// // (C) Copyright Jeremy Siek 2000. // Copyright 2002 The Trustees of Indiana University. // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // Revision History: // 05 May 2001: Workarounds for HP aCC from Thomas Matelich. (Jeremy Siek) // 02 April 2001: Removed limits header altogether. (Jeremy Siek) // 01 April 2001: Modified to use new <boost/limits.hpp> header. (JMaddock) // // See http://www.boost.org/libs/concept_check for documentation. #ifndef BOOST_CONCEPT_CHECKS_HPP # define BOOST_CONCEPT_CHECKS_HPP # include <boost/concept/assert.hpp> # include <boost/iterator.hpp> # include <boost/type_traits/conversion_traits.hpp> # include <utility> # include <boost/type_traits/is_same.hpp> # include <boost/type_traits/is_void.hpp> # include <boost/mpl/assert.hpp> # include <boost/mpl/bool.hpp> # include <boost/detail/workaround.hpp> # include <boost/detail/iterator.hpp> # include <boost/concept/usage.hpp> # include <boost/concept/detail/concept_def.hpp> namespace boost { // // Backward compatibility // template <class Model> inline void function_requires(Model* = 0) { BOOST_CONCEPT_ASSERT((Model)); } template <class T> inline void ignore_unused_variable_warning(T const&) {} # define BOOST_CLASS_REQUIRE(type_var, ns, concept) \ BOOST_CONCEPT_ASSERT((ns::concept<type_var>)) # define BOOST_CLASS_REQUIRE2(type_var1, type_var2, ns, concept) \ BOOST_CONCEPT_ASSERT((ns::concept<type_var1,type_var2>)) # define BOOST_CLASS_REQUIRE3(tv1, tv2, tv3, ns, concept) \ BOOST_CONCEPT_ASSERT((ns::concept<tv1,tv2,tv3>)) # define BOOST_CLASS_REQUIRE4(tv1, tv2, tv3, tv4, ns, concept) \ BOOST_CONCEPT_ASSERT((ns::concept<tv1,tv2,tv3,tv4>)) // // Begin concept definitions // BOOST_concept(Integer, (T)) { BOOST_CONCEPT_USAGE(Integer) { x.error_type_must_be_an_integer_type(); } private: T x; }; template <> struct Integer<char> {}; template <> struct Integer<signed char> {}; template <> struct Integer<unsigned char> {}; template <> struct Integer<short> {}; template <> struct Integer<unsigned short> {}; template <> struct Integer<int> {}; template <> struct Integer<unsigned int> {}; template <> struct Integer<long> {}; template <> struct Integer<unsigned long> {}; # if defined(BOOST_HAS_LONG_LONG) template <> struct Integer< ::boost::long_long_type> {}; template <> struct Integer< ::boost::ulong_long_type> {}; # elif defined(BOOST_HAS_MS_INT64) template <> struct Integer<__int64> {}; template <> struct Integer<unsigned __int64> {}; # endif BOOST_concept(SignedInteger,(T)) { BOOST_CONCEPT_USAGE(SignedInteger) { x.error_type_must_be_a_signed_integer_type(); } private: T x; }; template <> struct SignedInteger<signed char> { }; template <> struct SignedInteger<short> {}; template <> struct SignedInteger<int> {}; template <> struct SignedInteger<long> {}; # if defined(BOOST_HAS_LONG_LONG) template <> struct SignedInteger< ::boost::long_long_type> {}; # elif defined(BOOST_HAS_MS_INT64) template <> struct SignedInteger<__int64> {}; # endif BOOST_concept(UnsignedInteger,(T)) { BOOST_CONCEPT_USAGE(UnsignedInteger) { x.error_type_must_be_an_unsigned_integer_type(); } private: T x; }; template <> struct UnsignedInteger<unsigned char> {}; template <> struct UnsignedInteger<unsigned short> {}; template <> struct UnsignedInteger<unsigned int> {}; template <> struct UnsignedInteger<unsigned long> {}; # if defined(BOOST_HAS_LONG_LONG) template <> struct UnsignedInteger< ::boost::ulong_long_type> {}; # elif defined(BOOST_HAS_MS_INT64) template <> struct UnsignedInteger<unsigned __int64> {}; # endif //=========================================================================== // Basic Concepts BOOST_concept(DefaultConstructible,(TT)) { BOOST_CONCEPT_USAGE(DefaultConstructible) { TT a; // require default constructor ignore_unused_variable_warning(a); } }; BOOST_concept(Assignable,(TT)) { BOOST_CONCEPT_USAGE(Assignable) { #if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL a = b; // require assignment operator #endif const_constraints(b); } private: void const_constraints(const TT& x) { #if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL a = x; // const required for argument to assignment #else ignore_unused_variable_warning(x); #endif } private: TT a; TT b; }; BOOST_concept(CopyConstructible,(TT)) { BOOST_CONCEPT_USAGE(CopyConstructible) { TT a(b); // require copy constructor TT* ptr = &a; // require address of operator const_constraints(a); ignore_unused_variable_warning(ptr); } private: void const_constraints(const TT& a) { TT c(a); // require const copy constructor const TT* ptr = &a; // require const address of operator ignore_unused_variable_warning(c); ignore_unused_variable_warning(ptr); } TT b; }; #if (defined _MSC_VER) # pragma warning( push ) # pragma warning( disable : 4510 ) // default constructor could not be generated # pragma warning( disable : 4610 ) // object 'class' can never be instantiated - user-defined constructor required #endif // The SGI STL version of Assignable requires copy constructor and operator= BOOST_concept(SGIAssignable,(TT)) { BOOST_CONCEPT_USAGE(SGIAssignable) { TT c(a); #if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL a = b; // require assignment operator #endif const_constraints(b); ignore_unused_variable_warning(c); } private: void const_constraints(const TT& x) { TT c(x); #if !defined(_ITERATOR_) // back_insert_iterator broken for VC++ STL a = x; // const required for argument to assignment #endif ignore_unused_variable_warning(c); } TT a; TT b; }; #if (defined _MSC_VER) # pragma warning( pop ) #endif BOOST_concept(Convertible,(X)(Y)) { BOOST_CONCEPT_USAGE(Convertible) { Y y = x; ignore_unused_variable_warning(y); } private: X x; }; // The C++ standard requirements for many concepts talk about return // types that must be "convertible to bool". The problem with this // requirement is that it leaves the door open for evil proxies that // define things like operator|| with strange return types. Two // possible solutions are: // 1) require the return type to be exactly bool // 2) stay with convertible to bool, and also // specify stuff about all the logical operators. // For now we just test for convertible to bool. template <class TT> void require_boolean_expr(const TT& t) { bool x = t; ignore_unused_variable_warning(x); } BOOST_concept(EqualityComparable,(TT)) { BOOST_CONCEPT_USAGE(EqualityComparable) { require_boolean_expr(a == b); require_boolean_expr(a != b); } private: TT a, b; }; BOOST_concept(LessThanComparable,(TT)) { BOOST_CONCEPT_USAGE(LessThanComparable) { require_boolean_expr(a < b); } private: TT a, b; }; // This is equivalent to SGI STL's LessThanComparable. BOOST_concept(Comparable,(TT)) { BOOST_CONCEPT_USAGE(Comparable) { require_boolean_expr(a < b); require_boolean_expr(a > b); require_boolean_expr(a <= b); require_boolean_expr(a >= b); } private: TT a, b; }; #define BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(OP,NAME) \ BOOST_concept(NAME, (First)(Second)) \ { \ BOOST_CONCEPT_USAGE(NAME) { (void)constraints_(); } \ private: \ bool constraints_() { return a OP b; } \ First a; \ Second b; \ } #define BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(OP,NAME) \ BOOST_concept(NAME, (Ret)(First)(Second)) \ { \ BOOST_CONCEPT_USAGE(NAME) { (void)constraints_(); } \ private: \ Ret constraints_() { return a OP b; } \ First a; \ Second b; \ } BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(==, EqualOp); BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(!=, NotEqualOp); BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(<, LessThanOp); BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(<=, LessEqualOp); BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(>, GreaterThanOp); BOOST_DEFINE_BINARY_PREDICATE_OP_CONSTRAINT(>=, GreaterEqualOp); BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(+, PlusOp); BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(*, TimesOp); BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(/, DivideOp); BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(-, SubtractOp); BOOST_DEFINE_BINARY_OPERATOR_CONSTRAINT(%, ModOp); //=========================================================================== // Function Object Concepts BOOST_concept(Generator,(Func)(Return)) { BOOST_CONCEPT_USAGE(Generator) { test(is_void<Return>()); } private: void test(boost::mpl::false_) { // Do we really want a reference here? const Return& r = f(); ignore_unused_variable_warning(r); } void test(boost::mpl::true_) { f(); } Func f; }; BOOST_concept(UnaryFunction,(Func)(Return)(Arg)) { BOOST_CONCEPT_USAGE(UnaryFunction) { test(is_void<Return>()); } private: void test(boost::mpl::false_) { f(arg); // "priming the pump" this way keeps msvc6 happy (ICE) Return r = f(arg); ignore_unused_variable_warning(r); } void test(boost::mpl::true_) { f(arg); } #if (BOOST_WORKAROUND(__GNUC__, BOOST_TESTED_AT(4) \ && BOOST_WORKAROUND(__GNUC__, > 3))) // Declare a dummy construktor to make gcc happy. // It seems the compiler can not generate a sensible constructor when this is instantiated with a refence type. // (warning: non-static reference "const double& boost::UnaryFunction<YourClassHere>::arg" // in class without a constructor [-Wuninitialized]) UnaryFunction(); #endif Func f; Arg arg; }; BOOST_concept(BinaryFunction,(Func)(Return)(First)(Second)) { BOOST_CONCEPT_USAGE(BinaryFunction) { test(is_void<Return>()); } private: void test(boost::mpl::false_) { f(first,second); Return r = f(first, second); // require operator() (void)r; } void test(boost::mpl::true_) { f(first,second); } #if (BOOST_WORKAROUND(__GNUC__, BOOST_TESTED_AT(4) \ && BOOST_WORKAROUND(__GNUC__, > 3))) // Declare a dummy constructor to make gcc happy. // It seems the compiler can not generate a sensible constructor when this is instantiated with a refence type. // (warning: non-static reference "const double& boost::BinaryFunction<YourClassHere>::arg" // in class without a constructor [-Wuninitialized]) BinaryFunction(); #endif Func f; First first; Second second; }; BOOST_concept(UnaryPredicate,(Func)(Arg)) { BOOST_CONCEPT_USAGE(UnaryPredicate) { require_boolean_expr(f(arg)); // require operator() returning bool } private: #if (BOOST_WORKAROUND(__GNUC__, BOOST_TESTED_AT(4) \ && BOOST_WORKAROUND(__GNUC__, > 3))) // Declare a dummy constructor to make gcc happy. // It seems the compiler can not generate a sensible constructor when this is instantiated with a refence type. // (warning: non-static reference "const double& boost::UnaryPredicate<YourClassHere>::arg" // in class without a constructor [-Wuninitialized]) UnaryPredicate(); #endif Func f; Arg arg; }; BOOST_concept(BinaryPredicate,(Func)(First)(Second)) { BOOST_CONCEPT_USAGE(BinaryPredicate) { require_boolean_expr(f(a, b)); // require operator() returning bool } private: #if (BOOST_WORKAROUND(__GNUC__, BOOST_TESTED_AT(4) \ && BOOST_WORKAROUND(__GNUC__, > 3))) // Declare a dummy constructor to make gcc happy. // It seems the compiler can not generate a sensible constructor when this is instantiated with a refence type. // (warning: non-static reference "const double& boost::BinaryPredicate<YourClassHere>::arg" // in class without a constructor [-Wuninitialized]) BinaryPredicate(); #endif Func f; First a; Second b; }; // use this when functor is used inside a container class like std::set BOOST_concept(Const_BinaryPredicate,(Func)(First)(Second)) : BinaryPredicate<Func, First, Second> { BOOST_CONCEPT_USAGE(Const_BinaryPredicate) { const_constraints(f); } private: void const_constraints(const Func& fun) { // operator() must be a const member function require_boolean_expr(fun(a, b)); } #if (BOOST_WORKAROUND(__GNUC__, BOOST_TESTED_AT(4) \ && BOOST_WORKAROUND(__GNUC__, > 3))) // Declare a dummy constructor to make gcc happy. // It seems the compiler can not generate a sensible constructor when this is instantiated with a refence type. // (warning: non-static reference "const double& boost::Const_BinaryPredicate<YourClassHere>::arg" // in class without a constructor [-Wuninitialized]) Const_BinaryPredicate(); #endif Func f; First a; Second b; }; BOOST_concept(AdaptableGenerator,(Func)(Return)) : Generator<Func, typename Func::result_type> { typedef typename Func::result_type result_type; BOOST_CONCEPT_USAGE(AdaptableGenerator) { BOOST_CONCEPT_ASSERT((Convertible<result_type, Return>)); } }; BOOST_concept(AdaptableUnaryFunction,(Func)(Return)(Arg)) : UnaryFunction<Func, typename Func::result_type, typename Func::argument_type> { typedef typename Func::argument_type argument_type; typedef typename Func::result_type result_type; ~AdaptableUnaryFunction() { BOOST_CONCEPT_ASSERT((Convertible<result_type, Return>)); BOOST_CONCEPT_ASSERT((Convertible<Arg, argument_type>)); } }; BOOST_concept(AdaptableBinaryFunction,(Func)(Return)(First)(Second)) : BinaryFunction< Func , typename Func::result_type , typename Func::first_argument_type , typename Func::second_argument_type > { typedef typename Func::first_argument_type first_argument_type; typedef typename Func::second_argument_type second_argument_type; typedef typename Func::result_type result_type; ~AdaptableBinaryFunction() { BOOST_CONCEPT_ASSERT((Convertible<result_type, Return>)); BOOST_CONCEPT_ASSERT((Convertible<First, first_argument_type>)); BOOST_CONCEPT_ASSERT((Convertible<Second, second_argument_type>)); } }; BOOST_concept(AdaptablePredicate,(Func)(Arg)) : UnaryPredicate<Func, Arg> , AdaptableUnaryFunction<Func, bool, Arg> { }; BOOST_concept(AdaptableBinaryPredicate,(Func)(First)(Second)) : BinaryPredicate<Func, First, Second> , AdaptableBinaryFunction<Func, bool, First, Second> { }; //=========================================================================== // Iterator Concepts BOOST_concept(InputIterator,(TT)) : Assignable<TT> , EqualityComparable<TT> { typedef typename boost::detail::iterator_traits<TT>::value_type value_type; typedef typename boost::detail::iterator_traits<TT>::difference_type difference_type; typedef typename boost::detail::iterator_traits<TT>::reference reference; typedef typename boost::detail::iterator_traits<TT>::pointer pointer; typedef typename boost::detail::iterator_traits<TT>::iterator_category iterator_category; BOOST_CONCEPT_USAGE(InputIterator) { BOOST_CONCEPT_ASSERT((SignedInteger<difference_type>)); BOOST_CONCEPT_ASSERT((Convertible<iterator_category, std::input_iterator_tag>)); TT j(i); (void)*i; // require dereference operator ++j; // require preincrement operator i++; // require postincrement operator } private: TT i; }; BOOST_concept(OutputIterator,(TT)(ValueT)) : Assignable<TT> { BOOST_CONCEPT_USAGE(OutputIterator) { ++i; // require preincrement operator i++; // require postincrement operator *i++ = t; // require postincrement and assignment } private: TT i, j; ValueT t; }; BOOST_concept(ForwardIterator,(TT)) : InputIterator<TT> { BOOST_CONCEPT_USAGE(ForwardIterator) { BOOST_CONCEPT_ASSERT((Convertible< BOOST_DEDUCED_TYPENAME ForwardIterator::iterator_category , std::forward_iterator_tag >)); typename InputIterator<TT>::reference r = *i; ignore_unused_variable_warning(r); } private: TT i; }; BOOST_concept(Mutable_ForwardIterator,(TT)) : ForwardIterator<TT> { BOOST_CONCEPT_USAGE(Mutable_ForwardIterator) { *i++ = *i; // require postincrement and assignment } private: TT i; }; BOOST_concept(BidirectionalIterator,(TT)) : ForwardIterator<TT> { BOOST_CONCEPT_USAGE(BidirectionalIterator) { BOOST_CONCEPT_ASSERT((Convertible< BOOST_DEDUCED_TYPENAME BidirectionalIterator::iterator_category , std::bidirectional_iterator_tag >)); --i; // require predecrement operator i--; // require postdecrement operator } private: TT i; }; BOOST_concept(Mutable_BidirectionalIterator,(TT)) : BidirectionalIterator<TT> , Mutable_ForwardIterator<TT> { BOOST_CONCEPT_USAGE(Mutable_BidirectionalIterator) { *i-- = *i; // require postdecrement and assignment } private: TT i; }; BOOST_concept(RandomAccessIterator,(TT)) : BidirectionalIterator<TT> , Comparable<TT> { BOOST_CONCEPT_USAGE(RandomAccessIterator) { BOOST_CONCEPT_ASSERT((Convertible< BOOST_DEDUCED_TYPENAME BidirectionalIterator<TT>::iterator_category , std::random_access_iterator_tag >)); i += n; // require assignment addition operator i = i + n; i = n + i; // require addition with difference type i -= n; // require assignment subtraction operator i = i - n; // require subtraction with difference type n = i - j; // require difference operator (void)i[n]; // require element access operator } private: TT a, b; TT i, j; typename boost::detail::iterator_traits<TT>::difference_type n; }; BOOST_concept(Mutable_RandomAccessIterator,(TT)) : RandomAccessIterator<TT> , Mutable_BidirectionalIterator<TT> { BOOST_CONCEPT_USAGE(Mutable_RandomAccessIterator) { i[n] = *i; // require element access and assignment } private: TT i; typename boost::detail::iterator_traits<TT>::difference_type n; }; //=========================================================================== // Container s BOOST_concept(Container,(C)) : Assignable<C> { typedef typename C::value_type value_type; typedef typename C::difference_type difference_type; typedef typename C::size_type size_type; typedef typename C::const_reference const_reference; typedef typename C::const_pointer const_pointer; typedef typename C::const_iterator const_iterator; BOOST_CONCEPT_USAGE(Container) { BOOST_CONCEPT_ASSERT((InputIterator<const_iterator>)); const_constraints(c); } private: void const_constraints(const C& cc) { i = cc.begin(); i = cc.end(); n = cc.size(); n = cc.max_size(); b = cc.empty(); } C c; bool b; const_iterator i; size_type n; }; BOOST_concept(Mutable_Container,(C)) : Container<C> { typedef typename C::reference reference; typedef typename C::iterator iterator; typedef typename C::pointer pointer; BOOST_CONCEPT_USAGE(Mutable_Container) { BOOST_CONCEPT_ASSERT(( Assignable<typename Mutable_Container::value_type>)); BOOST_CONCEPT_ASSERT((InputIterator<iterator>)); i = c.begin(); i = c.end(); c.swap(c2); } private: iterator i; C c, c2; }; BOOST_concept(ForwardContainer,(C)) : Container<C> { BOOST_CONCEPT_USAGE(ForwardContainer) { BOOST_CONCEPT_ASSERT(( ForwardIterator< typename ForwardContainer::const_iterator >)); } }; BOOST_concept(Mutable_ForwardContainer,(C)) : ForwardContainer<C> , Mutable_Container<C> { BOOST_CONCEPT_USAGE(Mutable_ForwardContainer) { BOOST_CONCEPT_ASSERT(( Mutable_ForwardIterator< typename Mutable_ForwardContainer::iterator >)); } }; BOOST_concept(ReversibleContainer,(C)) : ForwardContainer<C> { typedef typename C::const_reverse_iterator const_reverse_iterator; BOOST_CONCEPT_USAGE(ReversibleContainer) { BOOST_CONCEPT_ASSERT(( BidirectionalIterator< typename ReversibleContainer::const_iterator>)); BOOST_CONCEPT_ASSERT((BidirectionalIterator<const_reverse_iterator>)); const_constraints(c); } private: void const_constraints(const C& cc) { const_reverse_iterator i = cc.rbegin(); i = cc.rend(); } C c; }; BOOST_concept(Mutable_ReversibleContainer,(C)) : Mutable_ForwardContainer<C> , ReversibleContainer<C> { typedef typename C::reverse_iterator reverse_iterator; BOOST_CONCEPT_USAGE(Mutable_ReversibleContainer) { typedef typename Mutable_ForwardContainer<C>::iterator iterator; BOOST_CONCEPT_ASSERT((Mutable_BidirectionalIterator<iterator>)); BOOST_CONCEPT_ASSERT((Mutable_BidirectionalIterator<reverse_iterator>)); reverse_iterator i = c.rbegin(); i = c.rend(); } private: C c; }; BOOST_concept(RandomAccessContainer,(C)) : ReversibleContainer<C> { typedef typename C::size_type size_type; typedef typename C::const_reference const_reference; BOOST_CONCEPT_USAGE(RandomAccessContainer) { BOOST_CONCEPT_ASSERT(( RandomAccessIterator< typename RandomAccessContainer::const_iterator >)); const_constraints(c); } private: void const_constraints(const C& cc) { const_reference r = cc[n]; ignore_unused_variable_warning(r); } C c; size_type n; }; BOOST_concept(Mutable_RandomAccessContainer,(C)) : Mutable_ReversibleContainer<C> , RandomAccessContainer<C> { private: typedef Mutable_RandomAccessContainer self; public: BOOST_CONCEPT_USAGE(Mutable_RandomAccessContainer) { BOOST_CONCEPT_ASSERT((Mutable_RandomAccessIterator<typename self::iterator>)); BOOST_CONCEPT_ASSERT((Mutable_RandomAccessIterator<typename self::reverse_iterator>)); typename self::reference r = c[i]; ignore_unused_variable_warning(r); } private: typename Mutable_ReversibleContainer<C>::size_type i; C c; }; // A Sequence is inherently mutable BOOST_concept(Sequence,(S)) : Mutable_ForwardContainer<S> // Matt Austern's book puts DefaultConstructible here, the C++ // standard places it in Container --JGS // ... so why aren't we following the standard? --DWA , DefaultConstructible<S> { BOOST_CONCEPT_USAGE(Sequence) { S c(n), c2(n, t), c3(first, last); c.insert(p, t); c.insert(p, n, t); c.insert(p, first, last); c.erase(p); c.erase(p, q); typename Sequence::reference r = c.front(); ignore_unused_variable_warning(c); ignore_unused_variable_warning(c2); ignore_unused_variable_warning(c3); ignore_unused_variable_warning(r); const_constraints(c); } private: void const_constraints(const S& c) { typename Sequence::const_reference r = c.front(); ignore_unused_variable_warning(r); } typename S::value_type t; typename S::size_type n; typename S::value_type* first, *last; typename S::iterator p, q; }; BOOST_concept(FrontInsertionSequence,(S)) : Sequence<S> { BOOST_CONCEPT_USAGE(FrontInsertionSequence) { c.push_front(t); c.pop_front(); } private: S c; typename S::value_type t; }; BOOST_concept(BackInsertionSequence,(S)) : Sequence<S> { BOOST_CONCEPT_USAGE(BackInsertionSequence) { c.push_back(t); c.pop_back(); typename BackInsertionSequence::reference r = c.back(); ignore_unused_variable_warning(r); const_constraints(c); } private: void const_constraints(const S& cc) { typename BackInsertionSequence::const_reference r = cc.back(); ignore_unused_variable_warning(r); }; S c; typename S::value_type t; }; BOOST_concept(AssociativeContainer,(C)) : ForwardContainer<C> , DefaultConstructible<C> { typedef typename C::key_type key_type; typedef typename C::key_compare key_compare; typedef typename C::value_compare value_compare; typedef typename C::iterator iterator; BOOST_CONCEPT_USAGE(AssociativeContainer) { i = c.find(k); r = c.equal_range(k); c.erase(k); c.erase(i); c.erase(r.first, r.second); const_constraints(c); BOOST_CONCEPT_ASSERT((BinaryPredicate<key_compare,key_type,key_type>)); typedef typename AssociativeContainer::value_type value_type_; BOOST_CONCEPT_ASSERT((BinaryPredicate<value_compare,value_type_,value_type_>)); } // Redundant with the base concept, but it helps below. typedef typename C::const_iterator const_iterator; private: void const_constraints(const C& cc) { ci = cc.find(k); n = cc.count(k); cr = cc.equal_range(k); } C c; iterator i; std::pair<iterator,iterator> r; const_iterator ci; std::pair<const_iterator,const_iterator> cr; typename C::key_type k; typename C::size_type n; }; BOOST_concept(UniqueAssociativeContainer,(C)) : AssociativeContainer<C> { BOOST_CONCEPT_USAGE(UniqueAssociativeContainer) { C c(first, last); pos_flag = c.insert(t); c.insert(first, last); ignore_unused_variable_warning(c); } private: std::pair<typename C::iterator, bool> pos_flag; typename C::value_type t; typename C::value_type* first, *last; }; BOOST_concept(MultipleAssociativeContainer,(C)) : AssociativeContainer<C> { BOOST_CONCEPT_USAGE(MultipleAssociativeContainer) { C c(first, last); pos = c.insert(t); c.insert(first, last); ignore_unused_variable_warning(c); ignore_unused_variable_warning(pos); } private: typename C::iterator pos; typename C::value_type t; typename C::value_type* first, *last; }; BOOST_concept(SimpleAssociativeContainer,(C)) : AssociativeContainer<C> { BOOST_CONCEPT_USAGE(SimpleAssociativeContainer) { typedef typename C::key_type key_type; typedef typename C::value_type value_type; BOOST_MPL_ASSERT((boost::is_same<key_type,value_type>)); } }; BOOST_concept(PairAssociativeContainer,(C)) : AssociativeContainer<C> { BOOST_CONCEPT_USAGE(PairAssociativeContainer) { typedef typename C::key_type key_type; typedef typename C::value_type value_type; typedef typename C::mapped_type mapped_type; typedef std::pair<const key_type, mapped_type> required_value_type; BOOST_MPL_ASSERT((boost::is_same<value_type,required_value_type>)); } }; BOOST_concept(SortedAssociativeContainer,(C)) : AssociativeContainer<C> , ReversibleContainer<C> { BOOST_CONCEPT_USAGE(SortedAssociativeContainer) { C c(kc), c2(first, last), c3(first, last, kc); p = c.upper_bound(k); p = c.lower_bound(k); r = c.equal_range(k); c.insert(p, t); ignore_unused_variable_warning(c); ignore_unused_variable_warning(c2); ignore_unused_variable_warning(c3); const_constraints(c); } void const_constraints(const C& c) { kc = c.key_comp(); vc = c.value_comp(); cp = c.upper_bound(k); cp = c.lower_bound(k); cr = c.equal_range(k); } private: typename C::key_compare kc; typename C::value_compare vc; typename C::value_type t; typename C::key_type k; typedef typename C::iterator iterator; typedef typename C::const_iterator const_iterator; typedef SortedAssociativeContainer self; iterator p; const_iterator cp; std::pair<typename self::iterator,typename self::iterator> r; std::pair<typename self::const_iterator,typename self::const_iterator> cr; typename C::value_type* first, *last; }; // HashedAssociativeContainer BOOST_concept(Collection,(C)) { BOOST_CONCEPT_USAGE(Collection) { boost::function_requires<boost::InputIteratorConcept<iterator> >(); boost::function_requires<boost::InputIteratorConcept<const_iterator> >(); boost::function_requires<boost::CopyConstructibleConcept<value_type> >(); const_constraints(c); i = c.begin(); i = c.end(); c.swap(c); } void const_constraints(const C& c) { ci = c.begin(); ci = c.end(); n = c.size(); b = c.empty(); } private: typedef typename C::value_type value_type; typedef typename C::iterator iterator; typedef typename C::const_iterator const_iterator; typedef typename C::reference reference; typedef typename C::const_reference const_reference; // typedef typename C::pointer pointer; typedef typename C::difference_type difference_type; typedef typename C::size_type size_type; C c; bool b; iterator i; const_iterator ci; size_type n; }; } // namespace boost # include <boost/concept/detail/concept_undef.hpp> #endif // BOOST_CONCEPT_CHECKS_HPP