader_->ReadFourBytes(start) + + offset_from_section_start_); + return start + 4; + case DW_FORM_ref8: + handler_->ProcessAttributeReference(dieoffset, attr, form, + reader_->ReadEightBytes(start) + + offset_from_section_start_); + return start + 8; + case DW_FORM_ref_udata: + handler_->ProcessAttributeReference(dieoffset, attr, form, + reader_->ReadUnsignedLEB128(start, + &len) + + offset_from_section_start_); + return start + len; + case DW_FORM_ref_addr: + // DWARF2 and 3 differ on whether ref_addr is address size or + // offset size. + assert(header_.version == 2 || header_.version == 3); + if (header_.version == 2) { + handler_->ProcessAttributeReference(dieoffset, attr, form, + reader_->ReadAddress(start)); + return start + reader_->AddressSize(); + } else if (header_.version == 3) { + handler_->ProcessAttributeReference(dieoffset, attr, form, + reader_->ReadOffset(start)); + return start + reader_->OffsetSize(); + } + break; + case DW_FORM_ref_sig8: + handler_->ProcessAttributeSignature(dieoffset, attr, form, + reader_->ReadEightBytes(start)); + return start + 8; + + case DW_FORM_block1: { + uint64 datalen = reader_->ReadOneByte(start); + handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 1, + datalen); + return start + 1 + datalen; + } + case DW_FORM_block2: { + uint64 datalen = reader_->ReadTwoBytes(start); + handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 2, + datalen); + return start + 2 + datalen; + } + case DW_FORM_block4: { + uint64 datalen = reader_->ReadFourBytes(start); + handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 4, + datalen); + return start + 4 + datalen; + } + case DW_FORM_block: + case DW_FORM_exprloc: { + uint64 datalen = reader_->ReadUnsignedLEB128(start, &len); + handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + len, + datalen); + return start + datalen + len; + } + case DW_FORM_strp: { + assert(string_buffer_ != NULL); + + const uint64 offset = reader_->ReadOffset(start); + assert(string_buffer_ + offset < string_buffer_ + string_buffer_length_); + + const char* str = string_buffer_ + offset; + handler_->ProcessAttributeString(dieoffset, attr, form, + str); + return start + reader_->OffsetSize(); + } + } + fprintf(stderr, "Unhandled form type\n"); + return NULL; +} + +const char* CompilationUnit::ProcessDIE(uint64 dieoffset, + const char* start, + const Abbrev& abbrev) { + for (AttributeList::const_iterator i = abbrev.attributes.begin(); + i != abbrev.attributes.end(); + i++) { + start = ProcessAttribute(dieoffset, start, i->first, i->second); + } + return start; +} + +void CompilationUnit::ProcessDIEs() { + const char* dieptr = after_header_; + size_t len; + + // lengthstart is the place the length field is based on. + // It is the point in the header after the initial length field + const char* lengthstart = buffer_; + + // In 64 bit dwarf, the initial length is 12 bytes, because of the + // 0xffffffff at the start. + if (reader_->OffsetSize() == 8) + lengthstart += 12; + else + lengthstart += 4; + + std::stack<uint64> die_stack; + + while (dieptr < (lengthstart + header_.length)) { + // We give the user the absolute offset from the beginning of + // debug_info, since they need it to deal with ref_addr forms. + uint64 absolute_offset = (dieptr - buffer_) + offset_from_section_start_; + + uint64 abbrev_num = reader_->ReadUnsignedLEB128(dieptr, &len); + + dieptr += len; + + // Abbrev == 0 represents the end of a list of children, or padding + // at the end of the compilation unit. + if (abbrev_num == 0) { + if (die_stack.size() == 0) + // If it is padding, then we are done with the compilation unit's DIEs. + return; + const uint64 offset = die_stack.top(); + die_stack.pop(); + handler_->EndDIE(offset); + continue; + } + + const Abbrev& abbrev = abbrevs_->at(static_cast<size_t>(abbrev_num)); + const enum DwarfTag tag = abbrev.tag; + if (!handler_->StartDIE(absolute_offset, tag, abbrev.attributes)) { + dieptr = SkipDIE(dieptr, abbrev); + } else { + dieptr = ProcessDIE(absolute_offset, dieptr, abbrev); + } + + if (abbrev.has_children) { + die_stack.push(absolute_offset); + } else { + handler_->EndDIE(absolute_offset); + } + } +} + +LineInfo::LineInfo(const char* buffer, uint64 buffer_length, + ByteReader* reader, LineInfoHandler* handler): + handler_(handler), reader_(reader), buffer_(buffer), + buffer_length_(buffer_length) { + header_.std_opcode_lengths = NULL; +} + +uint64 LineInfo::Start() { + ReadHeader(); + ReadLines(); + return after_header_ - buffer_; +} + +// The header for a debug_line section is mildly complicated, because +// the line info is very tightly encoded. +void LineInfo::ReadHeader() { + const char* lineptr = buffer_; + size_t initial_length_size; + + const uint64 initial_length + = reader_->ReadInitialLength(lineptr, &initial_length_size); + + lineptr += initial_length_size; + header_.total_length = initial_length; + assert(buffer_ + initial_length_size + header_.total_length <= + buffer_ + buffer_length_); + + // Address size *must* be set by CU ahead of time. + assert(reader_->AddressSize() != 0); + + header_.version = reader_->ReadTwoBytes(lineptr); + lineptr += 2; + + header_.prologue_length = reader_->ReadOffset(lineptr); + lineptr += reader_->OffsetSize(); + + header_.min_insn_length = reader_->ReadOneByte(lineptr); + lineptr += 1; + + header_.default_is_stmt = reader_->ReadOneByte(lineptr); + lineptr += 1; + + header_.line_base = *reinterpret_cast<const int8*>(lineptr); + lineptr += 1; + + header_.line_range = reader_->ReadOneByte(lineptr); + lineptr += 1; + + header_.opcode_base = reader_->ReadOneByte(lineptr); + lineptr += 1; + + header_.std_opcode_lengths = new std::vector<unsigned char>; + header_.std_opcode_lengths->resize(header_.opcode_base + 1); + (*header_.std_opcode_lengths)[0] = 0; + for (int i = 1; i < header_.opcode_base; i++) { + (*header_.std_opcode_lengths)[i] = reader_->ReadOneByte(lineptr); + lineptr += 1; + } + + // It is legal for the directory entry table to be empty. + if (*lineptr) { + uint32 dirindex = 1; + while (*lineptr) { + const char* dirname = lineptr; + handler_->DefineDir(dirname, dirindex); + lineptr += strlen(dirname) + 1; + dirindex++; + } + } + lineptr++; + + // It is also legal for the file entry table to be empty. + if (*lineptr) { + uint32 fileindex = 1; + size_t len; + while (*lineptr) { + const char* filename = lineptr; + lineptr += strlen(filename) + 1; + + uint64 dirindex = reader_->ReadUnsignedLEB128(lineptr, &len); + lineptr += len; + + uint64 mod_time = reader_->ReadUnsignedLEB128(lineptr, &len); + lineptr += len; + + uint64 filelength = reader_->ReadUnsignedLEB128(lineptr, &len); + lineptr += len; + handler_->DefineFile(filename, fileindex, static_cast<uint32>(dirindex), + mod_time, filelength); + fileindex++; + } + } + lineptr++; + + after_header_ = lineptr; +} + +/* static */ +bool LineInfo::ProcessOneOpcode(ByteReader* reader, + LineInfoHandler* handler, + const struct LineInfoHeader &header, + const char* start, + struct LineStateMachine* lsm, + size_t* len, + uintptr pc, + bool *lsm_passes_pc) { + size_t oplen = 0; + size_t templen; + uint8 opcode = reader->ReadOneByte(start); + oplen++; + start++; + + // If the opcode is great than the opcode_base, it is a special + // opcode. Most line programs consist mainly of special opcodes. + if (opcode >= header.opcode_base) { + opcode -= header.opcode_base; + const int64 advance_address = (opcode / header.line_range) + * header.min_insn_length; + const int32 advance_line = (opcode % header.line_range) + + header.line_base; + + // Check if the lsm passes "pc". If so, mark it as passed. + if (lsm_passes_pc && + lsm->address <= pc && pc < lsm->address + advance_address) { + *lsm_passes_pc = true; + } + + lsm->address += advance_address; + lsm->line_num += advance_line; + lsm->basic_block = true; + *len = oplen; + return true; + } + + // Otherwise, we have the regular opcodes + switch (opcode) { + case DW_LNS_copy: { + lsm->basic_block = false; + *len = oplen; + return true; + } + + case DW_LNS_advance_pc: { + uint64 advance_address = reader->ReadUnsignedLEB128(start, &templen); + oplen += templen; + + // Check if the lsm passes "pc". If so, mark it as passed. + if (lsm_passes_pc && lsm->address <= pc && + pc < lsm->address + header.min_insn_length * advance_address) { + *lsm_passes_pc = true; + } + + lsm->address += header.min_insn_length * advance_address; + } + break; + case DW_LNS_advance_line: { + const int64 advance_line = reader->ReadSignedLEB128(start, &templen); + oplen += templen; + lsm->line_num += static_cast<int32>(advance_line); + + // With gcc 4.2.1, we can get the line_no here for the first time + // since DW_LNS_advance_line is called after DW_LNE_set_address is + // called. So we check if the lsm passes "pc" here, not in + // DW_LNE_set_address. + if (lsm_passes_pc && lsm->address == pc) { + *lsm_passes_pc = true; + } + } + break; + case DW_LNS_set_file: { + const uint64 fileno = reader->ReadUnsignedLEB128(start, &templen); + oplen += templen; + lsm->file_num = static_cast<uint32>(fileno); + } + break; + case DW_LNS_set_column: { + const uint64 colno = reader->ReadUnsignedLEB128(start, &templen); + oplen += templen; + lsm->column_num = static_cast<uint32>(colno); + } + break; + case DW_LNS_negate_stmt: { + lsm->is_stmt = !lsm->is_stmt; + } + break; + case DW_LNS_set_basic_block: { + lsm->basic_block = true; + } + break; + case DW_LNS_fixed_advance_pc: { + const uint16 advance_address = reader->ReadTwoBytes(start); + oplen += 2; + + // Check if the lsm passes "pc". If so, mark it as passed. + if (lsm_passes_pc && + lsm->address <= pc && pc < lsm->address + advance_address) { + *lsm_passes_pc = true; + } + + lsm->address += advance_address; + } + break; + case DW_LNS_const_add_pc: { + const int64 advance_address = header.min_insn_length + * ((255 - header.opcode_base) + / header.line_range); + + // Check if the lsm passes "pc". If so, mark it as passed. + if (lsm_passes_pc && + lsm->address <= pc && pc < lsm->address + advance_address) { + *lsm_passes_pc = true; + } + + lsm->address += advance_address; + } + break; + case DW_LNS_extended_op: { + const uint64 extended_op_len = reader->ReadUnsignedLEB128(start, + &templen); + start += templen; + oplen += templen + extended_op_len; + + const uint64 extended_op = reader->ReadOneByte(start); + start++; + + switch (extended_op) { + case DW_LNE_end_sequence: { + lsm->end_sequence = true; + *len = oplen; + return true; + } + break; + case DW_LNE_set_address: { + // With gcc 4.2.1, we cannot tell the line_no here since + // DW_LNE_set_address is called before DW_LNS_advance_line is + // called. So we do not check if the lsm passes "pc" here. See + // also the comment in DW_LNS_advance_line. + uint64 address = reader->ReadAddress(start); + lsm->address = address; + } + break; + case DW_LNE_define_file: { + const char* filename = start; + + templen = strlen(filename) + 1; + start += templen; + + uint64 dirindex = reader->ReadUnsignedLEB128(start, &templen); + oplen += templen; + + const uint64 mod_time = reader->ReadUnsignedLEB128(start, + &templen); + oplen += templen; + + const uint64 filelength = reader->ReadUnsignedLEB128(start, + &templen); + oplen += templen; + + if (handler) { + handler->DefineFile(filename, -1, static_cast<uint32>(dirindex), + mod_time, filelength); + } + } + break; + } + } + break; + + default: { + // Ignore unknown opcode silently + if (header.std_opcode_lengths) { + for (int i = 0; i < (*header.std_opcode_lengths)[opcode]; i++) { + reader->ReadUnsignedLEB128(start, &templen); + start += templen; + oplen += templen; + } + } + } + break; + } + *len = oplen; + return false; +} + +void LineInfo::ReadLines() { + struct LineStateMachine lsm; + + // lengthstart is the place the length field is based on. + // It is the point in the header after the initial length field + const char* lengthstart = buffer_; + + // In 64 bit dwarf, the initial length is 12 bytes, because of the + // 0xffffffff at the start. + if (reader_->OffsetSize() == 8) + lengthstart += 12; + else + lengthstart += 4; + + const char* lineptr = after_header_; + lsm.Reset(header_.default_is_stmt); + + // The LineInfoHandler interface expects each line's length along + // with its address, but DWARF only provides addresses (sans + // length), and an end-of-sequence address; one infers the length + // from the next address. So we report a line only when we get the + // next line's address, or the end-of-sequence address. + bool have_pending_line = false; + uint64 pending_address = 0; + uint32 pending_file_num = 0, pending_line_num = 0, pending_column_num = 0; + + while (lineptr < lengthstart + header_.total_length) { + size_t oplength; + bool add_row = ProcessOneOpcode(reader_, handler_, header_, + lineptr, &lsm, &oplength, (uintptr)-1, + NULL); + if (add_row) { + if (have_pending_line) + handler_->AddLine(pending_address, lsm.address - pending_address, + pending_file_num, pending_line_num, + pending_column_num); + if (lsm.end_sequence) { + lsm.Reset(header_.default_is_stmt); + have_pending_line = false; + } else { + pending_address = lsm.address; + pending_file_num = lsm.file_num; + pending_line_num = lsm.line_num; + pending_column_num = lsm.column_num; + have_pending_line = true; + } + } + lineptr += oplength; + } + + after_header_ = lengthstart + header_.total_length; +} + +// A DWARF rule for recovering the address or value of a register, or +// computing the canonical frame address. There is one subclass of this for +// each '*Rule' member function in CallFrameInfo::Handler. +// +// It's annoying that we have to handle Rules using pointers (because +// the concrete instances can have an arbitrary size). They're small, +// so it would be much nicer if we could just handle them by value +// instead of fretting about ownership and destruction. +// +// It seems like all these could simply be instances of std::tr1::bind, +// except that we need instances to be EqualityComparable, too. +// +// This could logically be nested within State, but then the qualified names +// get horrendous. +class CallFrameInfo::Rule { + public: + virtual ~Rule() { } + + // Tell HANDLER that, at ADDRESS in the program, REGISTER can be + // recovered using this rule. If REGISTER is kCFARegister, then this rule + // describes how to compute the canonical frame address. Return what the + // HANDLER member function returned. + virtual bool Handle(Handler *handler, + uint64 address, int register) const = 0; + + // Equality on rules. We use these to decide which rules we need + // to report after a DW_CFA_restore_state instruction. + virtual bool operator==(const Rule &rhs) const = 0; + + bool operator!=(const Rule &rhs) const { return ! (*this == rhs); } + + // Return a pointer to a copy of this rule. + virtual Rule *Copy() const = 0; + + // If this is a base+offset rule, change its base register to REG. + // Otherwise, do nothing. (Ugly, but required for DW_CFA_def_cfa_register.) + virtual void SetBaseRegister(unsigned reg) { } + + // If this is a base+offset rule, change its offset to OFFSET. Otherwise, + // do nothing. (Ugly, but required for DW_CFA_def_cfa_offset.) + virtual void SetOffset(long long offset) { } +}; + +// Rule: the value the register had in the caller cannot be recovered. +class CallFrameInfo::UndefinedRule: public CallFrameInfo::Rule { + public: + UndefinedRule() { } + ~UndefinedRule() { } + bool Handle(Handler *handler, uint64 address, int reg) const { + return handler->UndefinedRule(address, reg); + } + bool operator==(const Rule &rhs) const { + // dynamic_cast is allowed by the Google C++ Style Guide, if the use has + // been carefully considered; cheap RTTI-like workarounds are forbidden. + const UndefinedRule *our_rhs = dynamic_cast<const UndefinedRule *>(&rhs); + return (our_rhs != NULL); + } + Rule *Copy() const { return new UndefinedRule(*this); } +}; + +// Rule: the register's value is the same as that it had in the caller. +class CallFrameInfo::SameValueRule: public CallFrameInfo::Rule { + public: + SameValueRule() { } + ~SameValueRule() { } + bool Handle(Handler *handler, uint64 address, int reg) const { + return handler->SameValueRule(address, reg); + } + bool operator==(const Rule &rhs) const { + // dynamic_cast is allowed by the Google C++ Style Guide, if the use has + // been carefully considered; cheap RTTI-like workarounds are forbidden. + const SameValueRule *our_rhs = dynamic_cast<const SameValueRule *>(&rhs); + return (our_rhs != NULL); + } + Rule *Copy() const { return new SameValueRule(*this); } +}; + +// Rule: the register is saved at OFFSET from BASE_REGISTER. BASE_REGISTER +// may be CallFrameInfo::Handler::kCFARegister. +class CallFrameInfo::OffsetRule: public CallFrameInfo::Rule { + public: + OffsetRule(int base_register, long offset) + : base_register_(base_register), offset_(offset) { } + ~OffsetRule() { } + bool Handle(Handler *handler, uint64 address, int reg) const { + return handler->OffsetRule(address, reg, base_register_, offset_); + } + bool operator==(const Rule &rhs) const { + // dynamic_cast is allowed by the Google C++ Style Guide, if the use has + // been carefully considered; cheap RTTI-like workarounds are forbidden. + const OffsetRule *our_rhs = dynamic_cast<const OffsetRule *>(&rhs); + return (our_rhs && + base_register_ == our_rhs->base_register_ && + offset_ == our_rhs->offset_); + } + Rule *Copy() const { return new OffsetRule(*this); } + // We don't actually need SetBaseRegister or SetOffset here, since they + // are only ever applied to CFA rules, for DW_CFA_def_cfa_offset, and it + // doesn't make sense to use OffsetRule for computing the CFA: it + // computes the address at which a register is saved, not a value. + private: + int base_register_; + long offset_; +}; + +// Rule: the value the register had in the caller is the value of +// BASE_REGISTER plus offset. BASE_REGISTER may be +// CallFrameInfo::Handler::kCFARegister. +class CallFrameInfo::ValOffsetRule: public CallFrameInfo::Rule { + public: + ValOffsetRule(int base_register, long offset) + : base_register_(base_register), offset_(offset) { } + ~ValOffsetRule() { } + bool Handle(Handler *handler, uint64 address, int reg) const { + return handler->ValOffsetRule(address, reg, base_register_, offset_); + } + bool operator==(const Rule &rhs) const { + // dynamic_cast is allowed by the Google C++ Style Guide, if the use has + // been carefully considered; cheap RTTI-like workarounds are forbidden. + const ValOffsetRule *our_rhs = dynamic_cast<const ValOffsetRule *>(&rhs); + return (our_rhs && + base_register_ == our_rhs->base_register_ && + offset_ == our_rhs->offset_); + } + Rule *Copy() const { return new ValOffsetRule(*this); } + void SetBaseRegister(unsigned reg) { base_register_ = reg; } + void SetOffset(long long offset) { offset_ = offset; } + private: + int base_register_; + long offset_; +}; + +// Rule: the register has been saved in another register REGISTER_NUMBER_. +class CallFrameInfo::RegisterRule: public CallFrameInfo::Rule { + public: + explicit RegisterRule(int register_number) + : register_number_(register_number) { } + ~RegisterRule() { } + bool Handle(Handler *handler, uint64 address, int reg) const { + return handler->RegisterRule(address, reg, register_number_); + } + bool operator==(const Rule &rhs) const { + // dynamic_cast is allowed by the Google C++ Style Guide, if the use has + // been carefully considered; cheap RTTI-like workarounds are forbidden. + const RegisterRule *our_rhs = dynamic_cast<const RegisterRule *>(&rhs); + return (our_rhs && register_number_ == our_rhs->register_number_); + } + Rule *Copy() const { return new RegisterRule(*this); } + private: + int register_number_; +}; + +// Rule: EXPRESSION evaluates to the address at which the register is saved. +class CallFrameInfo::ExpressionRule: public CallFrameInfo::Rule { + public: + explicit ExpressionRule(const string &expression) + : expression_(expression) { } + ~ExpressionRule() { } + bool Handle(Handler *handler, uint64 address, int reg) const { + return handler->ExpressionRule(address, reg, expression_); + } + bool operator==(const Rule &rhs) const { + // dynamic_cast is allowed by the Google C++ Style Guide, if the use has + // been carefully considered; cheap RTTI-like workarounds are forbidden. + const ExpressionRule *our_rhs = dynamic_cast<const ExpressionRule *>(&rhs); + return (our_rhs && expression_ == our_rhs->expression_); + } + Rule *Copy() const { return new ExpressionRule(*this); } + private: + string expression_; +}; + +// Rule: EXPRESSION evaluates to the address at which the register is saved. +class CallFrameInfo::ValExpressionRule: public CallFrameInfo::Rule { + public: + explicit ValExpressionRule(const string &expression) + : expression_(expression) { } + ~ValExpressionRule() { } + bool Handle(Handler *handler, uint64 address, int reg) const { + return handler->ValExpressionRule(address, reg, expression_); + } + bool operator==(const Rule &rhs) const { + // dynamic_cast is allowed by the Google C++ Style Guide, if the use has + // been carefully considered; cheap RTTI-like workarounds are forbidden. + const ValExpressionRule *our_rhs = + dynamic_cast<const ValExpressionRule *>(&rhs); + return (our_rhs && expression_ == our_rhs->expression_); + } + Rule *Copy() const { return new ValExpressionRule(*this); } + private: + string expression_; +}; + +// A map from register numbers to rules. +class CallFrameInfo::RuleMap { + public: + RuleMap() : cfa_rule_(NULL) { } + RuleMap(const RuleMap &rhs) : cfa_rule_(NULL) { *this = rhs; } + ~RuleMap() { Clear(); } + + RuleMap &operator=(const RuleMap &rhs); + + // Set the rule for computing the CFA to RULE. Take ownership of RULE. + void SetCFARule(Rule *rule) { delete cfa_rule_; cfa_rule_ = rule; } + + // Return the current CFA rule. Unlike RegisterRule, this RuleMap retains + // ownership of the rule. We use this for DW_CFA_def_cfa_offset and + // DW_CFA_def_cfa_register, and for detecting references to the CFA before + // a rule for it has been established. + Rule *CFARule() const { return cfa_rule_; } + + // Return the rule for REG, or NULL if there is none. The caller takes + // ownership of the result. + Rule *RegisterRule(int reg) const; + + // Set the rule for computing REG to RULE. Take ownership of RULE. + void SetRegisterRule(int reg, Rule *rule); + + // Make all the appropriate calls to HANDLER as if we were changing from + // this RuleMap to NEW_RULES at ADDRESS. We use this to implement + // DW_CFA_restore_state, where lots of rules can change simultaneously. + // Return true if all handlers returned true; otherwise, return false. + bool HandleTransitionTo(Handler *handler, uint64 address, + const RuleMap &new_rules) const; + + private: + // A map from register numbers to Rules. + typedef std::map<int, Rule *> RuleByNumber; + + // Remove all register rules and clear cfa_rule_. + void Clear(); + + // The rule for computing the canonical frame address. This RuleMap owns + // this rule. + Rule *cfa_rule_; + + // A map from register numbers to postfix expressions to recover + // their values. This RuleMap owns the Rules the map refers to. + RuleByNumber registers_; +}; + +CallFrameInfo::RuleMap &CallFrameInfo::RuleMap::operator=(const RuleMap &rhs) { + Clear(); + // Since each map owns the rules it refers to, assignment must copy them. + if (rhs.cfa_rule_) cfa_rule_ = rhs.cfa_rule_->Copy(); + for (RuleByNumber::const_iterator it = rhs.registers_.begin(); + it != rhs.registers_.end(); it++) + registers_[it->first] = it->second->Copy(); + return *this; +} + +CallFrameInfo::Rule *CallFrameInfo::RuleMap::RegisterRule(int reg) const { + assert(reg != Handler::kCFARegister); + RuleByNumber::const_iterator it = registers_.find(reg); + if (it != registers_.end()) + return it->second->Copy(); + else + return NULL; +} + +void CallFrameInfo::RuleMap::SetRegisterRule(int reg, Rule *rule) { + assert(reg != Handler::kCFARegister); + assert(rule); + Rule **slot = ®isters_[reg]; + delete *slot; + *slot = rule; +} + +bool CallFrameInfo::RuleMap::HandleTransitionTo( + Handler *handler, + uint64 address, + const RuleMap &new_rules) const { + // Transition from cfa_rule_ to new_rules.cfa_rule_. + if (cfa_rule_ && new_rules.cfa_rule_) { + if (*cfa_rule_ != *new_rules.cfa_rule_ && + !new_rules.cfa_rule_->Handle(handler, address, + Handler::kCFARegister)) + return false; + } else if (cfa_rule_) { + // this RuleMap has a CFA rule but new_rules doesn't. + // CallFrameInfo::Handler has no way to handle this --- and shouldn't; + // it's garbage input. The instruction interpreter should have + // detected this and warned, so take no action here. + } else if (new_rules.cfa_rule_) { + // This shouldn't be possible: NEW_RULES is some prior state, and + // there's no way to remove entries. + assert(0); + } else { + // Both CFA rules are empty. No action needed. + } + + // Traverse the two maps in order by register number, and report + // whatever differences we find. + RuleByNumber::const_iterator old_it = registers_.begin(); + RuleByNumber::const_iterator new_it = new_rules.registers_.begin(); + while (old_it != registers_.end() && new_it != new_rules.registers_.end()) { + if (old_it->first < new_it->first) { + // This RuleMap has an entry for old_it->first, but NEW_RULES + // doesn't. + // + // This isn't really the right thing to do, but since CFI generally + // only mentions callee-saves registers, and GCC's convention for + // callee-saves registers is that they are unchanged, it's a good + // approximation. + if (!handler->SameValueRule(address, old_it->first)) + return false; + old_it++; + } else if (old_it->first > new_it->first) { + // NEW_RULES has entry for new_it->first, but this RuleMap + // doesn't. This shouldn't be possible: NEW_RULES is some prior + // state, and there's no way to remove entries. + assert(0); + } else { + // Both maps have an entry for this register. Report the new + // rule if it is different. + if (*old_it->second != *new_it->second && + !new_it->second->Handle(handler, address, new_it->first)) + return false; + new_it++, old_it++; + } + } + // Finish off entries from this RuleMap with no counterparts in new_rules. + while (old_it != registers_.end()) { + if (!handler->SameValueRule(address, old_it->first)) + return false; + old_it++; + } + // Since we only make transitions from a rule set to some previously + // saved rule set, and we can only add rules to the map, NEW_RULES + // must have fewer rules than *this. + assert(new_it == new_rules.registers_.end()); + + return true; +} + +// Remove all register rules and clear cfa_rule_. +void CallFrameInfo::RuleMap::Clear() { + delete cfa_rule_; + cfa_rule_ = NULL; + for (RuleByNumber::iterator it = registers_.begin(); + it != registers_.end(); it++) + delete it->second; + registers_.clear(); +} + +// The state of the call frame information interpreter as it processes +// instructions from a CIE and FDE. +class CallFrameInfo::State { + public: + // Create a call frame information interpreter state with the given + // reporter, reader, handler, and initial call frame info address. + State(ByteReader *reader, Handler *handler, Reporter *reporter, + uint64 address) + : reader_(reader), handler_(handler), reporter_(reporter), + address_(address), entry_(NULL), cursor_(NULL) { } + + // Interpret instructions from CIE, save the resulting rule set for + // DW_CFA_restore instructions, and return true. On error, report + // the problem to reporter_ and return false. + bool InterpretCIE(const CIE &cie); + + // Interpret instructions from FDE, and return true. On error, + // report the problem to reporter_ and return false. + bool InterpretFDE(const FDE &fde); + + private: + // The operands of a CFI instruction, for ParseOperands. + struct Operands { + unsigned register_number; // A register number. + uint64 offset; // An offset or address. + long signed_offset; // A signed offset. + string expression; // A DWARF expression. + }; + + // Parse CFI instruction operands from STATE's instruction stream as + // described by FORMAT. On success, populate OPERANDS with the + // results, and return true. On failure, report the problem and + // return false. + // + // Each character of FORMAT should be one of the following: + // + // 'r' unsigned LEB128 register number (OPERANDS->register_number) + // 'o' unsigned LEB128 offset (OPERANDS->offset) + // 's' signed LEB128 offset (OPERANDS->signed_offset) + // 'a' machine-size address (OPERANDS->offset) + // (If the CIE has a 'z' augmentation string, 'a' uses the + // encoding specified by the 'R' argument.) + // '1' a one-byte offset (OPERANDS->offset) + // '2' a two-byte offset (OPERANDS->offset) + // '4' a four-byte offset (OPERANDS->offset) + // '8' an eight-byte offset (OPERANDS->offset) + // 'e' a DW_FORM_block holding a (OPERANDS->expression) + // DWARF expression + bool ParseOperands(const char *format, Operands *operands); + + // Interpret one CFI instruction from STATE's instruction stream, update + // STATE, report any rule changes to handler_, and return true. On + // failure, report the problem and return false. + bool DoInstruction(); + + // The following Do* member functions are subroutines of DoInstruction, + // factoring out the actual work of operations that have several + // different encodings. + + // Set the CFA rule to be the value of BASE_REGISTER plus OFFSET, and + // return true. On failure, report and return false. (Used for + // DW_CFA_def_cfa and DW_CFA_def_cfa_sf.) + bool DoDefCFA(unsigned base_register, long offset); + + // Change the offset of the CFA rule to OFFSET, and return true. On + // failure, report and return false. (Subroutine for + // DW_CFA_def_cfa_offset and DW_CFA_def_cfa_offset_sf.) + bool DoDefCFAOffset(long offset); + + // Specify that REG can be recovered using RULE, and return true. On + // failure, report and return false. + bool DoRule(unsigned reg, Rule *rule); + + // Specify that REG can be found at OFFSET from the CFA, and return true. + // On failure, report and return false. (Subroutine for DW_CFA_offset, + // DW_CFA_offset_extended, and DW_CFA_offset_extended_sf.) + bool DoOffset(unsigned reg, long offset); + + // Specify that the caller's value for REG is the CFA plus OFFSET, + // and return true. On failure, report and return false. (Subroutine + // for DW_CFA_val_offset and DW_CFA_val_offset_sf.) + bool DoValOffset(unsigned reg, long offset); + + // Restore REG to the rule established in the CIE, and return true. On + // failure, report and return false. (Subroutine for DW_CFA_restore and + // DW_CFA_restore_extended.) + bool DoRestore(unsigned reg); + + // Return the section offset of the instruction at cursor. For use + // in error messages. + uint64 CursorOffset() { return entry_->offset + (cursor_ - entry_->start); } + + // Report that entry_ is incomplete, and return false. For brevity. + bool ReportIncomplete() { + reporter_->Incomplete(entry_->offset, entry_->kind); + return false; + } + + // For reading multi-byte values with the appropriate endianness. + ByteReader *reader_; + + // The handler to which we should report the data we find. + Handler *handler_; + + // For reporting problems in the info we're parsing. + Reporter *reporter_; + + // The code address to which the next instruction in the stream applies. + uint64 address_; + + // The entry whose instructions we are currently processing. This is + // first a CIE, and then an FDE. + const Entry *entry_; + + // The next instruction to process. + const char *cursor_; + + // The current set of rules. + RuleMap rules_; + + // The set of rules established by the CIE, used by DW_CFA_restore + // and DW_CFA_restore_extended. We set this after interpreting the + // CIE's instructions. + RuleMap cie_rules_; + + // A stack of saved states, for DW_CFA_remember_state and + // DW_CFA_restore_state. + std::stack<RuleMap> saved_rules_; +}; + +bool CallFrameInfo::State::InterpretCIE(const CIE &cie) { + entry_ = &cie; + cursor_ = entry_->instructions; + while (cursor_ < entry_->end) + if (!DoInstruction()) + return false; + // Note the rules established by the CIE, for use by DW_CFA_restore + // and DW_CFA_restore_extended. + cie_rules_ = rules_; + return true; +} + +bool CallFrameInfo::State::InterpretFDE(const FDE &fde) { + entry_ = &fde; + cursor_ = entry_->instructions; + while (cursor_ < entry_->end) + if (!DoInstruction()) + return false; + return true; +} + +bool CallFrameInfo::State::ParseOperands(const char *format, + Operands *operands) { + size_t len; + const char *operand; + + for (operand = format; *operand; operand++) { + size_t bytes_left = entry_->end - cursor_; + switch (*operand) { + case 'r': + operands->register_number = reader_->ReadUnsignedLEB128(cursor_, &len); + if (len > bytes_left) return ReportIncomplete(); + cursor_ += len; + break; + + case 'o': + operands->offset = reader_->ReadUnsignedLEB128(cursor_, &len); + if (len > bytes_left) return ReportIncomplete(); + cursor_ += len; + break; + + case 's': + operands->signed_offset = reader_->ReadSignedLEB128(cursor_, &len); + if (len > bytes_left) return ReportIncomplete(); + cursor_ += len; + break; + + case 'a': + operands->offset = + reader_->ReadEncodedPointer(cursor_, entry_->cie->pointer_encoding, + &len); + if (len > bytes_left) return ReportIncomplete(); + cursor_ += len; + break; + + case '1': + if (1 > bytes_left) return ReportIncomplete(); + operands->offset = static_cast<unsigned char>(*cursor_++); + break; + + case '2': + if (2 > bytes_left) return ReportIncomplete(); + operands->offset = reader_->ReadTwoBytes(cursor_); + cursor_ += 2; + break; + + case '4': + if (4 > bytes_left) return ReportIncomplete(); + operands->offset = reader_->ReadFourBytes(cursor_); + cursor_ += 4; + break; + + case '8': + if (8 > bytes_left) return ReportIncomplete(); + operands->offset = reader_->ReadEightBytes(cursor_); + cursor_ += 8; + break; + + case 'e': { + size_t expression_length = reader_->ReadUnsignedLEB128(cursor_, &len); + if (len > bytes_left || expression_length > bytes_left - len) + return ReportIncomplete(); + cursor_ += len; + operands->expression = string(cursor_, expression_length); + cursor_ += expression_length; + break; + } + + default: + assert(0); + } + } + + return true; +} + +bool CallFrameInfo::State::DoInstruction() { + CIE *cie = entry_->cie; + Operands ops; + + // Our entry's kind should have been set by now. + assert(entry_->kind != kUnknown); + + // We shouldn't have been invoked unless there were more + // instructions to parse. + assert(cursor_ < entry_->end); + + unsigned opcode = *cursor_++; + if ((opcode & 0xc0) != 0) { + switch (opcode & 0xc0) { + // Advance the address. + case DW_CFA_advance_loc: { + size_t code_offset = opcode & 0x3f; + address_ += code_offset * cie->code_alignment_factor; + break; + } + + // Find a register at an offset from the CFA. + case DW_CFA_offset: + if (!ParseOperands("o", &ops) || + !DoOffset(opcode & 0x3f, ops.offset * cie->data_alignment_factor)) + return false; + break; + + // Restore the rule established for a register by the CIE. + case DW_CFA_restore: + if (!DoRestore(opcode & 0x3f)) return false; + break; + + // The 'if' above should have excluded this possibility. + default: + assert(0); + } + + // Return here, so the big switch below won't be indented. + return true; + } + + switch (opcode) { + // Set the address. + case DW_CFA_set_loc: + if (!ParseOperands("a", &ops)) return false; + address_ = ops.offset; + break; + + // Advance the address. + case DW_CFA_advance_loc1: + if (!ParseOperands("1", &ops)) return false; + address_ += ops.offset * cie->code_alignment_factor; + break; + + // Advance the address. + case DW_CFA_advance_loc2: + if (!ParseOperands("2", &ops)) return false; + address_ += ops.offset * cie->code_alignment_factor; + break; + + // Advance the address. + case DW_CFA_advance_loc4: + if (!ParseOperands("4", &ops)) return false; + address_ += ops.offset * cie->code_alignment_factor; + break; + + // Advance the address. + case DW_CFA_MIPS_advance_loc8: + if (!ParseOperands("8", &ops)) return false; + address_ += ops.offset * cie->code_alignment_factor; + break; + + // Compute the CFA by adding an offset to a register. + case DW_CFA_def_cfa: + if (!ParseOperands("ro", &ops) || + !DoDefCFA(ops.register_number, ops.offset)) + return false; + break; + + // Compute the CFA by adding an offset to a register. + case DW_CFA_def_cfa_sf: + if (!ParseOperands("rs", &ops) || + !DoDefCFA(ops.register_number, + ops.signed_offset * cie->data_alignment_factor)) + return false; + break; + + // Change the base register used to compute the CFA. + case DW_CFA_def_cfa_register: { + Rule *cfa_rule = rules_.CFARule(); + if (!cfa_rule) { + reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); + return false; + } + if (!ParseOperands("r", &ops)) return false; + cfa_rule->SetBaseRegister(ops.register_number); + if (!cfa_rule->Handle(handler_, address_, + Handler::kCFARegister)) + return false; + break; + } + + // Change the offset used to compute the CFA. + case DW_CFA_def_cfa_offset: + if (!ParseOperands("o", &ops) || + !DoDefCFAOffset(ops.offset)) + return false; + break; + + // Change the offset used to compute the CFA. + case DW_CFA_def_cfa_offset_sf: + if (!ParseOperands("s", &ops) || + !DoDefCFAOffset(ops.signed_offset * cie->data_alignment_factor)) + return false; + break; + + // Specify an expression whose value is the CFA. + case DW_CFA_def_cfa_expression: { + if (!ParseOperands("e", &ops)) + return false; + Rule *rule = new ValExpressionRule(ops.expression); + rules_.SetCFARule(rule); + if (!rule->Handle(handler_, address_, + Handler::kCFARegister)) + return false; + break; + } + + // The register's value cannot be recovered. + case DW_CFA_undefined: { + if (!ParseOperands("r", &ops) || + !DoRule(ops.register_number, new UndefinedRule())) + return false; + break; + } + + // The register's value is unchanged from its value in the caller. + case DW_CFA_same_value: { + if (!ParseOperands("r", &ops) || + !DoRule(ops.register_number, new SameValueRule())) + return false; + break; + } + + // Find a register at an offset from the CFA. + case DW_CFA_offset_extended: + if (!ParseOperands("ro", &ops) || + !DoOffset(ops.register_number, + ops.offset * cie->data_alignment_factor)) + return false; + break; + + // The register is saved at an offset from the CFA. + case DW_CFA_offset_extended_sf: + if (!ParseOperands("rs", &ops) || + !DoOffset(ops.register_number, + ops.signed_offset * cie->data_alignment_factor)) + return false; + break; + + // The register is saved at an offset from the CFA. + case DW_CFA_GNU_negative_offset_extended: + if (!ParseOperands("ro", &ops) || + !DoOffset(ops.register_number, + -ops.offset * cie->data_alignment_factor)) + return false; + break; + + // The register's value is the sum of the CFA plus an offset. + case DW_CFA_val_offset: + if (!ParseOperands("ro", &ops) || + !DoValOffset(ops.register_number, + ops.offset * cie->data_alignment_factor)) + return false; + break; + + // The register's value is the sum of the CFA plus an offset. + case DW_CFA_val_offset_sf: + if (!ParseOperands("rs", &ops) || + !DoValOffset(ops.register_number, + ops.signed_offset * cie->data_alignment_factor)) + return false; + break; + + // The register has been saved in another register. + case DW_CFA_register: { + if (!ParseOperands("ro", &ops) || + !DoRule(ops.register_number, new RegisterRule(ops.offset))) + return false; + break; + } + + // An expression yields the address at which the register is saved. + case DW_CFA_expression: { + if (!ParseOperands("re", &ops) || + !DoRule(ops.register_number, new ExpressionRule(ops.expression))) + return false; + break; + } + + // An expression yields the caller's value for the register. + case DW_CFA_val_expression: { + if (!ParseOperands("re", &ops) || + !DoRule(ops.register_number, new ValExpressionRule(ops.expression))) + return false; + break; + } + + // Restore the rule established for a register by the CIE. + case DW_CFA_restore_extended: + if (!ParseOperands("r", &ops) || + !DoRestore( ops.register_number)) + return false; + break; + + // Save the current set of rules on a stack. + case DW_CFA_remember_state: + saved_rules_.push(rules_); + break; + + // Pop the current set of rules off the stack. + case DW_CFA_restore_state: { + if (saved_rules_.empty()) { + reporter_->EmptyStateStack(entry_->offset, entry_->kind, + CursorOffset()); + return false; + } + const RuleMap &new_rules = saved_rules_.top(); + if (rules_.CFARule() && !new_rules.CFARule()) { + reporter_->ClearingCFARule(entry_->offset, entry_->kind, + CursorOffset()); + return false; + } + rules_.HandleTransitionTo(handler_, address_, new_rules); + rules_ = new_rules; + saved_rules_.pop(); + break; + } + + // No operation. (Padding instruction.) + case DW_CFA_nop: + break; + + // A SPARC register window save: Registers 8 through 15 (%o0-%o7) + // are saved in registers 24 through 31 (%i0-%i7), and registers + // 16 through 31 (%l0-%l7 and %i0-%i7) are saved at CFA offsets + // (0-15 * the register size). The register numbers must be + // hard-coded. A GNU extension, and not a pretty one. + case DW_CFA_GNU_window_save: { + // Save %o0-%o7 in %i0-%i7. + for (int i = 8; i < 16; i++) + if (!DoRule(i, new RegisterRule(i + 16))) + return false; + // Save %l0-%l7 and %i0-%i7 at the CFA. + for (int i = 16; i < 32; i++) + // Assume that the byte reader's address size is the same as + // the architecture's register size. !@#%*^ hilarious. + if (!DoRule(i, new OffsetRule(Handler::kCFARegister, + (i - 16) * reader_->AddressSize()))) + return false; + break; + } + + // I'm not sure what this is. GDB doesn't use it for unwinding. + case DW_CFA_GNU_args_size: + if (!ParseOperands("o", &ops)) return false; + break; + + // An opcode we don't recognize. + default: { + reporter_->BadInstruction(entry_->offset, entry_->kind, CursorOffset()); + return false; + } + } + + return true; +} + +bool CallFrameInfo::State::DoDefCFA(unsigned base_register, long offset) { + Rule *rule = new ValOffsetRule(base_register, offset); + rules_.SetCFARule(rule); + return rule->Handle(handler_, address_, + Handler::kCFARegister); +} + +bool CallFrameInfo::State::DoDefCFAOffset(long offset) { + Rule *cfa_rule = rules_.CFARule(); + if (!cfa_rule) { + reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); + return false; + } + cfa_rule->SetOffset(offset); + return cfa_rule->Handle(handler_, address_, + Handler::kCFARegister); +} + +bool CallFrameInfo::State::DoRule(unsigned reg, Rule *rule) { + rules_.SetRegisterRule(reg, rule); + return rule->Handle(handler_, address_, reg); +} + +bool CallFrameInfo::State::DoOffset(unsigned reg, long offset) { + if (!rules_.CFARule()) { + reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); + return false; + } + return DoRule(reg, + new OffsetRule(Handler::kCFARegister, offset)); +} + +bool CallFrameInfo::State::DoValOffset(unsigned reg, long offset) { + if (!rules_.CFARule()) { + reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); + return false; + } + return DoRule(reg, + new ValOffsetRule(Handler::kCFARegister, offset)); +} + +bool CallFrameInfo::State::DoRestore(unsigned reg) { + // DW_CFA_restore and DW_CFA_restore_extended don't make sense in a CIE. + if (entry_->kind == kCIE) { + reporter_->RestoreInCIE(entry_->offset, CursorOffset()); + return false; + } + Rule *rule = cie_rules_.RegisterRule(reg); + if (!rule) { + // This isn't really the right thing to do, but since CFI generally + // only mentions callee-saves registers, and GCC's convention for + // callee-saves registers is that they are unchanged, it's a good + // approximation. + rule = new SameValueRule(); + } + return DoRule(reg, rule); +} + +bool CallFrameInfo::ReadEntryPrologue(const char *cursor, Entry *entry) { + const char *buffer_end = buffer_ + buffer_length_; + + // Initialize enough of ENTRY for use in error reporting. + entry->offset = cursor - buffer_; + entry->start = cursor; + entry->kind = kUnknown; + entry->end = NULL; + + // Read the initial length. This sets reader_'s offset size. + size_t length_size; + uint64 length = reader_->ReadInitialLength(cursor, &length_size); + if (length_size > size_t(buffer_end - cursor)) + return ReportIncomplete(entry); + cursor += length_size; + + // In a .eh_frame section, a length of zero marks the end of the series + // of entries. + if (length == 0 && eh_frame_) { + entry->kind = kTerminator; + entry->end = cursor; + return true; + } + + // Validate the length. + if (length > size_t(buffer_end - cursor)) + return ReportIncomplete(entry); + + // The length is the number of bytes after the initial length field; + // we have that position handy at this point, so compute the end + // now. (If we're parsing 64-bit-offset DWARF on a 32-bit machine, + // and the length didn't fit in a size_t, we would have rejected it + // above.) + entry->end = cursor + length; + + // Parse the next field: either the offset of a CIE or a CIE id. + size_t offset_size = reader_->OffsetSize(); + if (offset_size > size_t(entry->end - cursor)) return ReportIncomplete(entry); + entry->id = reader_->ReadOffset(cursor); + + // Don't advance cursor past id field yet; in .eh_frame data we need + // the id's position to compute the section offset of an FDE's CIE. + + // Now we can decide what kind of entry this is. + if (eh_frame_) { + // In .eh_frame data, an ID of zero marks the entry as a CIE, and + // anything else is an offset from the id field of the FDE to the start + // of the CIE. + if (entry->id == 0) { + entry->kind = kCIE; + } else { + entry->kind = kFDE; + // Turn the offset from the id into an offset from the buffer's start. + entry->id = (cursor - buffer_) - entry->id; + } + } else { + // In DWARF CFI data, an ID of ~0 (of the appropriate width, given the + // offset size for the entry) marks the entry as a CIE, and anything + // else is the offset of the CIE from the beginning of the section. + if (offset_size == 4) + entry->kind = (entry->id == 0xffffffff) ? kCIE : kFDE; + else { + assert(offset_size == 8); + entry->kind = (entry->id == 0xffffffffffffffffULL) ? kCIE : kFDE; + } + } + + // Now advance cursor past the id. + cursor += offset_size; + + // The fields specific to this kind of entry start here. + entry->fields = cursor; + + entry->cie = NULL; + + return true; +} + +bool CallFrameInfo::ReadCIEFields(CIE *cie) { + const char *cursor = cie->fields; + size_t len; + + assert(cie->kind == kCIE); + + // Prepare for early exit. + cie->version = 0; + cie->augmentation.clear(); + cie->code_alignment_factor = 0; + cie->data_alignment_factor = 0; + cie->return_address_register = 0; + cie->has_z_augmentation = false; + cie->pointer_encoding = DW_EH_PE_absptr; + cie->instructions = 0; + + // Parse the version number. + if (cie->end - cursor < 1) + return ReportIncomplete(cie); + cie->version = reader_->ReadOneByte(cursor); + cursor++; + + // If we don't recognize the version, we can't parse any more fields of the + // CIE. For DWARF CFI, we handle versions 1 through 3 (there was never a + // version 2 of CFI data). For .eh_frame, we handle versions 1 and 3 as well; + // the difference between those versions seems to be the same as for + // .debug_frame. + if (cie->version < 1 || cie->version > 3) { + reporter_->UnrecognizedVersion(cie->offset, cie->version); + return false; + } + + const char *augmentation_start = cursor; + const void *augmentation_end = + memchr(augmentation_start, '\0', cie->end - augmentation_start); + if (! augmentation_end) return ReportIncomplete(cie); + cursor = static_cast<const char *>(augmentation_end); + cie->augmentation = string(augmentation_start, + cursor - augmentation_start); + // Skip the terminating '\0'. + cursor++; + + // Is this CFI augmented? + if (!cie->augmentation.empty()) { + // Is it an augmentation we recognize? + if (cie->augmentation[0] == DW_Z_augmentation_start) { + // Linux C++ ABI 'z' augmentation, used for exception handling data. + cie->has_z_augmentation = true; + } else { + // Not an augmentation we recognize. Augmentations can have arbitrary + // effects on the form of rest of the content, so we have to give up. + reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation); + return false; + } + } + + // Parse the code alignment factor. + cie->code_alignment_factor = reader_->ReadUnsignedLEB128(cursor, &len); + if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); + cursor += len; + + // Parse the data alignment factor. + cie->data_alignment_factor = reader_->ReadSignedLEB128(cursor, &len); + if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); + cursor += len; + + // Parse the return address register. This is a ubyte in version 1, and + // a ULEB128 in version 3. + if (cie->version == 1) { + if (cursor >= cie->end) return ReportIncomplete(cie); + cie->return_address_register = uint8(*cursor++); + } else { + cie->return_address_register = reader_->ReadUnsignedLEB128(cursor, &len); + if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); + cursor += len; + } + + // If we have a 'z' augmentation string, find the augmentation data and + // use the augmentation string to parse it. + if (cie->has_z_augmentation) { + uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &len); + if (size_t(cie->end - cursor) < len + data_size) + return ReportIncomplete(cie); + cursor += len; + const char *data = cursor; + cursor += data_size; + const char *data_end = cursor; + + cie->has_z_lsda = false; + cie->has_z_personality = false; + cie->has_z_signal_frame = false; + + // Walk the augmentation string, and extract values from the + // augmentation data as the string directs. + for (size_t i = 1; i < cie->augmentation.size(); i++) { + switch (cie->augmentation[i]) { + case DW_Z_has_LSDA: + // The CIE's augmentation data holds the language-specific data + // area pointer's encoding, and the FDE's augmentation data holds + // the pointer itself. + cie->has_z_lsda = true; + // Fetch the LSDA encoding from the augmentation data. + if (data >= data_end) return ReportIncomplete(cie); + cie->lsda_encoding = DwarfPointerEncoding(*data++); + if (!reader_->ValidEncoding(cie->lsda_encoding)) { + reporter_->InvalidPointerEncoding(cie->offset, cie->lsda_encoding); + return false; + } + // Don't check if the encoding is usable here --- we haven't + // read the FDE's fields yet, so we're not prepared for + // DW_EH_PE_funcrel, although that's a fine encoding for the + // LSDA to use, since it appears in the FDE. + break; + + case DW_Z_has_personality_routine: + // The CIE's augmentation data holds the personality routine + // pointer's encoding, followed by the pointer itself. + cie->has_z_personality = true; + // Fetch the personality routine pointer's encoding from the + // augmentation data. + if (data >= data_end) return ReportIncomplete(cie); + cie->personality_encoding = DwarfPointerEncoding(*data++); + if (!reader_->ValidEncoding(cie->personality_encoding)) { + reporter_->InvalidPointerEncoding(cie->offset, + cie->personality_encoding); + return false; + } + if (!reader_->UsableEncoding(cie->personality_encoding)) { + reporter_->UnusablePointerEncoding(cie->offset, + cie->personality_encoding); + return false; + } + // Fetch the personality routine's pointer itself from the data. + cie->personality_address = + reader_->ReadEncodedPointer(data, cie->personality_encoding, + &len); + if (len > size_t(data_end - data)) + return ReportIncomplete(cie); + data += len; + break; + + case DW_Z_has_FDE_address_encoding: + // The CIE's augmentation data holds the pointer encoding to use + // for addresses in the FDE. + if (data >= data_end) return ReportIncomplete(cie); + cie->pointer_encoding = DwarfPointerEncoding(*data++); + if (!reader_->ValidEncoding(cie->pointer_encoding)) { + reporter_->InvalidPointerEncoding(cie->offset, + cie->pointer_encoding); + return false; + } + if (!reader_->UsableEncoding(cie->pointer_encoding)) { + reporter_->UnusablePointerEncoding(cie->offset, + cie->pointer_encoding); + return false; + } + break; + + case DW_Z_is_signal_trampoline: + // Frames using this CIE are signal delivery frames. + cie->has_z_signal_frame = true; + break; + + default: + // An augmentation we don't recognize. + reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation); + return false; + } + } + } + + // The CIE's instructions start here. + cie->instructions = cursor; + + return true; +} + +bool CallFrameInfo::ReadFDEFields(FDE *fde) { + const char *cursor = fde->fields; + size_t size; + + fde->address = reader_->ReadEncodedPointer(cursor, fde->cie->pointer_encoding, + &size); + if (size > size_t(fde->end - cursor)) + return ReportIncomplete(fde); + cursor += size; + reader_->SetFunctionBase(fde->address); + + // For the length, we strip off the upper nybble of the encoding used for + // the starting address. + DwarfPointerEncoding length_encoding = + DwarfPointerEncoding(fde->cie->pointer_encoding & 0x0f); + fde->size = reader_->ReadEncodedPointer(cursor, length_encoding, &size); + if (size > size_t(fde->end - cursor)) + return ReportIncomplete(fde); + cursor += size; + + // If the CIE has a 'z' augmentation string, then augmentation data + // appears here. + if (fde->cie->has_z_augmentation) { + uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &size); + if (size_t(fde->end - cursor) < size + data_size) + return ReportIncomplete(fde); + cursor += size; + + // In the abstract, we should walk the augmentation string, and extract + // items from the FDE's augmentation data as we encounter augmentation + // string characters that specify their presence: the ordering of items + // in the augmentation string determines the arrangement of values in + // the augmentation data. + // + // In practice, there's only ever one value in FDE augmentation data + // that we support --- the LSDA pointer --- and we have to bail if we + // see any unrecognized augmentation string characters. So if there is + // anything here at all, we know what it is, and where it starts. + if (fde->cie->has_z_lsda) { + // Check whether the LSDA's pointer encoding is usable now: only once + // we've parsed the FDE's starting address do we call reader_-> + // SetFunctionBase, so that the DW_EH_PE_funcrel encoding becomes + // usable. + if (!reader_->UsableEncoding(fde->cie->lsda_encoding)) { + reporter_->UnusablePointerEncoding(fde->cie->offset, + fde->cie->lsda_encoding); + return false; + } + + fde->lsda_address = + reader_->ReadEncodedPointer(cursor, fde->cie->lsda_encoding, &size); + if (size > data_size) + return ReportIncomplete(fde); + // Ideally, we would also complain here if there were unconsumed + // augmentation data. + } + + cursor += data_size; + } + + // The FDE's instructions start after those. + fde->instructions = cursor; + + return true; +} + +bool CallFrameInfo::Start() { + const char *buffer_end = buffer_ + buffer_length_; + const char *cursor; + bool all_ok = true; + const char *entry_end; + bool ok; + + // Traverse all the entries in buffer_, skipping CIEs and offering + // FDEs to the handler. + for (cursor = buffer_; cursor < buffer_end; + cursor = entry_end, all_ok = all_ok && ok) { + FDE fde; + + // Make it easy to skip this entry with 'continue': assume that + // things are not okay until we've checked all the data, and + // prepare the address of the next entry. + ok = false; + + // Read the entry's prologue. + if (!ReadEntryPrologue(cursor, &fde)) { + if (!fde.end) { + // If we couldn't even figure out this entry's extent, then we + // must stop processing entries altogether. + all_ok = false; + break; + } + entry_end = fde.end; + continue; + } + + // The next iteration picks up after this entry. + entry_end = fde.end; + + // Did we see an .eh_frame terminating mark? + if (fde.kind == kTerminator) { + // If there appears to be more data left in the section after the + // terminating mark, warn the user. But this is just a warning; + // we leave all_ok true. + if (fde.end < buffer_end) reporter_->EarlyEHTerminator(fde.offset); + break; + } + + // In this loop, we skip CIEs. We only parse them fully when we + // parse an FDE that refers to them. This limits our memory + // consumption (beyond the buffer itself) to that needed to + // process the largest single entry. + if (fde.kind != kFDE) { + ok = true; + continue; + } + + // Validate the CIE pointer. + if (fde.id > buffer_length_) { + reporter_->CIEPointerOutOfRange(fde.offset, fde.id); + continue; + } + + CIE cie; + + // Parse this FDE's CIE header. + if (!ReadEntryPrologue(buffer_ + fde.id, &cie)) + continue; + // This had better be an actual CIE. + if (cie.kind != kCIE) { + reporter_->BadCIEId(fde.offset, fde.id); + continue; + } + if (!ReadCIEFields(&cie)) + continue; + + // We now have the values that govern both the CIE and the FDE. + cie.cie = &cie; + fde.cie = &cie; + + // Parse the FDE's header. + if (!ReadFDEFields(&fde)) + continue; + + // Call Entry to ask the consumer if they're interested. + if (!handler_->Entry(fde.offset, fde.address, fde.size, + cie.version, cie.augmentation, + cie.return_address_register)) { + // The handler isn't interested in this entry. That's not an error. + ok = true; + continue; + } + + if (cie.has_z_augmentation) { + // Report the personality routine address, if we have one. + if (cie.has_z_personality) { + if (!handler_ + ->PersonalityRoutine(cie.personality_address, + IsIndirectEncoding(cie.personality_encoding))) + continue; + } + + // Report the language-specific data area address, if we have one. + if (cie.has_z_lsda) { + if (!handler_ + ->LanguageSpecificDataArea(fde.lsda_address, + IsIndirectEncoding(cie.lsda_encoding))) + continue; + } + + // If this is a signal-handling frame, report that. + if (cie.has_z_signal_frame) { + if (!handler_->SignalHandler()) + continue; + } + } + + // Interpret the CIE's instructions, and then the FDE's instructions. + State state(reader_, handler_, reporter_, fde.address); + ok = state.InterpretCIE(cie) && state.InterpretFDE(fde); + + // Tell the ByteReader that the function start address from the + // FDE header is no longer valid. + reader_->ClearFunctionBase(); + + // Report the end of the entry. + handler_->End(); + } + + return all_ok; +} + +const char *CallFrameInfo::KindName(EntryKind kind) { + if (kind == CallFrameInfo::kUnknown) + return "entry"; + else if (kind == CallFrameInfo::kCIE) + return "common information entry"; + else if (kind == CallFrameInfo::kFDE) + return "frame description entry"; + else { + assert (kind == CallFrameInfo::kTerminator); + return ".eh_frame sequence terminator"; + } +} + +bool CallFrameInfo::ReportIncomplete(Entry *entry) { + reporter_->Incomplete(entry->offset, entry->kind); + return false; +} + +void CallFrameInfo::Reporter::Incomplete(uint64 offset, + CallFrameInfo::EntryKind kind) { + fprintf(stderr, + "%s: CFI %s at offset 0x%llx in '%s': entry ends early\n", + filename_.c_str(), CallFrameInfo::KindName(kind), offset, + section_.c_str()); +} + +void CallFrameInfo::Reporter::EarlyEHTerminator(uint64 offset) { + fprintf(stderr, + "%s: CFI at offset 0x%llx in '%s': saw end-of-data marker" + " before end of section contents\n", + filename_.c_str(), offset, section_.c_str()); +} + +void CallFrameInfo::Reporter::CIEPointerOutOfRange(uint64 offset, + uint64 cie_offset) { + fprintf(stderr, + "%s: CFI frame description entry at offset 0x%llx in '%s':" + " CIE pointer is out of range: 0x%llx\n", + filename_.c_str(), offset, section_.c_str(), cie_offset); +} + +void CallFrameInfo::Reporter::BadCIEId(uint64 offset, uint64 cie_offset) { + fprintf(stderr, + "%s: CFI frame description entry at offset 0x%llx in '%s':" + " CIE pointer does not point to a CIE: 0x%llx\n", + filename_.c_str(), offset, section_.c_str(), cie_offset); +} + +void CallFrameInfo::Reporter::UnrecognizedVersion(uint64 offset, int version) { + fprintf(stderr, + "%s: CFI frame description entry at offset 0x%llx in '%s':" + " CIE specifies unrecognized version: %d\n", + filename_.c_str(), offset, section_.c_str(), version); +} + +void CallFrameInfo::Reporter::UnrecognizedAugmentation(uint64 offset, + const string &aug) { + fprintf(stderr, + "%s: CFI frame description entry at offset 0x%llx in '%s':" + " CIE specifies unrecognized augmentation: '%s'\n", + filename_.c_str(), offset, section_.c_str(), aug.c_str()); +} + +void CallFrameInfo::Reporter::InvalidPointerEncoding(uint64 offset, + uint8 encoding) { + fprintf(stderr, + "%s: CFI common information entry at offset 0x%llx in '%s':" + " 'z' augmentation specifies invalid pointer encoding: 0x%02x\n", + filename_.c_str(), offset, section_.c_str(), encoding); +} + +void CallFrameInfo::Reporter::UnusablePointerEncoding(uint64 offset, + uint8 encoding) { + fprintf(stderr, + "%s: CFI common information entry at offset 0x%llx in '%s':" + " 'z' augmentation specifies a pointer encoding for which" + " we have no base address: 0x%02x\n", + filename_.c_str(), offset, section_.c_str(), encoding); +} + +void CallFrameInfo::Reporter::RestoreInCIE(uint64 offset, uint64 insn_offset) { + fprintf(stderr, + "%s: CFI common information entry at offset 0x%llx in '%s':" + " the DW_CFA_restore instruction at offset 0x%llx" + " cannot be used in a common information entry\n", + filename_.c_str(), offset, section_.c_str(), insn_offset); +} + +void CallFrameInfo::Reporter::BadInstruction(uint64 offset, + CallFrameInfo::EntryKind kind, + uint64 insn_offset) { + fprintf(stderr, + "%s: CFI %s at offset 0x%llx in section '%s':" + " the instruction at offset 0x%llx is unrecognized\n", + filename_.c_str(), CallFrameInfo::KindName(kind), + offset, section_.c_str(), insn_offset); +} + +void CallFrameInfo::Reporter::NoCFARule(uint64 offset, + CallFrameInfo::EntryKind kind, + uint64 insn_offset) { + fprintf(stderr, + "%s: CFI %s at offset 0x%llx in section '%s':" + " the instruction at offset 0x%llx assumes that a CFA rule has" + " been set, but none has been set\n", + filename_.c_str(), CallFrameInfo::KindName(kind), offset, + section_.c_str(), insn_offset); +} + +void CallFrameInfo::Reporter::EmptyStateStack(uint64 offset, + CallFrameInfo::EntryKind kind, + uint64 insn_offset) { + fprintf(stderr, + "%s: CFI %s at offset 0x%llx in section '%s':" + " the DW_CFA_restore_state instruction at offset 0x%llx" + " should pop a saved state from the stack, but the stack is empty\n", + filename_.c_str(), CallFrameInfo::KindName(kind), offset, + section_.c_str(), insn_offset); +} + +void CallFrameInfo::Reporter::ClearingCFARule(uint64 offset, + CallFrameInfo::EntryKind kind, + uint64 insn_offset) { + fprintf(stderr, + "%s: CFI %s at offset 0x%llx in section '%s':" + " the DW_CFA_restore_state instruction at offset 0x%llx" + " would clear the CFA rule in effect\n", + filename_.c_str(), CallFrameInfo::KindName(kind), offset, + section_.c_str(), insn_offset); +} + +} // namespace dwarf2reader diff --git a/3rdParty/Breakpad/src/common/dwarf/dwarf2reader.h b/3rdParty/Breakpad/src/common/dwarf/dwarf2reader.h new file mode 100644 index 0000000..ecf4eb2 --- /dev/null +++ b/3rdParty/Breakpad/src/common/dwarf/dwarf2reader.h @@ -0,0 +1,1051 @@ +// -*- mode: C++ -*- + +// Copyright (c) 2010 Google Inc. All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// CFI reader author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com> + +// This file contains definitions related to the DWARF2/3 reader and +// it's handler interfaces. +// The DWARF2/3 specification can be found at +// http://dwarf.freestandards.org and should be considered required +// reading if you wish to modify the implementation. +// Only a cursory attempt is made to explain terminology that is +// used here, as it is much better explained in the standard documents +#ifndef COMMON_DWARF_DWARF2READER_H__ +#define COMMON_DWARF_DWARF2READER_H__ + +#include <list> +#include <map> +#include <string> +#include <utility> +#include <vector> + +#include "common/dwarf/bytereader.h" +#include "common/dwarf/dwarf2enums.h" +#include "common/dwarf/types.h" +#include "common/using_std_string.h" + +namespace dwarf2reader { +struct LineStateMachine; +class Dwarf2Handler; +class LineInfoHandler; + +// This maps from a string naming a section to a pair containing a +// the data for the section, and the size of the section. +typedef std::map<string, std::pair<const char*, uint64> > SectionMap; +typedef std::list<std::pair<enum DwarfAttribute, enum DwarfForm> > + AttributeList; +typedef AttributeList::iterator AttributeIterator; +typedef AttributeList::const_iterator ConstAttributeIterator; + +struct LineInfoHeader { + uint64 total_length; + uint16 version; + uint64 prologue_length; + uint8 min_insn_length; // insn stands for instructin + bool default_is_stmt; // stmt stands for statement + int8 line_base; + uint8 line_range; + uint8 opcode_base; + // Use a pointer so that signalsafe_addr2line is able to use this structure + // without heap allocation problem. + std::vector<unsigned char> *std_opcode_lengths; +}; + +class LineInfo { + public: + + // Initializes a .debug_line reader. Buffer and buffer length point + // to the beginning and length of the line information to read. + // Reader is a ByteReader class that has the endianness set + // properly. + LineInfo(const char* buffer_, uint64 buffer_length, + ByteReader* reader, LineInfoHandler* handler); + + virtual ~LineInfo() { + if (header_.std_opcode_lengths) { + delete header_.std_opcode_lengths; + } + } + + // Start processing line info, and calling callbacks in the handler. + // Consumes the line number information for a single compilation unit. + // Returns the number of bytes processed. + uint64 Start(); + + // Process a single line info opcode at START using the state + // machine at LSM. Return true if we should define a line using the + // current state of the line state machine. Place the length of the + // opcode in LEN. + // If LSM_PASSES_PC is non-NULL, this function also checks if the lsm + // passes the address of PC. In other words, LSM_PASSES_PC will be + // set to true, if the following condition is met. + // + // lsm's old address < PC <= lsm's new address + static bool ProcessOneOpcode(ByteReader* reader, + LineInfoHandler* handler, + const struct LineInfoHeader &header, + const char* start, + struct LineStateMachine* lsm, + size_t* len, + uintptr pc, + bool *lsm_passes_pc); + + private: + // Reads the DWARF2/3 header for this line info. + void ReadHeader(); + + // Reads the DWARF2/3 line information + void ReadLines(); + + // The associated handler to call processing functions in + LineInfoHandler* handler_; + + // The associated ByteReader that handles endianness issues for us + ByteReader* reader_; + + // A DWARF2/3 line info header. This is not the same size as + // in the actual file, as the one in the file may have a 32 bit or + // 64 bit lengths + + struct LineInfoHeader header_; + + // buffer is the buffer for our line info, starting at exactly where + // the line info to read is. after_header is the place right after + // the end of the line information header. + const char* buffer_; + uint64 buffer_length_; + const char* after_header_; +}; + +// This class is the main interface between the line info reader and +// the client. The virtual functions inside this get called for +// interesting events that happen during line info reading. The +// default implementation does nothing + +class LineInfoHandler { + public: + LineInfoHandler() { } + + virtual ~LineInfoHandler() { } + + // Called when we define a directory. NAME is the directory name, + // DIR_NUM is the directory number + virtual void DefineDir(const string& name, uint32 dir_num) { } + + // Called when we define a filename. NAME is the filename, FILE_NUM + // is the file number which is -1 if the file index is the next + // index after the last numbered index (this happens when files are + // dynamically defined by the line program), DIR_NUM is the + // directory index for the directory name of this file, MOD_TIME is + // the modification time of the file, and LENGTH is the length of + // the file + virtual void DefineFile(const string& name, int32 file_num, + uint32 dir_num, uint64 mod_time, + uint64 length) { } + + // Called when the line info reader has a new line, address pair + // ready for us. ADDRESS is the address of the code, LENGTH is the + // length of its machine code in bytes, FILE_NUM is the file number + // containing the code, LINE_NUM is the line number in that file for + // the code, and COLUMN_NUM is the column number the code starts at, + // if we know it (0 otherwise). + virtual void AddLine(uint64 address, uint64 length, + uint32 file_num, uint32 line_num, uint32 column_num) { } +}; + +// The base of DWARF2/3 debug info is a DIE (Debugging Information +// Entry. +// DWARF groups DIE's into a tree and calls the root of this tree a +// "compilation unit". Most of the time, there is one compilation +// unit in the .debug_info section for each file that had debug info +// generated. +// Each DIE consists of + +// 1. a tag specifying a thing that is being described (ie +// DW_TAG_subprogram for functions, DW_TAG_variable for variables, etc +// 2. attributes (such as DW_AT_location for location in memory, +// DW_AT_name for name), and data for each attribute. +// 3. A flag saying whether the DIE has children or not + +// In order to gain some amount of compression, the format of +// each DIE (tag name, attributes and data forms for the attributes) +// are stored in a separate table called the "abbreviation table". +// This is done because a large number of DIEs have the exact same tag +// and list of attributes, but different data for those attributes. +// As a result, the .debug_info section is just a stream of data, and +// requires reading of the .debug_abbrev section to say what the data +// means. + +// As a warning to the user, it should be noted that the reason for +// using absolute offsets from the beginning of .debug_info is that +// DWARF2/3 supports referencing DIE's from other DIE's by their offset +// from either the current compilation unit start, *or* the beginning +// of the .debug_info section. This means it is possible to reference +// a DIE in one compilation unit from a DIE in another compilation +// unit. This style of reference is usually used to eliminate +// duplicated information that occurs across compilation +// units, such as base types, etc. GCC 3.4+ support this with +// -feliminate-dwarf2-dups. Other toolchains will sometimes do +// duplicate elimination in the linker. + +class CompilationUnit { + public: + + // Initialize a compilation unit. This requires a map of sections, + // the offset of this compilation unit in the .debug_info section, a + // ByteReader, and a Dwarf2Handler class to call callbacks in. + CompilationUnit(const SectionMap& sections, uint64 offset, + ByteReader* reader, Dwarf2Handler* handler); + virtual ~CompilationUnit() { + if (abbrevs_) delete abbrevs_; + } + + // Begin reading a Dwarf2 compilation unit, and calling the + // callbacks in the Dwarf2Handler + + // Return the full length of the compilation unit, including + // headers. This plus the starting offset passed to the constructor + // is the offset of the end of the compilation unit --- and the + // start of the next compilation unit, if there is one. + uint64 Start(); + + private: + + // This struct represents a single DWARF2/3 abbreviation + // The abbreviation tells how to read a DWARF2/3 DIE, and consist of a + // tag and a list of attributes, as well as the data form of each attribute. + struct Abbrev { + uint64 number; + enum DwarfTag tag; + bool has_children; + AttributeList attributes; + }; + + // A DWARF2/3 compilation unit header. This is not the same size as + // in the actual file, as the one in the file may have a 32 bit or + // 64 bit length. + struct CompilationUnitHeader { + uint64 length; + uint16 version; + uint64 abbrev_offset; + uint8 address_size; + } header_; + + // Reads the DWARF2/3 header for this compilation unit. + void ReadHeader(); + + // Reads the DWARF2/3 abbreviations for this compilation unit + void ReadAbbrevs(); + + // Processes a single DIE for this compilation unit and return a new + // pointer just past the end of it + const char* ProcessDIE(uint64 dieoffset, + const char* start, + const Abbrev& abbrev); + + // Processes a single attribute and return a new pointer just past the + // end of it + const char* ProcessAttribute(uint64 dieoffset, + const char* start, + enum DwarfAttribute attr, + enum DwarfForm form); + + // Processes all DIEs for this compilation unit + void ProcessDIEs(); + + // Skips the die with attributes specified in ABBREV starting at + // START, and return the new place to position the stream to. + const char* SkipDIE(const char* start, + const Abbrev& abbrev); + + // Skips the attribute starting at START, with FORM, and return the + // new place to position the stream to. + const char* SkipAttribute(const char* start, + enum DwarfForm form); + + // Offset from section start is the offset of this compilation unit + // from the beginning of the .debug_info section. + uint64 offset_from_section_start_; + + // buffer is the buffer for our CU, starting at .debug_info + offset + // passed in from constructor. + // after_header points to right after the compilation unit header. + const char* buffer_; + uint64 buffer_length_; + const char* after_header_; + + // The associated ByteReader that handles endianness issues for us + ByteReader* reader_; + + // The map of sections in our file to buffers containing their data + const SectionMap& sections_; + + // The associated handler to call processing functions in + Dwarf2Handler* handler_; + + // Set of DWARF2/3 abbreviations for this compilation unit. Indexed + // by abbreviation number, which means that abbrevs_[0] is not + // valid. + std::vector<Abbrev>* abbrevs_; + + // String section buffer and length, if we have a string section. + // This is here to avoid doing a section lookup for strings in + // ProcessAttribute, which is in the hot path for DWARF2 reading. + const char* string_buffer_; + uint64 string_buffer_length_; +}; + +// This class is the main interface between the reader and the +// client. The virtual functions inside this get called for +// interesting events that happen during DWARF2 reading. +// The default implementation skips everything. + +class Dwarf2Handler { + public: + Dwarf2Handler() { } + + virtual ~Dwarf2Handler() { } + + // Start to process a compilation unit at OFFSET from the beginning of the + // .debug_info section. Return false if you would like to skip this + // compilation unit. + virtual bool StartCompilationUnit(uint64 offset, uint8 address_size, + uint8 offset_size, uint64 cu_length, + uint8 dwarf_version) { return false; } + + // Start to process a DIE at OFFSET from the beginning of the .debug_info + // section. Return false if you would like to skip this DIE. + virtual bool StartDIE(uint64 offset, enum DwarfTag tag, + const AttributeList& attrs) { return false; } + + // Called when we have an attribute with unsigned data to give to our + // handler. The attribute is for the DIE at OFFSET from the beginning of the + // .debug_info section. Its name is ATTR, its form is FORM, and its value is + // DATA. + virtual void ProcessAttributeUnsigned(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + uint64 data) { } + + // Called when we have an attribute with signed data to give to our handler. + // The attribute is for the DIE at OFFSET from the beginning of the + // .debug_info section. Its name is ATTR, its form is FORM, and its value is + // DATA. + virtual void ProcessAttributeSigned(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + int64 data) { } + + // Called when we have an attribute whose value is a reference to + // another DIE. The attribute belongs to the DIE at OFFSET from the + // beginning of the .debug_info section. Its name is ATTR, its form + // is FORM, and the offset of the DIE being referred to from the + // beginning of the .debug_info section is DATA. + virtual void ProcessAttributeReference(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + uint64 data) { } + + // Called when we have an attribute with a buffer of data to give to our + // handler. The attribute is for the DIE at OFFSET from the beginning of the + // .debug_info section. Its name is ATTR, its form is FORM, DATA points to + // the buffer's contents, and its length in bytes is LENGTH. The buffer is + // owned by the caller, not the callee, and may not persist for very long. + // If you want the data to be available later, it needs to be copied. + virtual void ProcessAttributeBuffer(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + const char* data, + uint64 len) { } + + // Called when we have an attribute with string data to give to our handler. + // The attribute is for the DIE at OFFSET from the beginning of the + // .debug_info section. Its name is ATTR, its form is FORM, and its value is + // DATA. + virtual void ProcessAttributeString(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + const string& data) { } + + // Called when we have an attribute whose value is the 64-bit signature + // of a type unit in the .debug_types section. OFFSET is the offset of + // the DIE whose attribute we're reporting. ATTR and FORM are the + // attribute's name and form. SIGNATURE is the type unit's signature. + virtual void ProcessAttributeSignature(uint64 offset, + enum DwarfAttribute attr, + enum DwarfForm form, + uint64 signature) { } + + // Called when finished processing the DIE at OFFSET. + // Because DWARF2/3 specifies a tree of DIEs, you may get starts + // before ends of the previous DIE, as we process children before + // ending the parent. + virtual void EndDIE(uint64 offset) { } + +}; + +// This class is a reader for DWARF's Call Frame Information. CFI +// describes how to unwind stack frames --- even for functions that do +// not follow fixed conventions for saving registers, whose frame size +// varies as they execute, etc. +// +// CFI describes, at each machine instruction, how to compute the +// stack frame's base address, how to find the return address, and +// where to find the saved values of the caller's registers (if the +// callee has stashed them somewhere to free up the registers for its +// own use). +// +// For example, suppose we have a function whose machine code looks +// like this (imagine an assembly language that looks like C, for a +// machine with 32-bit registers, and a stack that grows towards lower +// addresses): +// +// func: ; entry point; return address at sp +// func+0: sp = sp - 16 ; allocate space for stack frame +// func+1: sp[12] = r0 ; save r0 at sp+12 +// ... ; other code, not frame-related +// func+10: sp -= 4; *sp = x ; push some x on the stack +// ... ; other code, not frame-related +// func+20: r0 = sp[16] ; restore saved r0 +// func+21: sp += 20 ; pop whole stack frame +// func+22: pc = *sp; sp += 4 ; pop return address and jump to it +// +// DWARF CFI is (a very compressed representation of) a table with a +// row for each machine instruction address and a column for each +// register showing how to restore it, if possible. +// +// A special column named "CFA", for "Canonical Frame Address", tells how +// to compute the base address of the frame; registers' entries may +// refer to the CFA in describing where the registers are saved. +// +// Another special column, named "RA", represents the return address. +// +// For example, here is a complete (uncompressed) table describing the +// function above: +// +// insn cfa r0 r1 ... ra +// ======================================= +// func+0: sp cfa[0] +// func+1: sp+16 cfa[0] +// func+2: sp+16 cfa[-4] cfa[0] +// func+11: sp+20 cfa[-4] cfa[0] +// func+21: sp+20 cfa[0] +// func+22: sp cfa[0] +// +// Some things to note here: +// +// - Each row describes the state of affairs *before* executing the +// instruction at the given address. Thus, the row for func+0 +// describes the state before we allocate the stack frame. In the +// next row, the formula for computing the CFA has changed, +// reflecting that allocation. +// +// - The other entries are written in terms of the CFA; this allows +// them to remain unchanged as the stack pointer gets bumped around. +// For example, the rule for recovering the return address (the "ra" +// column) remains unchanged throughout the function, even as the +// stack pointer takes on three different offsets from the return +// address. +// +// - Although we haven't shown it, most calling conventions designate +// "callee-saves" and "caller-saves" registers. The callee must +// preserve the values of callee-saves registers; if it uses them, +// it must save their original values somewhere, and restore them +// before it returns. In contrast, the callee is free to trash +// caller-saves registers; if the callee uses these, it will +// probably not bother to save them anywhere, and the CFI will +// probably mark their values as "unrecoverable". +// +// (However, since the caller cannot assume the callee was going to +// save them, caller-saves registers are probably dead in the caller +// anyway, so compilers usually don't generate CFA for caller-saves +// registers.) +// +// - Exactly where the CFA points is a matter of convention that +// depends on the architecture and ABI in use. In the example, the +// CFA is the value the stack pointer had upon entry to the +// function, pointing at the saved return address. But on the x86, +// the call frame information generated by GCC follows the +// convention that the CFA is the address *after* the saved return +// address. +// +// But by definition, the CFA remains constant throughout the +// lifetime of the frame. This makes it a useful value for other +// columns to refer to. It is also gives debuggers a useful handle +// for identifying a frame. +// +// If you look at the table above, you'll notice that a given entry is +// often the same as the one immediately above it: most instructions +// change only one or two aspects of the stack frame, if they affect +// it at all. The DWARF format takes advantage of this fact, and +// reduces the size of the data by mentioning only the addresses and +// columns at which changes take place. So for the above, DWARF CFI +// data would only actually mention the following: +// +// insn cfa r0 r1 ... ra +// ======================================= +// func+0: sp cfa[0] +// func+1: sp+16 +// func+2: cfa[-4] +// func+11: sp+20 +// func+21: r0 +// func+22: sp +// +// In fact, this is the way the parser reports CFI to the consumer: as +// a series of statements of the form, "At address X, column Y changed +// to Z," and related conventions for describing the initial state. +// +// Naturally, it would be impractical to have to scan the entire +// program's CFI, noting changes as we go, just to recover the +// unwinding rules in effect at one particular instruction. To avoid +// this, CFI data is grouped into "entries", each of which covers a +// specified range of addresses and begins with a complete statement +// of the rules for all recoverable registers at that starting +// address. Each entry typically covers a single function. +// +// Thus, to compute the contents of a given row of the table --- that +// is, rules for recovering the CFA, RA, and registers at a given +// instruction --- the consumer should find the entry that covers that +// instruction's address, start with the initial state supplied at the +// beginning of the entry, and work forward until it has processed all +// the changes up to and including those for the present instruction. +// +// There are seven kinds of rules that can appear in an entry of the +// table: +// +// - "undefined": The given register is not preserved by the callee; +// its value cannot be recovered. +// +// - "same value": This register has the same value it did in the callee. +// +// - offset(N): The register is saved at offset N from the CFA. +// +// - val_offset(N): The value the register had in the caller is the +// CFA plus offset N. (This is usually only useful for describing +// the stack pointer.) +// +// - register(R): The register's value was saved in another register R. +// +// - expression(E): Evaluating the DWARF expression E using the +// current frame's registers' values yields the address at which the +// register was saved. +// +// - val_expression(E): Evaluating the DWARF expression E using the +// current frame's registers' values yields the value the register +// had in the caller. + +class CallFrameInfo { + public: + // The different kinds of entries one finds in CFI. Used internally, + // and for error reporting. + enum EntryKind { kUnknown, kCIE, kFDE, kTerminator }; + + // The handler class to which the parser hands the parsed call frame + // information. Defined below. + class Handler; + + // A reporter class, which CallFrameInfo uses to report errors + // encountered while parsing call frame information. Defined below. + class Reporter; + + // Create a DWARF CFI parser. BUFFER points to the contents of the + // .debug_frame section to parse; BUFFER_LENGTH is its length in bytes. + // REPORTER is an error reporter the parser should use to report + // problems. READER is a ByteReader instance that has the endianness and + // address size set properly. Report the data we find to HANDLER. + // + // This class can also parse Linux C++ exception handling data, as found + // in '.eh_frame' sections. This data is a variant of DWARF CFI that is + // placed in loadable segments so that it is present in the program's + // address space, and is interpreted by the C++ runtime to search the + // call stack for a handler interested in the exception being thrown, + // actually pop the frames, and find cleanup code to run. + // + // There are two differences between the call frame information described + // in the DWARF standard and the exception handling data Linux places in + // the .eh_frame section: + // + // - Exception handling data uses uses a different format for call frame + // information entry headers. The distinguished CIE id, the way FDEs + // refer to their CIEs, and the way the end of the series of entries is + // determined are all slightly different. + // + // If the constructor's EH_FRAME argument is true, then the + // CallFrameInfo parses the entry headers as Linux C++ exception + // handling data. If EH_FRAME is false or omitted, the CallFrameInfo + // parses standard DWARF call frame information. + // + // - Linux C++ exception handling data uses CIE augmentation strings + // beginning with 'z' to specify the presence of additional data after + // the CIE and FDE headers and special encodings used for addresses in + // frame description entries. + // + // CallFrameInfo can handle 'z' augmentations in either DWARF CFI or + // exception handling data if you have supplied READER with the base + // addresses needed to interpret the pointer encodings that 'z' + // augmentations can specify. See the ByteReader interface for details + // about the base addresses. See the CallFrameInfo::Handler interface + // for details about the additional information one might find in + // 'z'-augmented data. + // + // Thus: + // + // - If you are parsing standard DWARF CFI, as found in a .debug_frame + // section, you should pass false for the EH_FRAME argument, or omit + // it, and you need not worry about providing READER with the + // additional base addresses. + // + // - If you want to parse Linux C++ exception handling data from a + // .eh_frame section, you should pass EH_FRAME as true, and call + // READER's Set*Base member functions before calling our Start method. + // + // - If you want to parse DWARF CFI that uses the 'z' augmentations + // (although I don't think any toolchain ever emits such data), you + // could pass false for EH_FRAME, but call READER's Set*Base members. + // + // The extensions the Linux C++ ABI makes to DWARF for exception + // handling are described here, rather poorly: + // http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/dwarfext.html + // http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html + // + // The mechanics of C++ exception handling, personality routines, + // and language-specific data areas are described here, rather nicely: + // http://www.codesourcery.com/public/cxx-abi/abi-eh.html + CallFrameInfo(const char *buffer, size_t buffer_length, + ByteReader *reader, Handler *handler, Reporter *reporter, + bool eh_frame = false) + : buffer_(buffer), buffer_length_(buffer_length), + reader_(reader), handler_(handler), reporter_(reporter), + eh_frame_(eh_frame) { } + + ~CallFrameInfo() { } + + // Parse the entries in BUFFER, reporting what we find to HANDLER. + // Return true if we reach the end of the section successfully, or + // false if we encounter an error. + bool Start(); + + // Return the textual name of KIND. For error reporting. + static const char *KindName(EntryKind kind); + + private: + + struct CIE; + + // A CFI entry, either an FDE or a CIE. + struct Entry { + // The starting offset of the entry in the section, for error + // reporting. + size_t offset; + + // The start of this entry in the buffer. + const char *start; + + // Which kind of entry this is. + // + // We want to be able to use this for error reporting even while we're + // in the midst of parsing. Error reporting code may assume that kind, + // offset, and start fields are valid, although kind may be kUnknown. + EntryKind kind; + + // The end of this entry's common prologue (initial length and id), and + // the start of this entry's kind-specific fields. + const char *fields; + + // The start of this entry's instructions. + const char *instructions; + + // The address past the entry's last byte in the buffer. (Note that + // since offset points to the entry's initial length field, and the + // length field is the number of bytes after that field, this is not + // simply buffer_ + offset + length.) + const char *end; + + // For both DWARF CFI and .eh_frame sections, this is the CIE id in a + // CIE, and the offset of the associated CIE in an FDE. + uint64 id; + + // The CIE that applies to this entry, if we've parsed it. If this is a + // CIE, then this field points to this structure. + CIE *cie; + }; + + // A common information entry (CIE). + struct CIE: public Entry { + uint8 version; // CFI data version number + string augmentation; // vendor format extension markers + uint64 code_alignment_factor; // scale for code address adjustments + int data_alignment_factor; // scale for stack pointer adjustments + unsigned return_address_register; // which register holds the return addr + + // True if this CIE includes Linux C++ ABI 'z' augmentation data. + bool has_z_augmentation; + + // Parsed 'z' augmentation data. These are meaningful only if + // has_z_augmentation is true. + bool has_z_lsda; // The 'z' augmentation included 'L'. + bool has_z_personality; // The 'z' augmentation included 'P'. + bool has_z_signal_frame; // The 'z' augmentation included 'S'. + + // If has_z_lsda is true, this is the encoding to be used for language- + // specific data area pointers in FDEs. + DwarfPointerEncoding lsda_encoding; + + // If has_z_personality is true, this is the encoding used for the + // personality routine pointer in the augmentation data. + DwarfPointerEncoding personality_encoding; + + // If has_z_personality is true, this is the address of the personality + // routine --- or, if personality_encoding & DW_EH_PE_indirect, the + // address where the personality routine's address is stored. + uint64 personality_address; + + // This is the encoding used for addresses in the FDE header and + // in DW_CFA_set_loc instructions. This is always valid, whether + // or not we saw a 'z' augmentation string; its default value is + // DW_EH_PE_absptr, which is what normal DWARF CFI uses. + DwarfPointerEncoding pointer_encoding; + }; + + // A frame description entry (FDE). + struct FDE: public Entry { + uint64 address; // start address of described code + uint64 size; // size of described code, in bytes + + // If cie->has_z_lsda is true, then this is the language-specific data + // area's address --- or its address's address, if cie->lsda_encoding + // has the DW_EH_PE_indirect bit set. + uint64 lsda_address; + }; + + // Internal use. + class Rule; + class UndefinedRule; + class SameValueRule; + class OffsetRule; + class ValOffsetRule; + class RegisterRule; + class ExpressionRule; + class ValExpressionRule; + class RuleMap; + class State; + + // Parse the initial length and id of a CFI entry, either a CIE, an FDE, + // or a .eh_frame end-of-data mark. CURSOR points to the beginning of the + // data to parse. On success, populate ENTRY as appropriate, and return + // true. On failure, report the problem, and return false. Even if we + // return false, set ENTRY->end to the first byte after the entry if we + // were able to figure that out, or NULL if we weren't. + bool ReadEntryPrologue(const char *cursor, Entry *entry); + + // Parse the fields of a CIE after the entry prologue, including any 'z' + // augmentation data. Assume that the 'Entry' fields of CIE are + // populated; use CIE->fields and CIE->end as the start and limit for + // parsing. On success, populate the rest of *CIE, and return true; on + // failure, report the problem and return false. + bool ReadCIEFields(CIE *cie); + + // Parse the fields of an FDE after the entry prologue, including any 'z' + // augmentation data. Assume that the 'Entry' fields of *FDE are + // initialized; use FDE->fields and FDE->end as the start and limit for + // parsing. Assume that FDE->cie is fully initialized. On success, + // populate the rest of *FDE, and return true; on failure, report the + // problem and return false. + bool ReadFDEFields(FDE *fde); + + // Report that ENTRY is incomplete, and return false. This is just a + // trivial wrapper for invoking reporter_->Incomplete; it provides a + // little brevity. + bool ReportIncomplete(Entry *entry); + + // Return true if ENCODING has the DW_EH_PE_indirect bit set. + static bool IsIndirectEncoding(DwarfPointerEncoding encoding) { + return encoding & DW_EH_PE_indirect; + } + + // The contents of the DWARF .debug_info section we're parsing. + const char *buffer_; + size_t buffer_length_; + + // For reading multi-byte values with the appropriate endianness. + ByteReader *reader_; + + // The handler to which we should report the data we find. + Handler *handler_; + + // For reporting problems in the info we're parsing. + Reporter *reporter_; + + // True if we are processing .eh_frame-format data. + bool eh_frame_; +}; + +// The handler class for CallFrameInfo. The a CFI parser calls the +// member functions of a handler object to report the data it finds. +class CallFrameInfo::Handler { + public: + // The pseudo-register number for the canonical frame address. + enum { kCFARegister = -1 }; + + Handler() { } + virtual ~Handler() { } + + // The parser has found CFI for the machine code at ADDRESS, + // extending for LENGTH bytes. OFFSET is the offset of the frame + // description entry in the section, for use in error messages. + // VERSION is the version number of the CFI format. AUGMENTATION is + // a string describing any producer-specific extensions present in + // the data. RETURN_ADDRESS is the number of the register that holds + // the address to which the function should return. + // + // Entry should return true to process this CFI, or false to skip to + // the next entry. + // + // The parser invokes Entry for each Frame Description Entry (FDE) + // it finds. The parser doesn't report Common Information Entries + // to the handler explicitly; instead, if the handler elects to + // process a given FDE, the parser reiterates the appropriate CIE's + // contents at the beginning of the FDE's rules. + virtual bool Entry(size_t offset, uint64 address, uint64 length, + uint8 version, const string &augmentation, + unsigned return_address) = 0; + + // When the Entry function returns true, the parser calls these + // handler functions repeatedly to describe the rules for recovering + // registers at each instruction in the given range of machine code. + // Immediately after a call to Entry, the handler should assume that + // the rule for each callee-saves register is "unchanged" --- that + // is, that the register still has the value it had in the caller. + // + // If a *Rule function returns true, we continue processing this entry's + // instructions. If a *Rule function returns false, we stop evaluating + // instructions, and skip to the next entry. Either way, we call End + // before going on to the next entry. + // + // In all of these functions, if the REG parameter is kCFARegister, then + // the rule describes how to find the canonical frame address. + // kCFARegister may be passed as a BASE_REGISTER argument, meaning that + // the canonical frame address should be used as the base address for the + // computation. All other REG values will be positive. + + // At ADDRESS, register REG's value is not recoverable. + virtual bool UndefinedRule(uint64 address, int reg) = 0; + + // At ADDRESS, register REG's value is the same as that it had in + // the caller. + virtual bool SameValueRule(uint64 address, int reg) = 0; + + // At ADDRESS, register REG has been saved at offset OFFSET from + // BASE_REGISTER. + virtual bool OffsetRule(uint64 address, int reg, + int base_register, long offset) = 0; + + // At ADDRESS, the caller's value of register REG is the current + // value of BASE_REGISTER plus OFFSET. (This rule doesn't provide an + // address at which the register's value is saved.) + virtual bool ValOffsetRule(uint64 address, int reg, + int base_register, long offset) = 0; + + // At ADDRESS, register REG has been saved in BASE_REGISTER. This differs + // from ValOffsetRule(ADDRESS, REG, BASE_REGISTER, 0), in that + // BASE_REGISTER is the "home" for REG's saved value: if you want to + // assign to a variable whose home is REG in the calling frame, you + // should put the value in BASE_REGISTER. + virtual bool RegisterRule(uint64 address, int reg, int base_register) = 0; + + // At ADDRESS, the DWARF expression EXPRESSION yields the address at + // which REG was saved. + virtual bool ExpressionRule(uint64 address, int reg, + const string &expression) = 0; + + // At ADDRESS, the DWARF expression EXPRESSION yields the caller's + // value for REG. (This rule doesn't provide an address at which the + // register's value is saved.) + virtual bool ValExpressionRule(uint64 address, int reg, + const string &expression) = 0; + + // Indicate that the rules for the address range reported by the + // last call to Entry are complete. End should return true if + // everything is okay, or false if an error has occurred and parsing + // should stop. + virtual bool End() = 0; + + // Handler functions for Linux C++ exception handling data. These are + // only called if the data includes 'z' augmentation strings. + + // The Linux C++ ABI uses an extension of the DWARF CFI format to + // walk the stack to propagate exceptions from the throw to the + // appropriate catch, and do the appropriate cleanups along the way. + // CFI entries used for exception handling have two additional data + // associated with them: + // + // - The "language-specific data area" describes which exception + // types the function has 'catch' clauses for, and indicates how + // to go about re-entering the function at the appropriate catch + // clause. If the exception is not caught, it describes the + // destructors that must run before the frame is popped. + // + // - The "personality routine" is responsible for interpreting the + // language-specific data area's contents, and deciding whether + // the exception should continue to propagate down the stack, + // perhaps after doing some cleanup for this frame, or whether the + // exception will be caught here. + // + // In principle, the language-specific data area is opaque to + // everybody but the personality routine. In practice, these values + // may be useful or interesting to readers with extra context, and + // we have to at least skip them anyway, so we might as well report + // them to the handler. + + // This entry's exception handling personality routine's address is + // ADDRESS. If INDIRECT is true, then ADDRESS is the address at + // which the routine's address is stored. The default definition for + // this handler function simply returns true, allowing parsing of + // the entry to continue. + virtual bool PersonalityRoutine(uint64 address, bool indirect) { + return true; + } + + // This entry's language-specific data area (LSDA) is located at + // ADDRESS. If INDIRECT is true, then ADDRESS is the address at + // which the area's address is stored. The default definition for + // this handler function simply returns true, allowing parsing of + // the entry to continue. + virtual bool LanguageSpecificDataArea(uint64 address, bool indirect) { + return true; + } + + // This entry describes a signal trampoline --- this frame is the + // caller of a signal handler. The default definition for this + // handler function simply returns true, allowing parsing of the + // entry to continue. + // + // The best description of the rationale for and meaning of signal + // trampoline CFI entries seems to be in the GCC bug database: + // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26208 + virtual bool SignalHandler() { return true; } +}; + +// The CallFrameInfo class makes calls on an instance of this class to +// report errors or warn about problems in the data it is parsing. The +// default definitions of these methods print a message to stderr, but +// you can make a derived class that overrides them. +class CallFrameInfo::Reporter { + public: + // Create an error reporter which attributes troubles to the section + // named SECTION in FILENAME. + // + // Normally SECTION would be .debug_frame, but the Mac puts CFI data + // in a Mach-O section named __debug_frame. If we support + // Linux-style exception handling data, we could be reading an + // .eh_frame section. + Reporter(const string &filename, + const string §ion = ".debug_frame") + : filename_(filename), section_(section) { } + virtual ~Reporter() { } + + // The CFI entry at OFFSET ends too early to be well-formed. KIND + // indicates what kind of entry it is; KIND can be kUnknown if we + // haven't parsed enough of the entry to tell yet. + virtual void Incomplete(uint64 offset, CallFrameInfo::EntryKind kind); + + // The .eh_frame data has a four-byte zero at OFFSET where the next + // entry's length would be; this is a terminator. However, the buffer + // length as given to the CallFrameInfo constructor says there should be + // more data. + virtual void EarlyEHTerminator(uint64 offset); + + // The FDE at OFFSET refers to the CIE at CIE_OFFSET, but the + // section is not that large. + virtual void CIEPointerOutOfRange(uint64 offset, uint64 cie_offset); + + // The FDE at OFFSET refers to the CIE at CIE_OFFSET, but the entry + // there is not a CIE. + virtual void BadCIEId(uint64 offset, uint64 cie_offset); + + // The FDE at OFFSET refers to a CIE with version number VERSION, + // which we don't recognize. We cannot parse DWARF CFI if it uses + // a version number we don't recognize. + virtual void UnrecognizedVersion(uint64 offset, int version); + + // The FDE at OFFSET refers to a CIE with augmentation AUGMENTATION, + // which we don't recognize. We cannot parse DWARF CFI if it uses + // augmentations we don't recognize. + virtual void UnrecognizedAugmentation(uint64 offset, + const string &augmentation); + + // The pointer encoding ENCODING, specified by the CIE at OFFSET, is not + // a valid encoding. + virtual void InvalidPointerEncoding(uint64 offset, uint8 encoding); + + // The pointer encoding ENCODING, specified by the CIE at OFFSET, depends + // on a base address which has not been supplied. + virtual void UnusablePointerEncoding(uint64 offset, uint8 encoding); + + // The CIE at OFFSET contains a DW_CFA_restore instruction at + // INSN_OFFSET, which may not appear in a CIE. + virtual void RestoreInCIE(uint64 offset, uint64 insn_offset); + + // The entry at OFFSET, of kind KIND, has an unrecognized + // instruction at INSN_OFFSET. + virtual void BadInstruction(uint64 offset, CallFrameInfo::EntryKind kind, + uint64 insn_offset); + + // The instruction at INSN_OFFSET in the entry at OFFSET, of kind + // KIND, establishes a rule that cites the CFA, but we have not + // established a CFA rule yet. + virtual void NoCFARule(uint64 offset, CallFrameInfo::EntryKind kind, + uint64 insn_offset); + + // The instruction at INSN_OFFSET in the entry at OFFSET, of kind + // KIND, is a DW_CFA_restore_state instruction, but the stack of + // saved states is empty. + virtual void EmptyStateStack(uint64 offset, CallFrameInfo::EntryKind kind, + uint64 insn_offset); + + // The DW_CFA_remember_state instruction at INSN_OFFSET in the entry + // at OFFSET, of kind KIND, would restore a state that has no CFA + // rule, whereas the current state does have a CFA rule. This is + // bogus input, which the CallFrameInfo::Handler interface doesn't + // (and shouldn't) have any way to report. + virtual void ClearingCFARule(uint64 offset, CallFrameInfo::EntryKind kind, + uint64 insn_offset); + + protected: + // The name of the file whose CFI we're reading. + string filename_; + + // The name of the CFI section in that file. + string section_; +}; + +} // namespace dwarf2reader + +#endif // UTIL_DEBUGINFO_DWARF2READER_H__ diff --git a/3rdParty/Breakpad/src/common/dwarf/line_state_machine.h b/3rdParty/Breakpad/src/common/dwarf/line_state_machine.h new file mode 100644 index 0000000..0ff72ab --- /dev/null +++ b/3rdParty/Breakpad/src/common/dwarf/line_state_machine.h @@ -0,0 +1,61 @@ +// Copyright 2008 Google Inc. All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + +#ifndef COMMON_DWARF_LINE_STATE_MACHINE_H__ +#define COMMON_DWARF_LINE_STATE_MACHINE_H__ + +namespace dwarf2reader { + +// This is the format of a DWARF2/3 line state machine that we process +// opcodes using. There is no need for anything outside the lineinfo +// processor to know how this works. +struct LineStateMachine { + void Reset(bool default_is_stmt) { + file_num = 1; + address = 0; + line_num = 1; + column_num = 0; + is_stmt = default_is_stmt; + basic_block = false; + end_sequence = false; + } + + uint32 file_num; + uint64 address; + uint32 line_num; + uint32 column_num; + bool is_stmt; // stmt means statement. + bool basic_block; + bool end_sequence; +}; + +} // namespace dwarf2reader + + +#endif // COMMON_DWARF_LINE_STATE_MACHINE_H__ diff --git a/3rdParty/Breakpad/src/common/dwarf/types.h b/3rdParty/Breakpad/src/common/dwarf/types.h new file mode 100644 index 0000000..61ca457 --- /dev/null +++ b/3rdParty/Breakpad/src/common/dwarf/types.h @@ -0,0 +1,55 @@ +// Copyright 2008 Google, Inc. All Rights reserved +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + +// This file contains some typedefs for basic types + + +#ifndef _COMMON_DWARF_TYPES_H__ +#define _COMMON_DWARF_TYPES_H__ + +#include <stdint.h> + +typedef signed char int8; +typedef short int16; +typedef int int32; +typedef long long int64; + +typedef unsigned char uint8; +typedef unsigned short uint16; +typedef unsigned int uint32; +typedef unsigned long long uint64; + +#ifdef __PTRDIFF_TYPE__ +typedef __PTRDIFF_TYPE__ intptr; +typedef unsigned __PTRDIFF_TYPE__ uintptr; +#else +#error "Can't find pointer-sized integral types." +#endif + +#endif // _COMMON_DWARF_TYPES_H__ |