summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorRemko Tronçon <git@el-tramo.be>2012-12-23 13:16:26 (GMT)
committerRemko Tronçon <git@el-tramo.be>2012-12-23 14:43:26 (GMT)
commit491ddd570a752cf9bda85933bed0c6942e39b1f9 (patch)
tree10c25c1be8cc08d0497df1dccd56a10fbb30beee /3rdParty/Boost/src/boost/lambda/detail
parentda7d7a0ca71b80281aa9ff2526290b61ccb0cc60 (diff)
downloadswift-491ddd570a752cf9bda85933bed0c6942e39b1f9.zip
swift-491ddd570a752cf9bda85933bed0c6942e39b1f9.tar.bz2
Update Boost to 1.52.0.
Change-Id: I1e56bea2600bf2ed9c5b3aba8c4f9d2a0f350e77
Diffstat (limited to '3rdParty/Boost/src/boost/lambda/detail')
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/actions.hpp174
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/arity_code.hpp110
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/bind_functions.hpp1879
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/function_adaptors.hpp789
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/is_instance_of.hpp104
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/lambda_config.hpp48
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/lambda_functor_base.hpp615
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/lambda_functors.hpp324
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/lambda_fwd.hpp74
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/lambda_traits.hpp578
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/member_ptr.hpp737
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/operator_actions.hpp139
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/operator_lambda_func_base.hpp271
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/operator_return_type_traits.hpp917
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/operators.hpp370
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/ret.hpp325
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/return_type_traits.hpp282
-rw-r--r--3rdParty/Boost/src/boost/lambda/detail/select_functions.hpp74
18 files changed, 7810 insertions, 0 deletions
diff --git a/3rdParty/Boost/src/boost/lambda/detail/actions.hpp b/3rdParty/Boost/src/boost/lambda/detail/actions.hpp
new file mode 100644
index 0000000..668799f
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/actions.hpp
@@ -0,0 +1,174 @@
+// -- Boost Lambda Library - actions.hpp ----------------------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+// For more information, see www.boost.org
+
+// ----------------------------------------------------------------
+
+#ifndef BOOST_LAMBDA_ACTIONS_HPP
+#define BOOST_LAMBDA_ACTIONS_HPP
+
+namespace boost {
+namespace lambda {
+
+
+
+template<int Arity, class Act> class action;
+
+// these need to be defined here, since the corresponding lambda
+// functions are members of lambda_functor classes
+
+class assignment_action {};
+class subscript_action {};
+
+template <class Action> class other_action;
+
+// action for specifying the explicit return type
+template <class RET> class explicit_return_type_action {};
+
+// action for preventing the expansion of a lambda expression
+struct protect_action {};
+
+ // must be defined here, comma is a special case
+struct comma_action {};
+
+
+ // actions, for which the existence of protect is checked in return type
+ // deduction.
+
+template <class Action> struct is_protectable {
+ BOOST_STATIC_CONSTANT(bool, value = false);
+};
+
+// NOTE: comma action is protectable. Other protectable actions
+// are listed in operator_actions.hpp
+
+template<> struct is_protectable<other_action<comma_action> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+
+
+namespace detail {
+
+ // this type is used in return type deductions to signal that deduction
+ // did not find a result. It does not necessarily mean an error, it commonly
+ // means that something else should be tried.
+ class unspecified {};
+}
+
+ // function action is a special case: bind functions can be called with
+ // the return type specialized explicitly e.g. bind<int>(foo);
+ // If this call syntax is used, the return type is stored in the latter
+ // argument of function_action template. Otherwise the argument gets the type
+ // 'unspecified'.
+ // This argument is only relevant in the return type deduction code
+template <int I, class Result_type = detail::unspecified>
+class function_action {};
+
+template<class T> class function_action<1, T> {
+public:
+ template<class RET, class A1>
+ static RET apply(A1& a1) {
+ return function_adaptor<typename boost::remove_cv<A1>::type>::
+ template apply<RET>(a1);
+ }
+};
+
+template<class T> class function_action<2, T> {
+public:
+ template<class RET, class A1, class A2>
+ static RET apply(A1& a1, A2& a2) {
+ return function_adaptor<typename boost::remove_cv<A1>::type>::
+ template apply<RET>(a1, a2);
+ }
+};
+
+template<class T> class function_action<3, T> {
+public:
+ template<class RET, class A1, class A2, class A3>
+ static RET apply(A1& a1, A2& a2, A3& a3) {
+ return function_adaptor<typename boost::remove_cv<A1>::type>::
+ template apply<RET>(a1, a2, a3);
+ }
+};
+
+template<class T> class function_action<4, T> {
+public:
+ template<class RET, class A1, class A2, class A3, class A4>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4) {
+ return function_adaptor<typename boost::remove_cv<A1>::type>::
+ template apply<RET>(a1, a2, a3, a4);
+ }
+};
+
+template<class T> class function_action<5, T> {
+public:
+ template<class RET, class A1, class A2, class A3, class A4, class A5>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
+ return function_adaptor<typename boost::remove_cv<A1>::type>::
+ template apply<RET>(a1, a2, a3, a4, a5);
+ }
+};
+
+template<class T> class function_action<6, T> {
+public:
+ template<class RET, class A1, class A2, class A3, class A4, class A5,
+ class A6>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
+ return function_adaptor<typename boost::remove_cv<A1>::type>::
+ template apply<RET>(a1, a2, a3, a4, a5, a6);
+ }
+};
+
+template<class T> class function_action<7, T> {
+public:
+ template<class RET, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
+ return function_adaptor<typename boost::remove_cv<A1>::type>::
+ template apply<RET>(a1, a2, a3, a4, a5, a6, a7);
+ }
+};
+
+template<class T> class function_action<8, T> {
+public:
+ template<class RET, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7, class A8>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7,
+ A8& a8) {
+ return function_adaptor<typename boost::remove_cv<A1>::type>::
+ template apply<RET>(a1, a2, a3, a4, a5, a6, a7, a8);
+ }
+};
+
+template<class T> class function_action<9, T> {
+public:
+ template<class RET, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7, class A8, class A9>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7,
+ A8& a8, A9& a9) {
+ return function_adaptor<typename boost::remove_cv<A1>::type>::
+ template apply<RET>(a1, a2, a3, a4, a5, a6, a7, a8, a9);
+ }
+};
+
+template<class T> class function_action<10, T> {
+public:
+ template<class RET, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7, class A8, class A9, class A10>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7,
+ A8& a8, A9& a9, A10& a10) {
+ return function_adaptor<typename boost::remove_cv<A1>::type>::
+ template apply<RET>(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10);
+ }
+};
+
+} // namespace lambda
+} // namespace boost
+
+#endif
diff --git a/3rdParty/Boost/src/boost/lambda/detail/arity_code.hpp b/3rdParty/Boost/src/boost/lambda/detail/arity_code.hpp
new file mode 100644
index 0000000..bed34b9
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/arity_code.hpp
@@ -0,0 +1,110 @@
+// -- Boost Lambda Library -------------------------------------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+// --------------------------------------------------
+
+#ifndef BOOST_LAMBDA_ARITY_CODE_HPP
+#define BOOST_LAMBDA_ARITY_CODE_HPP
+
+#include "boost/type_traits/cv_traits.hpp"
+#include "boost/type_traits/transform_traits.hpp"
+
+namespace boost {
+namespace lambda {
+
+// These constants state, whether a lambda_functor instantiation results from
+// an expression which contains no placeholders (NONE),
+// only free1 placeholders (FIRST),
+// free2 placeholders and maybe free1 placeholders (SECOND),
+// free3 and maybe free1 and free2 placeholders (THIRD),
+// freeE placeholders and maybe free1 and free2 (EXCEPTION).
+// RETHROW means, that a rethrow expression is used somewhere in the lambda_functor.
+
+enum { NONE = 0x00, // Notice we are using bits as flags here.
+ FIRST = 0x01,
+ SECOND = 0x02,
+ THIRD = 0x04,
+ EXCEPTION = 0x08,
+ RETHROW = 0x10};
+
+
+template<class T>
+struct get_tuple_arity;
+
+namespace detail {
+
+template <class T> struct get_arity_;
+
+} // end detail;
+
+template <class T> struct get_arity {
+
+ BOOST_STATIC_CONSTANT(int, value = detail::get_arity_<typename boost::remove_cv<typename boost::remove_reference<T>::type>::type>::value);
+
+};
+
+namespace detail {
+
+template<class T>
+struct get_arity_ {
+ BOOST_STATIC_CONSTANT(int, value = 0);
+};
+
+template<class T>
+struct get_arity_<lambda_functor<T> > {
+ BOOST_STATIC_CONSTANT(int, value = get_arity<T>::value);
+};
+
+template<class Action, class Args>
+struct get_arity_<lambda_functor_base<Action, Args> > {
+ BOOST_STATIC_CONSTANT(int, value = get_tuple_arity<Args>::value);
+};
+
+template<int I>
+struct get_arity_<placeholder<I> > {
+ BOOST_STATIC_CONSTANT(int, value = I);
+};
+
+} // detail
+
+template<class T>
+struct get_tuple_arity {
+ BOOST_STATIC_CONSTANT(int, value = get_arity<typename T::head_type>::value | get_tuple_arity<typename T::tail_type>::value);
+};
+
+
+template<>
+struct get_tuple_arity<null_type> {
+ BOOST_STATIC_CONSTANT(int, value = 0);
+};
+
+
+ // Does T have placeholder<I> as it's subexpression?
+
+template<class T, int I>
+struct has_placeholder {
+ BOOST_STATIC_CONSTANT(bool, value = (get_arity<T>::value & I) != 0);
+};
+
+template<int I, int J>
+struct includes_placeholder {
+ BOOST_STATIC_CONSTANT(bool, value = (J & I) != 0);
+};
+
+template<int I, int J>
+struct lacks_placeholder {
+ BOOST_STATIC_CONSTANT(bool, value = ((J & I) == 0));
+};
+
+
+} // namespace lambda
+} // namespace boost
+
+#endif
diff --git a/3rdParty/Boost/src/boost/lambda/detail/bind_functions.hpp b/3rdParty/Boost/src/boost/lambda/detail/bind_functions.hpp
new file mode 100644
index 0000000..f85513c
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/bind_functions.hpp
@@ -0,0 +1,1879 @@
+// -- bind_functions.hpp -- Boost Lambda Library
+//
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see http://www.boost.org
+
+// ----------------------------------------------------------------
+
+#ifndef BOOST_LAMBDA_BIND_FUNCTIONS_HPP
+#define BOOST_LAMBDA_BIND_FUNCTIONS_HPP
+
+
+namespace boost {
+namespace lambda {
+
+#ifdef BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+
+ // gcc 2.96 instantiates bind functions it does not even call.
+ // These instantiations lead to incorrect types in the return type,
+ // and a compilation error results.
+ // This tweaking is to prevent the formation of the erroneous type.
+namespace detail {
+
+template<class T> struct constify_non_funcs {
+ typedef typename
+ detail::IF_type<boost::is_function<T>::value,
+ boost::add_reference<T>,
+ boost::add_const<T>
+ >::type type;
+};
+
+}
+#endif
+// 1-argument bind functions --------------------------
+#ifndef BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
+template <class Result>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<1, function_action<1, Result> >,
+ typename detail::bind_tuple_mapper<Result(&)()>::type
+ >
+>
+
+bind(Result(& a1)()) {
+ return
+ lambda_functor_base<
+ action<1, function_action<1, Result> >,
+ typename detail::bind_tuple_mapper<Result(&)()>::type
+ >
+ ( typename detail::bind_tuple_mapper<Result(&)()>::type
+ (a1)
+ );
+}
+#endif
+
+ #ifndef BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+template <class Arg1>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<1, function_action<1> >,
+ typename detail::bind_tuple_mapper<const Arg1>::type
+ >
+>
+
+bind(const Arg1& a1) {
+ return
+ lambda_functor_base<
+ action<1, function_action<1> >,
+ typename detail::bind_tuple_mapper<const Arg1>::type
+ >
+ ( typename detail::bind_tuple_mapper<const Arg1>::type
+ (a1)
+ );
+}
+
+template <class Result, class Arg1>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<1, function_action<1, Result> >,
+ typename detail::bind_tuple_mapper<const Arg1>::type
+ >
+>
+
+bind(const Arg1& a1) {
+ return
+ lambda_functor_base<
+ action<1, function_action<1, Result> >,
+ typename detail::bind_tuple_mapper<const Arg1>::type
+ >
+ ( typename detail::bind_tuple_mapper<const Arg1>::type
+ (a1)
+ );
+}
+
+
+ #else
+template <class Arg1>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<1, function_action<1> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type
+ >::type
+ >
+>
+
+bind(const Arg1& a1) {
+ return
+ lambda_functor_base<
+ action<1, function_action<1> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type
+ >::type
+ (a1)
+ );
+}
+
+template <class Result, class Arg1>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<1, function_action<1, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type
+ >::type
+ >
+>
+
+bind(const Arg1& a1) {
+ return
+ lambda_functor_base<
+ action<1, function_action<1, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type
+ >::type
+ (a1)
+ );
+}
+
+template <class Result>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<1, function_action<1, Result> >,
+ typename detail::bind_tuple_mapper<Result(*)()>::type
+ >
+>
+
+bind(Result(* const & a1)()) {
+ return
+ lambda_functor_base<
+ action<1, function_action<1, Result> >,
+ typename detail::bind_tuple_mapper<Result(*)()>::type
+ >
+ ( typename detail::bind_tuple_mapper<Result(*)()>::type
+ (a1)
+ );
+}
+
+
+#endif
+
+// 2-argument bind functions --------------------------
+#ifndef BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
+template <class Result, class Par1, class Arg2>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<2, function_action<2, Result> >,
+ typename detail::bind_tuple_mapper<Result(&)(Par1), const Arg2>::type
+ >
+>
+
+bind(Result(&a1)(Par1), const Arg2& a2) {
+ return
+ lambda_functor_base<
+ action<2, function_action<2, Result> >,
+ typename detail::bind_tuple_mapper<Result(&)(Par1), const Arg2>::type
+ >
+ ( typename detail::bind_tuple_mapper<Result(&)(Par1), const Arg2>::type
+ (a1, a2)
+ );
+}
+#endif
+
+#ifndef BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+template <class Arg1, class Arg2>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<2, function_action<2> >,
+ typename detail::bind_tuple_mapper<const Arg1, const Arg2>::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2) {
+ return
+ lambda_functor_base<
+ action<2, function_action<2> >,
+ typename detail::bind_tuple_mapper<const Arg1, const Arg2>::type
+ >
+ ( typename detail::bind_tuple_mapper<const Arg1, const Arg2>::type
+ (a1, a2)
+ );
+}
+
+template <class Result, class Arg1, class Arg2>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<2, function_action<2, Result> >,
+ typename detail::bind_tuple_mapper<const Arg1, const Arg2>::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2) {
+ return
+ lambda_functor_base<
+ action<2, function_action<2, Result> >,
+ typename detail::bind_tuple_mapper<const Arg1, const Arg2>::type
+ >
+ ( typename detail::bind_tuple_mapper<const Arg1, const Arg2>::type
+ (a1, a2)
+ );
+}
+
+
+ #else
+template <class Arg1, class Arg2>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<2, function_action<2> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2) {
+ return
+ lambda_functor_base<
+ action<2, function_action<2> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2
+ >::type
+ (a1, a2)
+ );
+}
+
+template <class Result, class Arg1, class Arg2>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<2, function_action<2, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2) {
+ return
+ lambda_functor_base<
+ action<2, function_action<2, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2
+ >::type
+ (a1, a2)
+ );
+}
+
+template <class Result, class Par1, class Arg2>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<2, function_action<2, Result> >,
+ typename detail::bind_tuple_mapper<Result(*)(Par1), const Arg2>::type
+ >
+>
+
+bind(Result(* const & a1)(Par1), const Arg2& a2) {
+ return
+ lambda_functor_base<
+ action<2, function_action<2, Result> >,
+ typename detail::bind_tuple_mapper<Result(*)(Par1), const Arg2>::type
+ >
+ ( typename detail::bind_tuple_mapper<Result(*)(Par1), const Arg2>::type
+ (a1, a2)
+ );
+}
+
+
+ #endif
+
+// 3-argument bind functions --------------------------
+#ifndef BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
+template <class Result, class Par1, class Par2, class Arg2, class Arg3>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<3, function_action<3, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2), const Arg2, const Arg3
+ >::type
+ >
+>
+
+bind(Result(&a1)(Par1, Par2), const Arg2& a2, const Arg3& a3) {
+ return
+ lambda_functor_base<
+ action<3, function_action<3, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2), const Arg2, const Arg3
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2), const Arg2, const Arg3
+ >::type
+ (a1, a2, a3)
+ );
+}
+#endif
+
+ #ifndef BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+template <class Arg1, class Arg2, class Arg3>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<3, function_action<3> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3) {
+ return
+ lambda_functor_base<
+ action<3, function_action<3> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3
+ >::type
+ (a1, a2, a3)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<3, function_action<3, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3) {
+ return
+ lambda_functor_base<
+ action<3, function_action<3, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3
+ >::type
+ (a1, a2, a3)
+ );
+}
+
+
+ #else
+template <class Arg1, class Arg2, class Arg3>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<3, function_action<3> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3) {
+ return
+ lambda_functor_base<
+ action<3, function_action<3> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3
+ >::type
+ (a1, a2, a3)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<3, function_action<3, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3) {
+ return
+ lambda_functor_base<
+ action<3, function_action<3, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3
+ >::type
+ (a1, a2, a3)
+ );
+}
+
+template <class Result, class Par1, class Par2, class Arg2, class Arg3>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<3, function_action<3, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2), const Arg2, const Arg3
+ >::type
+ >
+>
+
+bind(Result(* const & a1)(Par1, Par2), const Arg2& a2, const Arg3& a3) {
+ return
+ lambda_functor_base<
+ action<3, function_action<3, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2), const Arg2, const Arg3
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2), const Arg2, const Arg3
+ >::type
+ (a1, a2, a3)
+ );
+}
+
+
+ #endif
+
+// 4-argument bind functions --------------------------
+#ifndef BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
+template <class Result, class Par1, class Par2, class Par3, class Arg2,
+ class Arg3, class Arg4>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<4, function_action<4, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3), const Arg2, const Arg3, const Arg4
+ >::type
+ >
+>
+
+bind(Result(&a1)(Par1, Par2, Par3), const Arg2& a2, const Arg3& a3,
+ const Arg4& a4) {
+ return
+ lambda_functor_base<
+ action<4, function_action<4, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3), const Arg2, const Arg3, const Arg4
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3), const Arg2, const Arg3, const Arg4
+ >::type
+ (a1, a2, a3, a4)
+ );
+}
+#endif
+
+ #ifndef BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+template <class Arg1, class Arg2, class Arg3, class Arg4>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<4, function_action<4> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4) {
+ return
+ lambda_functor_base<
+ action<4, function_action<4> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4
+ >::type
+ (a1, a2, a3, a4)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<4, function_action<4, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4) {
+ return
+ lambda_functor_base<
+ action<4, function_action<4, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4
+ >::type
+ (a1, a2, a3, a4)
+ );
+}
+
+
+ #else
+template <class Arg1, class Arg2, class Arg3, class Arg4>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<4, function_action<4> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4) {
+ return
+ lambda_functor_base<
+ action<4, function_action<4> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4
+ >::type
+ (a1, a2, a3, a4)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<4, function_action<4, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4) {
+ return
+ lambda_functor_base<
+ action<4, function_action<4, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4
+ >::type
+ (a1, a2, a3, a4)
+ );
+}
+
+template <class Result, class Par1, class Par2, class Par3, class Arg2,
+ class Arg3, class Arg4>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<4, function_action<4, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3), const Arg2, const Arg3, const Arg4
+ >::type
+ >
+>
+
+bind(Result(* const & a1)(Par1, Par2, Par3), const Arg2& a2,
+ const Arg3& a3, const Arg4& a4) {
+ return
+ lambda_functor_base<
+ action<4, function_action<4, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3), const Arg2, const Arg3, const Arg4
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3), const Arg2, const Arg3, const Arg4
+ >::type
+ (a1, a2, a3, a4)
+ );
+}
+
+
+ #endif
+
+// 5-argument bind functions --------------------------
+#ifndef BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Arg2, class Arg3, class Arg4, class Arg5>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<5, function_action<5, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4), const Arg2, const Arg3, const Arg4,
+ const Arg5
+ >::type
+ >
+>
+
+bind(Result(&a1)(Par1, Par2, Par3, Par4), const Arg2& a2, const Arg3& a3,
+ const Arg4& a4, const Arg5& a5) {
+ return
+ lambda_functor_base<
+ action<5, function_action<5, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4), const Arg2, const Arg3, const Arg4,
+ const Arg5
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4), const Arg2, const Arg3, const Arg4,
+ const Arg5
+ >::type
+ (a1, a2, a3, a4, a5)
+ );
+}
+#endif
+
+ #ifndef BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<5, function_action<5> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5) {
+ return
+ lambda_functor_base<
+ action<5, function_action<5> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5
+ >::type
+ (a1, a2, a3, a4, a5)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<5, function_action<5, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5) {
+ return
+ lambda_functor_base<
+ action<5, function_action<5, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5
+ >::type
+ (a1, a2, a3, a4, a5)
+ );
+}
+
+
+ #else
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<5, function_action<5> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5) {
+ return
+ lambda_functor_base<
+ action<5, function_action<5> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5
+ >::type
+ (a1, a2, a3, a4, a5)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<5, function_action<5, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5) {
+ return
+ lambda_functor_base<
+ action<5, function_action<5, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5
+ >::type
+ (a1, a2, a3, a4, a5)
+ );
+}
+
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Arg2, class Arg3, class Arg4, class Arg5>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<5, function_action<5, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4), const Arg2, const Arg3, const Arg4,
+ const Arg5
+ >::type
+ >
+>
+
+bind(Result(* const & a1)(Par1, Par2, Par3, Par4), const Arg2& a2,
+ const Arg3& a3, const Arg4& a4, const Arg5& a5) {
+ return
+ lambda_functor_base<
+ action<5, function_action<5, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4), const Arg2, const Arg3, const Arg4,
+ const Arg5
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4), const Arg2, const Arg3, const Arg4,
+ const Arg5
+ >::type
+ (a1, a2, a3, a4, a5)
+ );
+}
+
+
+ #endif
+
+// 6-argument bind functions --------------------------
+#ifndef BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Par5, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<6, function_action<6, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6
+ >::type
+ >
+>
+
+bind(Result(&a1)(Par1, Par2, Par3, Par4, Par5), const Arg2& a2,
+ const Arg3& a3, const Arg4& a4, const Arg5& a5, const Arg6& a6) {
+ return
+ lambda_functor_base<
+ action<6, function_action<6, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6
+ >::type
+ (a1, a2, a3, a4, a5, a6)
+ );
+}
+#endif
+
+ #ifndef BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<6, function_action<6> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6) {
+ return
+ lambda_functor_base<
+ action<6, function_action<6> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6
+ >::type
+ (a1, a2, a3, a4, a5, a6)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<6, function_action<6, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6) {
+ return
+ lambda_functor_base<
+ action<6, function_action<6, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6
+ >::type
+ (a1, a2, a3, a4, a5, a6)
+ );
+}
+
+
+ #else
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<6, function_action<6> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6) {
+ return
+ lambda_functor_base<
+ action<6, function_action<6> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6
+ >::type
+ (a1, a2, a3, a4, a5, a6)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<6, function_action<6, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6) {
+ return
+ lambda_functor_base<
+ action<6, function_action<6, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6
+ >::type
+ (a1, a2, a3, a4, a5, a6)
+ );
+}
+
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Par5, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<6, function_action<6, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6
+ >::type
+ >
+>
+
+bind(Result(* const & a1)(Par1, Par2, Par3, Par4, Par5), const Arg2& a2,
+ const Arg3& a3, const Arg4& a4, const Arg5& a5, const Arg6& a6) {
+ return
+ lambda_functor_base<
+ action<6, function_action<6, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6
+ >::type
+ (a1, a2, a3, a4, a5, a6)
+ );
+}
+
+
+ #endif
+
+// 7-argument bind functions --------------------------
+#ifndef BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Par5, class Par6, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6, class Arg7>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<7, function_action<7, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ >
+>
+
+bind(Result(&a1)(Par1, Par2, Par3, Par4, Par5, Par6), const Arg2& a2,
+ const Arg3& a3, const Arg4& a4, const Arg5& a5, const Arg6& a6,
+ const Arg7& a7) {
+ return
+ lambda_functor_base<
+ action<7, function_action<7, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7)
+ );
+}
+#endif
+
+ #ifndef BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6, class Arg7>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<7, function_action<7> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7) {
+ return
+ lambda_functor_base<
+ action<7, function_action<7> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6, class Arg7>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<7, function_action<7, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7) {
+ return
+ lambda_functor_base<
+ action<7, function_action<7, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7)
+ );
+}
+
+
+ #else
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6, class Arg7>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<7, function_action<7> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7) {
+ return
+ lambda_functor_base<
+ action<7, function_action<7> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6, class Arg7>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<7, function_action<7, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7) {
+ return
+ lambda_functor_base<
+ action<7, function_action<7, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7)
+ );
+}
+
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Par5, class Par6, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6, class Arg7>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<7, function_action<7, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ >
+>
+
+bind(Result(* const & a1)(Par1, Par2, Par3, Par4, Par5, Par6),
+ const Arg2& a2, const Arg3& a3, const Arg4& a4, const Arg5& a5,
+ const Arg6& a6, const Arg7& a7) {
+ return
+ lambda_functor_base<
+ action<7, function_action<7, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6), const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7)
+ );
+}
+
+
+ #endif
+
+// 8-argument bind functions --------------------------
+#ifndef BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Par5, class Par6, class Par7, class Arg2, class Arg3,
+ class Arg4, class Arg5, class Arg6, class Arg7, class Arg8>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<8, function_action<8, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6, Par7), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ >
+>
+
+bind(Result(&a1)(Par1, Par2, Par3, Par4, Par5, Par6, Par7), const Arg2& a2,
+ const Arg3& a3, const Arg4& a4, const Arg5& a5, const Arg6& a6,
+ const Arg7& a7, const Arg8& a8) {
+ return
+ lambda_functor_base<
+ action<8, function_action<8, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6, Par7), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6, Par7), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8)
+ );
+}
+#endif
+
+ #ifndef BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6, class Arg7, class Arg8>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<8, function_action<8> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7, const Arg8
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8) {
+ return
+ lambda_functor_base<
+ action<8, function_action<8> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6, class Arg7, class Arg8>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<8, function_action<8, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7, const Arg8
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8) {
+ return
+ lambda_functor_base<
+ action<8, function_action<8, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8)
+ );
+}
+
+
+ #else
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6, class Arg7, class Arg8>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<8, function_action<8> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8) {
+ return
+ lambda_functor_base<
+ action<8, function_action<8> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6, class Arg7, class Arg8>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<8, function_action<8, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8) {
+ return
+ lambda_functor_base<
+ action<8, function_action<8, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8)
+ );
+}
+
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Par5, class Par6, class Par7, class Arg2, class Arg3,
+ class Arg4, class Arg5, class Arg6, class Arg7, class Arg8>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<8, function_action<8, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6, Par7), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ >
+>
+
+bind(Result(* const & a1)(Par1, Par2, Par3, Par4, Par5, Par6, Par7),
+ const Arg2& a2, const Arg3& a3, const Arg4& a4, const Arg5& a5,
+ const Arg6& a6, const Arg7& a7, const Arg8& a8) {
+ return
+ lambda_functor_base<
+ action<8, function_action<8, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6, Par7), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6, Par7), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8)
+ );
+}
+
+
+ #endif
+
+// 9-argument bind functions --------------------------
+#ifndef BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Par5, class Par6, class Par7, class Par8, class Arg2,
+ class Arg3, class Arg4, class Arg5, class Arg6, class Arg7,
+ class Arg8, class Arg9>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<9, function_action<9, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8,
+ const Arg9
+ >::type
+ >
+>
+
+bind(Result(&a1)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8),
+ const Arg2& a2, const Arg3& a3, const Arg4& a4, const Arg5& a5,
+ const Arg6& a6, const Arg7& a7, const Arg8& a8, const Arg9& a9) {
+ return
+ lambda_functor_base<
+ action<9, function_action<9, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9)
+ );
+}
+#endif
+
+ #ifndef BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6, class Arg7, class Arg8, class Arg9>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<9, function_action<9> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7, const Arg8, const Arg9
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8,
+ const Arg9& a9) {
+ return
+ lambda_functor_base<
+ action<9, function_action<9> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8, const Arg9
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8, const Arg9
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6, class Arg7, class Arg8, class Arg9>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<9, function_action<9, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7, const Arg8, const Arg9
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8,
+ const Arg9& a9) {
+ return
+ lambda_functor_base<
+ action<9, function_action<9, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8, const Arg9
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8, const Arg9
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9)
+ );
+}
+
+
+ #else
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6, class Arg7, class Arg8, class Arg9>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<9, function_action<9> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7, const Arg8, const Arg9
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8,
+ const Arg9& a9) {
+ return
+ lambda_functor_base<
+ action<9, function_action<9> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6, class Arg7, class Arg8, class Arg9>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<9, function_action<9, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7, const Arg8, const Arg9
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8,
+ const Arg9& a9) {
+ return
+ lambda_functor_base<
+ action<9, function_action<9, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9)
+ );
+}
+
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Par5, class Par6, class Par7, class Par8, class Arg2,
+ class Arg3, class Arg4, class Arg5, class Arg6, class Arg7,
+ class Arg8, class Arg9>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<9, function_action<9, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7, const Arg8,
+ const Arg9
+ >::type
+ >
+>
+
+bind(Result(* const & a1)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8),
+ const Arg2& a2, const Arg3& a3, const Arg4& a4, const Arg5& a5,
+ const Arg6& a6, const Arg7& a7, const Arg8& a8, const Arg9& a9) {
+ return
+ lambda_functor_base<
+ action<9, function_action<9, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8), const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9)
+ );
+}
+
+
+ #endif
+
+// 10-argument bind functions --------------------------
+#ifndef BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Par5, class Par6, class Par7, class Par8, class Par9,
+ class Arg2, class Arg3, class Arg4, class Arg5, class Arg6,
+ class Arg7, class Arg8, class Arg9, class Arg10>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<10, function_action<10, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8, Par9),
+ const Arg2, const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9, const Arg10
+ >::type
+ >
+>
+
+bind(Result(&a1)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8, Par9),
+ const Arg2& a2, const Arg3& a3, const Arg4& a4, const Arg5& a5,
+ const Arg6& a6, const Arg7& a7, const Arg8& a8, const Arg9& a9,
+ const Arg10& a10) {
+ return
+ lambda_functor_base<
+ action<10, function_action<10, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8, Par9),
+ const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7, const Arg8, const Arg9, const Arg10
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(&)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8, Par9),
+ const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7, const Arg8, const Arg9, const Arg10
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)
+ );
+}
+#endif
+
+ #ifndef BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6, class Arg7, class Arg8, class Arg9, class Arg10>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<10, function_action<10> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7, const Arg8, const Arg9, const Arg10
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8,
+ const Arg9& a9, const Arg10& a10) {
+ return
+ lambda_functor_base<
+ action<10, function_action<10> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8, const Arg9, const Arg10
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8, const Arg9, const Arg10
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6, class Arg7, class Arg8, class Arg9,
+ class Arg10>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<10, function_action<10, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7, const Arg8, const Arg9, const Arg10
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8,
+ const Arg9& a9, const Arg10& a10) {
+ return
+ lambda_functor_base<
+ action<10, function_action<10, Result> >,
+ typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8, const Arg9, const Arg10
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ const Arg1, const Arg2, const Arg3, const Arg4, const Arg5,
+ const Arg6, const Arg7, const Arg8, const Arg9, const Arg10
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)
+ );
+}
+
+
+ #else
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
+ class Arg6, class Arg7, class Arg8, class Arg9, class Arg10>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<10, function_action<10> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7, const Arg8, const Arg9,
+ const Arg10
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8,
+ const Arg9& a9, const Arg10& a10) {
+ return
+ lambda_functor_base<
+ action<10, function_action<10> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9, const Arg10
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9, const Arg10
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)
+ );
+}
+
+template <class Result, class Arg1, class Arg2, class Arg3, class Arg4,
+ class Arg5, class Arg6, class Arg7, class Arg8, class Arg9,
+ class Arg10>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<10, function_action<10, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2, const Arg3,
+ const Arg4, const Arg5, const Arg6, const Arg7, const Arg8, const Arg9,
+ const Arg10
+ >::type
+ >
+>
+
+bind(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4,
+ const Arg5& a5, const Arg6& a6, const Arg7& a7, const Arg8& a8,
+ const Arg9& a9, const Arg10& a10) {
+ return
+ lambda_functor_base<
+ action<10, function_action<10, Result> >,
+ typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9, const Arg10
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ typename detail::constify_non_funcs<Arg1>::type, const Arg2,
+ const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9, const Arg10
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)
+ );
+}
+
+template <class Result, class Par1, class Par2, class Par3, class Par4,
+ class Par5, class Par6, class Par7, class Par8, class Par9,
+ class Arg2, class Arg3, class Arg4, class Arg5, class Arg6,
+ class Arg7, class Arg8, class Arg9, class Arg10>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<10, function_action<10, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8, Par9),
+ const Arg2, const Arg3, const Arg4, const Arg5, const Arg6, const Arg7,
+ const Arg8, const Arg9, const Arg10
+ >::type
+ >
+>
+
+bind(Result(* const & a1)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8,
+ Par9), const Arg2& a2, const Arg3& a3, const Arg4& a4, const Arg5& a5,
+ const Arg6& a6, const Arg7& a7, const Arg8& a8, const Arg9& a9,
+ const Arg10& a10) {
+ return
+ lambda_functor_base<
+ action<10, function_action<10, Result> >,
+ typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8, Par9),
+ const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7, const Arg8, const Arg9, const Arg10
+ >::type
+ >
+ ( typename detail::bind_tuple_mapper<
+ Result(*)(Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8, Par9),
+ const Arg2, const Arg3, const Arg4, const Arg5, const Arg6,
+ const Arg7, const Arg8, const Arg9, const Arg10
+ >::type
+ (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)
+ );
+}
+
+
+ #endif
+
+} // namespace lambda
+} // namespace boost
+
+#endif
diff --git a/3rdParty/Boost/src/boost/lambda/detail/function_adaptors.hpp b/3rdParty/Boost/src/boost/lambda/detail/function_adaptors.hpp
new file mode 100644
index 0000000..35db8b4
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/function_adaptors.hpp
@@ -0,0 +1,789 @@
+// Boost Lambda Library - function_adaptors.hpp ----------------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+
+#ifndef BOOST_LAMBDA_FUNCTION_ADAPTORS_HPP
+#define BOOST_LAMBDA_FUNCTION_ADAPTORS_HPP
+
+#include "boost/mpl/has_xxx.hpp"
+#include "boost/tuple/tuple.hpp"
+#include "boost/type_traits/same_traits.hpp"
+#include "boost/type_traits/remove_reference.hpp"
+#include "boost/type_traits/remove_cv.hpp"
+#include "boost/type_traits/add_const.hpp"
+#include "boost/type_traits/add_volatile.hpp"
+#include "boost/utility/result_of.hpp"
+
+namespace boost {
+namespace lambda {
+
+namespace detail {
+
+BOOST_MPL_HAS_XXX_TEMPLATE_DEF(sig)
+
+template<class Tuple>
+struct remove_references_from_elements {
+ typedef typename boost::tuples::cons<
+ typename boost::remove_reference<typename Tuple::head_type>::type,
+ typename remove_references_from_elements<typename Tuple::tail_type>::type
+ > type;
+};
+
+template<>
+struct remove_references_from_elements<boost::tuples::null_type> {
+ typedef boost::tuples::null_type type;
+};
+
+}
+
+template <class Func> struct function_adaptor {
+
+ typedef typename detail::remove_reference_and_cv<Func>::type plainF;
+
+#if !defined(BOOST_NO_RESULT_OF)
+ // Support functors that use the boost::result_of return type convention.
+ template<class Tuple, int Length, bool HasSig>
+ struct result_converter;
+ template<class Tuple, int Length>
+ struct result_converter<Tuple, Length, true>
+ : plainF::template sig<
+ typename detail::remove_references_from_elements<Tuple>::type
+ >
+ {};
+ template<class Tuple>
+ struct result_converter<Tuple, 0, false>
+ : result_of<plainF()>
+ {};
+ template<class Tuple>
+ struct result_converter<Tuple, 1, false>
+ : result_of<plainF(
+ typename tuples::element<1, Tuple>::type)
+ >
+ {};
+ template<class Tuple>
+ struct result_converter<Tuple, 2, false>
+ : result_of<plainF(
+ typename tuples::element<1, Tuple>::type,
+ typename tuples::element<2, Tuple>::type)
+ >
+ {};
+ template<class Tuple>
+ struct result_converter<Tuple, 3, false>
+ : result_of<plainF(
+ typename tuples::element<1, Tuple>::type,
+ typename tuples::element<2, Tuple>::type,
+ typename tuples::element<3, Tuple>::type)
+ >
+ {};
+ template<class Tuple>
+ struct result_converter<Tuple, 4, false>
+ : result_of<plainF(
+ typename tuples::element<1, Tuple>::type,
+ typename tuples::element<2, Tuple>::type,
+ typename tuples::element<3, Tuple>::type,
+ typename tuples::element<4, Tuple>::type)
+ >
+ {};
+ template<class Tuple>
+ struct result_converter<Tuple, 5, false>
+ : result_of<plainF(
+ typename tuples::element<1, Tuple>::type,
+ typename tuples::element<2, Tuple>::type,
+ typename tuples::element<3, Tuple>::type,
+ typename tuples::element<4, Tuple>::type,
+ typename tuples::element<5, Tuple>::type)
+ >
+ {};
+ template<class Tuple>
+ struct result_converter<Tuple, 6, false>
+ : result_of<plainF(
+ typename tuples::element<1, Tuple>::type,
+ typename tuples::element<2, Tuple>::type,
+ typename tuples::element<3, Tuple>::type,
+ typename tuples::element<4, Tuple>::type,
+ typename tuples::element<5, Tuple>::type,
+ typename tuples::element<6, Tuple>::type)
+ >
+ {};
+ template<class Tuple>
+ struct result_converter<Tuple, 7, false>
+ : result_of<plainF(
+ typename tuples::element<1, Tuple>::type,
+ typename tuples::element<2, Tuple>::type,
+ typename tuples::element<3, Tuple>::type,
+ typename tuples::element<4, Tuple>::type,
+ typename tuples::element<5, Tuple>::type,
+ typename tuples::element<6, Tuple>::type,
+ typename tuples::element<7, Tuple>::type)
+ >
+ {};
+ template<class Tuple>
+ struct result_converter<Tuple, 8, false>
+ : result_of<plainF(
+ typename tuples::element<1, Tuple>::type,
+ typename tuples::element<2, Tuple>::type,
+ typename tuples::element<3, Tuple>::type,
+ typename tuples::element<4, Tuple>::type,
+ typename tuples::element<5, Tuple>::type,
+ typename tuples::element<6, Tuple>::type,
+ typename tuples::element<7, Tuple>::type,
+ typename tuples::element<8, Tuple>::type)
+ >
+ {};
+ template<class Tuple>
+ struct result_converter<Tuple, 9, false>
+ : result_of<plainF(
+ typename tuples::element<1, Tuple>::type,
+ typename tuples::element<2, Tuple>::type,
+ typename tuples::element<3, Tuple>::type,
+ typename tuples::element<4, Tuple>::type,
+ typename tuples::element<5, Tuple>::type,
+ typename tuples::element<6, Tuple>::type,
+ typename tuples::element<7, Tuple>::type,
+ typename tuples::element<8, Tuple>::type,
+ typename tuples::element<9, Tuple>::type)
+ >
+ {};
+
+ // we do not know the return type off-hand, we must ask it from Func
+ // To sig we pass a cons list, where the head is the function object type
+ // itself (potentially cv-qualified)
+ // and the tail contains the types of the actual arguments to be passed
+ // to the function object. The arguments can be cv qualified
+ // as well.
+ template <class Args>
+ struct sig
+ : result_converter<
+ Args
+ , tuples::length<typename Args::tail_type>::value
+ , detail::has_sig<plainF>::value
+ >
+ {};
+#else // BOOST_NO_RESULT_OF
+
+ template <class Args> class sig {
+ typedef typename detail::remove_reference_and_cv<Func>::type plainF;
+ public:
+ typedef typename plainF::template sig<
+ typename detail::remove_references_from_elements<Args>::type
+ >::type type;
+ };
+#endif
+
+ template<class RET, class A1>
+ static RET apply(A1& a1) {
+ return a1();
+ }
+ template<class RET, class A1, class A2>
+ static RET apply(A1& a1, A2& a2) {
+ return a1(a2);
+ }
+ template<class RET, class A1, class A2, class A3>
+ static RET apply(A1& a1, A2& a2, A3& a3) {
+ return a1(a2, a3);
+ }
+ template<class RET, class A1, class A2, class A3, class A4>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4) {
+ return a1(a2, a3, a4);
+ }
+ template<class RET, class A1, class A2, class A3, class A4, class A5>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
+ return a1(a2, a3, a4, a5);
+ }
+ template<class RET, class A1, class A2, class A3, class A4, class A5, class A6>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
+ return a1(a2, a3, a4, a5, a6);
+ }
+ template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
+ class A7>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
+ A7& a7) {
+ return a1(a2, a3, a4, a5, a6, a7);
+ }
+ template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
+ class A7, class A8>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
+ A7& a7, A8& a8) {
+ return a1(a2, a3, a4, a5, a6, a7, a8);
+ }
+ template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
+ class A7, class A8, class A9>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
+ A7& a7, A8& a8, A9& a9) {
+ return a1(a2, a3, a4, a5, a6, a7, a8, a9);
+ }
+ template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
+ class A7, class A8, class A9, class A10>
+ static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
+ A7& a7, A8& a8, A9& a9, A10& a10) {
+ return a1(a2, a3, a4, a5, a6, a7, a8, a9, a10);
+ }
+};
+
+template <class Func> struct function_adaptor<const Func>; // error
+
+// -- function adaptors with data member access
+template <class Object, class T>
+struct function_adaptor<T Object::*> {
+
+ // typedef detail::unspecified type;
+
+ // T can have qualifiers and can be a reference type
+ // We get the return type by adding const, if the object through which
+ // the data member is accessed is const, and finally adding a reference
+ template<class Args> class sig {
+ typedef typename boost::tuples::element<1, Args>::type argument_type;
+ typedef typename boost::remove_reference<
+ argument_type
+ >::type unref_type;
+
+ typedef typename detail::IF<boost::is_const<unref_type>::value,
+ typename boost::add_const<T>::type,
+ T
+ >::RET properly_consted_return_type;
+
+ typedef typename detail::IF<boost::is_volatile<unref_type>::value,
+ typename boost::add_volatile<properly_consted_return_type>::type,
+ properly_consted_return_type
+ >::RET properly_cvd_return_type;
+
+
+ public:
+ typedef typename detail::IF<boost::is_reference<argument_type>::value,
+ typename boost::add_reference<properly_cvd_return_type>::type,
+ typename boost::remove_cv<T>::type
+ >::RET type;
+ };
+
+ template <class RET>
+ static RET apply( T Object::*data, Object& o) {
+ return o.*data;
+ }
+ template <class RET>
+ static RET apply( T Object::*data, const Object& o) {
+ return o.*data;
+ }
+ template <class RET>
+ static RET apply( T Object::*data, volatile Object& o) {
+ return o.*data;
+ }
+ template <class RET>
+ static RET apply( T Object::*data, const volatile Object& o) {
+ return o.*data;
+ }
+ template <class RET>
+ static RET apply( T Object::*data, Object* o) {
+ return o->*data;
+ }
+ template <class RET>
+ static RET apply( T Object::*data, const Object* o) {
+ return o->*data;
+ }
+ template <class RET>
+ static RET apply( T Object::*data, volatile Object* o) {
+ return o->*data;
+ }
+ template <class RET>
+ static RET apply( T Object::*data, const volatile Object* o) {
+ return o->*data;
+ }
+};
+
+// -- function adaptors with 1 argument apply
+
+template <class Result>
+struct function_adaptor<Result (void)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET>
+ static Result apply(Result (*func)()) {
+ return func();
+ }
+};
+
+template <class Result>
+struct function_adaptor<Result (*)(void)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET>
+ static Result apply(Result (*func)()) {
+ return func();
+ }
+};
+
+
+// -- function adaptors with 2 argument apply
+template <class Object, class Result>
+struct function_adaptor<Result (Object::*)() const> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET>
+ static Result apply( Result (Object::*func)() const, const Object* o) {
+ return (o->*func)();
+ }
+ template <class RET>
+ static Result apply( Result (Object::*func)() const, const Object& o) {
+ return (o.*func)();
+ }
+};
+
+template <class Object, class Result>
+struct function_adaptor<Result (Object::*)()> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET>
+ static Result apply( Result (Object::*func)(), Object* o) {
+ return (o->*func)();
+ }
+ template <class RET>
+ static Result apply( Result (Object::*func)(), Object& o) {
+ return (o.*func)();
+ }
+};
+
+template <class Arg1, class Result>
+struct function_adaptor<Result (Arg1)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1>
+ static Result apply(Result (*func)(Arg1), A1& a1) {
+ return func(a1);
+ }
+};
+
+template <class Arg1, class Result>
+struct function_adaptor<Result (*)(Arg1)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1>
+ static Result apply(Result (*func)(Arg1), A1& a1) {
+ return func(a1);
+ }
+};
+
+
+// -- function adaptors with 3 argument apply
+template <class Object, class Arg1, class Result>
+struct function_adaptor<Result (Object::*)(Arg1) const> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1>
+ static Result apply( Result (Object::*func)(Arg1) const, const Object* o,
+ A1& a1) {
+ return (o->*func)(a1);
+ }
+ template <class RET, class A1>
+ static Result apply( Result (Object::*func)(Arg1) const, const Object& o,
+ A1& a1) {
+ return (o.*func)(a1);
+ }
+};
+
+template <class Object, class Arg1, class Result>
+struct function_adaptor<Result (Object::*)(Arg1)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1>
+ static Result apply( Result (Object::*func)(Arg1), Object* o, A1& a1) {
+ return (o->*func)(a1);
+ }
+ template <class RET, class A1>
+ static Result apply( Result (Object::*func)(Arg1), Object& o, A1& a1) {
+ return (o.*func)(a1);
+ }
+};
+
+template <class Arg1, class Arg2, class Result>
+struct function_adaptor<Result (Arg1, Arg2)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2>
+ static Result apply(Result (*func)(Arg1, Arg2), A1& a1, A2& a2) {
+ return func(a1, a2);
+ }
+};
+
+template <class Arg1, class Arg2, class Result>
+struct function_adaptor<Result (*)(Arg1, Arg2)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2>
+ static Result apply(Result (*func)(Arg1, Arg2), A1& a1, A2& a2) {
+ return func(a1, a2);
+ }
+};
+
+
+// -- function adaptors with 4 argument apply
+template <class Object, class Arg1, class Arg2, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2) const> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2>
+ static Result apply( Result (Object::*func)(Arg1, Arg2) const, const Object* o, A1& a1, A2& a2) {
+ return (o->*func)(a1, a2);
+ }
+ template <class RET, class A1, class A2>
+ static Result apply( Result (Object::*func)(Arg1, Arg2) const, const Object& o, A1& a1, A2& a2) {
+ return (o.*func)(a1, a2);
+ }
+};
+
+template <class Object, class Arg1, class Arg2, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2>
+ static Result apply( Result (Object::*func)(Arg1, Arg2), Object* o, A1& a1, A2& a2) {
+ return (o->*func)(a1, a2);
+ }
+ template <class RET, class A1, class A2>
+ static Result apply( Result (Object::*func)(Arg1, Arg2), Object& o, A1& a1, A2& a2) {
+ return (o.*func)(a1, a2);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Result>
+struct function_adaptor<Result (Arg1, Arg2, Arg3)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3), A1& a1, A2& a2, A3& a3) {
+ return func(a1, a2, a3);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Result>
+struct function_adaptor<Result (*)(Arg1, Arg2, Arg3)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3), A1& a1, A2& a2, A3& a3) {
+ return func(a1, a2, a3);
+ }
+};
+
+
+// -- function adaptors with 5 argument apply
+template <class Object, class Arg1, class Arg2, class Arg3, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3) const> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3) const, const Object* o, A1& a1, A2& a2, A3& a3) {
+ return (o->*func)(a1, a2, a3);
+ }
+ template <class RET, class A1, class A2, class A3>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3) const, const Object& o, A1& a1, A2& a2, A3& a3) {
+ return (o.*func)(a1, a2, a3);
+ }
+};
+
+template <class Object, class Arg1, class Arg2, class Arg3, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3), Object* o, A1& a1, A2& a2, A3& a3) {
+ return (o->*func)(a1, a2, a3);
+ }
+ template <class RET, class A1, class A2, class A3>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3), Object& o, A1& a1, A2& a2, A3& a3) {
+ return (o.*func)(a1, a2, a3);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Result>
+struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4), A1& a1, A2& a2, A3& a3, A4& a4) {
+ return func(a1, a2, a3, a4);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Result>
+struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4), A1& a1, A2& a2, A3& a3, A4& a4) {
+ return func(a1, a2, a3, a4);
+ }
+};
+
+
+// -- function adaptors with 6 argument apply
+template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4) const> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4) {
+ return (o->*func)(a1, a2, a3, a4);
+ }
+ template <class RET, class A1, class A2, class A3, class A4>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4) {
+ return (o.*func)(a1, a2, a3, a4);
+ }
+};
+
+template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4), Object* o, A1& a1, A2& a2, A3& a3, A4& a4) {
+ return (o->*func)(a1, a2, a3, a4);
+ }
+ template <class RET, class A1, class A2, class A3, class A4>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4), Object& o, A1& a1, A2& a2, A3& a3, A4& a4) {
+ return (o.*func)(a1, a2, a3, a4);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
+struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
+ return func(a1, a2, a3, a4, a5);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
+struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
+ return func(a1, a2, a3, a4, a5);
+ }
+};
+
+
+// -- function adaptors with 7 argument apply
+template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5) const> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
+ return (o->*func)(a1, a2, a3, a4, a5);
+ }
+ template <class RET, class A1, class A2, class A3, class A4, class A5>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
+ return (o.*func)(a1, a2, a3, a4, a5);
+ }
+};
+
+template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
+ return (o->*func)(a1, a2, a3, a4, a5);
+ }
+ template <class RET, class A1, class A2, class A3, class A4, class A5>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
+ return (o.*func)(a1, a2, a3, a4, a5);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
+struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
+ return func(a1, a2, a3, a4, a5, a6);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
+struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
+ return func(a1, a2, a3, a4, a5, a6);
+ }
+};
+
+
+// -- function adaptors with 8 argument apply
+template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6) const> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
+ return (o->*func)(a1, a2, a3, a4, a5, a6);
+ }
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
+ return (o.*func)(a1, a2, a3, a4, a5, a6);
+ }
+};
+
+template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
+ return (o->*func)(a1, a2, a3, a4, a5, a6);
+ }
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
+ return (o.*func)(a1, a2, a3, a4, a5, a6);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
+struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
+ return func(a1, a2, a3, a4, a5, a6, a7);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
+struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
+ return func(a1, a2, a3, a4, a5, a6, a7);
+ }
+};
+
+
+// -- function adaptors with 9 argument apply
+template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7) const> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
+ return (o->*func)(a1, a2, a3, a4, a5, a6, a7);
+ }
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
+ return (o.*func)(a1, a2, a3, a4, a5, a6, a7);
+ }
+};
+
+template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
+ return (o->*func)(a1, a2, a3, a4, a5, a6, a7);
+ }
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
+ return (o.*func)(a1, a2, a3, a4, a5, a6, a7);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
+struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
+ return func(a1, a2, a3, a4, a5, a6, a7, a8);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
+struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
+ return func(a1, a2, a3, a4, a5, a6, a7, a8);
+ }
+};
+
+
+// -- function adaptors with 10 argument apply
+template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8) const> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
+ return (o->*func)(a1, a2, a3, a4, a5, a6, a7, a8);
+ }
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
+ return (o.*func)(a1, a2, a3, a4, a5, a6, a7, a8);
+ }
+};
+
+template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
+struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
+ return (o->*func)(a1, a2, a3, a4, a5, a6, a7, a8);
+ }
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
+ static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
+ return (o.*func)(a1, a2, a3, a4, a5, a6, a7, a8);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9, class Result>
+struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8, A9& a9) {
+ return func(a1, a2, a3, a4, a5, a6, a7, a8, a9);
+ }
+};
+
+template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9, class Result>
+struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
+
+ template<class T> struct sig { typedef Result type; };
+ template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
+ static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8, A9& a9) {
+ return func(a1, a2, a3, a4, a5, a6, a7, a8, a9);
+ }
+};
+
+} // namespace lambda
+} // namespace boost
+
+#endif
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/3rdParty/Boost/src/boost/lambda/detail/is_instance_of.hpp b/3rdParty/Boost/src/boost/lambda/detail/is_instance_of.hpp
new file mode 100644
index 0000000..1dfbd43
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/is_instance_of.hpp
@@ -0,0 +1,104 @@
+// Boost Lambda Library - is_instance_of.hpp ---------------------
+
+// Copyright (C) 2001 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+// ---------------------------------------------------------------
+
+#ifndef BOOST_LAMBDA_IS_INSTANCE_OF
+#define BOOST_LAMBDA_IS_INSTANCE_OF
+
+#include "boost/config.hpp" // for BOOST_STATIC_CONSTANT
+#include "boost/type_traits/conversion_traits.hpp" // for is_convertible
+#include "boost/preprocessor/enum_shifted_params.hpp"
+#include "boost/preprocessor/repeat_2nd.hpp"
+
+// is_instance_of --------------------------------
+//
+// is_instance_of_n<A, B>::value is true, if type A is
+// an instantiation of a template B, or A derives from an instantiation
+// of template B
+//
+// n is the number of template arguments for B
+//
+// Example:
+// is_instance_of_2<std::istream, basic_stream>::value == true
+
+// The original implementation was somewhat different, with different versions
+// for different compilers. However, there was still a problem
+// with gcc.3.0.2 and 3.0.3 compilers, which didn't think regard
+// is_instance_of_N<...>::value was a constant.
+// John Maddock suggested the way around this problem by building
+// is_instance_of templates using boost::is_convertible.
+// Now we only have one version of is_instance_of templates, which delagate
+// all the nasty compiler tricks to is_convertible.
+
+#define BOOST_LAMBDA_CLASS(z, N,A) BOOST_PP_COMMA_IF(N) class
+#define BOOST_LAMBDA_CLASS_ARG(z, N,A) BOOST_PP_COMMA_IF(N) class A##N
+#define BOOST_LAMBDA_ARG(z, N,A) BOOST_PP_COMMA_IF(N) A##N
+
+#define BOOST_LAMBDA_CLASS_LIST(n, NAME) BOOST_PP_REPEAT(n, BOOST_LAMBDA_CLASS, NAME)
+
+#define BOOST_LAMBDA_CLASS_ARG_LIST(n, NAME) BOOST_PP_REPEAT(n, BOOST_LAMBDA_CLASS_ARG, NAME)
+
+#define BOOST_LAMBDA_ARG_LIST(n, NAME) BOOST_PP_REPEAT(n, BOOST_LAMBDA_ARG, NAME)
+
+namespace boost {
+namespace lambda {
+
+#define BOOST_LAMBDA_IS_INSTANCE_OF_TEMPLATE(INDEX) \
+ \
+namespace detail { \
+ \
+template <template<BOOST_LAMBDA_CLASS_LIST(INDEX,T)> class F> \
+struct BOOST_PP_CAT(conversion_tester_,INDEX) { \
+ template<BOOST_LAMBDA_CLASS_ARG_LIST(INDEX,A)> \
+ BOOST_PP_CAT(conversion_tester_,INDEX) \
+ (const F<BOOST_LAMBDA_ARG_LIST(INDEX,A)>&); \
+}; \
+ \
+} /* end detail */ \
+ \
+template <class From, template <BOOST_LAMBDA_CLASS_LIST(INDEX,T)> class To> \
+struct BOOST_PP_CAT(is_instance_of_,INDEX) \
+{ \
+ private: \
+ typedef ::boost::is_convertible< \
+ From, \
+ BOOST_PP_CAT(detail::conversion_tester_,INDEX)<To> \
+ > helper_type; \
+ \
+public: \
+ BOOST_STATIC_CONSTANT(bool, value = helper_type::value); \
+};
+
+
+#define BOOST_LAMBDA_HELPER(z, N, A) BOOST_LAMBDA_IS_INSTANCE_OF_TEMPLATE( BOOST_PP_INC(N) )
+
+// Generate the traits for 1-4 argument templates
+
+BOOST_PP_REPEAT_2ND(4,BOOST_LAMBDA_HELPER,FOO)
+
+#undef BOOST_LAMBDA_HELPER
+#undef BOOST_LAMBDA_IS_INSTANCE_OF_TEMPLATE
+#undef BOOST_LAMBDA_CLASS
+#undef BOOST_LAMBDA_ARG
+#undef BOOST_LAMBDA_CLASS_ARG
+#undef BOOST_LAMBDA_CLASS_LIST
+#undef BOOST_LAMBDA_ARG_LIST
+#undef BOOST_LAMBDA_CLASS_ARG_LIST
+
+} // lambda
+} // boost
+
+#endif
+
+
+
+
+
diff --git a/3rdParty/Boost/src/boost/lambda/detail/lambda_config.hpp b/3rdParty/Boost/src/boost/lambda/detail/lambda_config.hpp
new file mode 100644
index 0000000..9fd1a7b
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/lambda_config.hpp
@@ -0,0 +1,48 @@
+// Boost Lambda Library - lambda_config.hpp ------------------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+// ---------------------------------------------------------------
+
+#ifndef BOOST_LAMBDA_LAMBDA_CONFIG_HPP
+#define BOOST_LAMBDA_LAMBDA_CONFIG_HPP
+
+// add to boost/config.hpp
+// for now
+
+
+# if defined __GNUC__
+# if (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
+# define BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
+# define BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+# endif
+# if (__GNUC__ == 2 && __GNUC_MINOR__ <= 97)
+# define BOOST_NO_TEMPLATED_STREAMS
+# define BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
+# endif
+# if (__GNUC__ == 2 && __GNUC_MINOR__ <= 95)
+# define BOOST_LAMBDA_FAILS_IN_TEMPLATE_KEYWORD_AFTER_SCOPE_OPER
+# endif
+# endif // __GNUC__
+
+
+#if defined __KCC
+
+#define BOOST_NO_FDECL_TEMPLATES_AS_TEMPLATE_TEMPLATE_PARAMS
+
+#endif // __KCC
+
+#endif
+
+
+
+
+
+
+
diff --git a/3rdParty/Boost/src/boost/lambda/detail/lambda_functor_base.hpp b/3rdParty/Boost/src/boost/lambda/detail/lambda_functor_base.hpp
new file mode 100644
index 0000000..b084acd
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/lambda_functor_base.hpp
@@ -0,0 +1,615 @@
+// Boost Lambda Library lambda_functor_base.hpp -----------------------------
+//
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+// ------------------------------------------------------------
+
+#ifndef BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_HPP
+#define BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_HPP
+
+#include "boost/type_traits/add_reference.hpp"
+#include "boost/type_traits/add_const.hpp"
+#include "boost/type_traits/remove_const.hpp"
+#include "boost/lambda/detail/lambda_fwd.hpp"
+#include "boost/lambda/detail/lambda_traits.hpp"
+
+namespace boost {
+namespace lambda {
+
+#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
+#pragma warning(push)
+#pragma warning(disable:4512) //assignment operator could not be generated
+#endif
+
+ // for return type deductions we wrap bound argument to this class,
+ // which fulfils the base class contract for lambda_functors
+template <class T>
+class identity {
+
+ T elem;
+public:
+
+ typedef T element_t;
+
+ // take all parameters as const references. Note that non-const references
+ // stay as they are.
+ typedef typename boost::add_reference<
+ typename boost::add_const<T>::type
+ >::type par_t;
+
+ explicit identity(par_t t) : elem(t) {}
+
+ template <typename SigArgs>
+ struct sig { typedef typename boost::remove_const<element_t>::type type; };
+
+ template<class RET, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return elem; }
+};
+
+#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
+#pragma warning(pop)
+#endif
+
+template <class T>
+inline lambda_functor<identity<T&> > var(T& t) { return identity<T&>(t); }
+
+ // for lambda functors, var is an identity operator. It was forbidden
+ // at some point, but we might want to var something that can be a
+ // non-lambda functor or a lambda functor.
+template <class T>
+lambda_functor<T> var(const lambda_functor<T>& t) { return t; }
+
+template <class T> struct var_type {
+ typedef lambda_functor<identity<T&> > type;
+};
+
+
+template <class T>
+inline
+lambda_functor<identity<typename bound_argument_conversion<const T>::type> >
+constant(const T& t) {
+ return identity<typename bound_argument_conversion<const T>::type>(t);
+}
+template <class T>
+lambda_functor<T> constant(const lambda_functor<T>& t) { return t; }
+
+template <class T> struct constant_type {
+ typedef
+ lambda_functor<
+ identity<typename bound_argument_conversion<const T>::type>
+ > type;
+};
+
+
+
+template <class T>
+inline lambda_functor<identity<const T&> > constant_ref(const T& t) {
+ return identity<const T&>(t);
+}
+template <class T>
+lambda_functor<T> constant_ref(const lambda_functor<T>& t) { return t; }
+
+template <class T> struct constant_ref_type {
+ typedef
+ lambda_functor<identity<const T&> > type;
+};
+
+
+
+ // as_lambda_functor turns any types to lambda functors
+ // non-lambda_functors will be bound argument types
+template <class T>
+struct as_lambda_functor {
+ typedef typename
+ detail::remove_reference_and_cv<T>::type plain_T;
+ typedef typename
+ detail::IF<is_lambda_functor<plain_T>::value,
+ plain_T,
+ lambda_functor<
+ identity<typename bound_argument_conversion<T>::type>
+ >
+ >::RET type;
+};
+
+// turns arbitrary objects into lambda functors
+template <class T>
+inline
+lambda_functor<identity<typename bound_argument_conversion<const T>::type> >
+to_lambda_functor(const T& t) {
+ return identity<typename bound_argument_conversion<const T>::type>(t);
+}
+
+template <class T>
+inline lambda_functor<T>
+to_lambda_functor(const lambda_functor<T>& t) {
+ return t;
+}
+
+namespace detail {
+
+
+
+// In a call constify_rvals<T>::go(x)
+// x should be of type T. If T is a non-reference type, do
+// returns x as const reference.
+// Otherwise the type doesn't change.
+// The purpose of this class is to avoid
+// 'cannot bind temporaries to non-const references' errors.
+template <class T> struct constify_rvals {
+ template<class U>
+ static inline const U& go(const U& u) { return u; }
+};
+
+template <class T> struct constify_rvals<T&> {
+ template<class U>
+ static inline U& go(U& u) { return u; }
+};
+
+ // check whether one of the elements of a tuple (cons list) is of type
+ // null_type. Needed, because the compiler goes ahead and instantiates
+ // sig template for nullary case even if the nullary operator() is not
+ // called
+template <class T> struct is_null_type
+{ BOOST_STATIC_CONSTANT(bool, value = false); };
+
+template <> struct is_null_type<null_type>
+{ BOOST_STATIC_CONSTANT(bool, value = true); };
+
+template<class Tuple> struct has_null_type {
+ BOOST_STATIC_CONSTANT(bool, value = (is_null_type<typename Tuple::head_type>::value || has_null_type<typename Tuple::tail_type>::value));
+};
+template<> struct has_null_type<null_type> {
+ BOOST_STATIC_CONSTANT(bool, value = false);
+};
+
+
+// helpers -------------------
+
+
+template<class Args, class SigArgs>
+class deduce_argument_types_ {
+ typedef typename as_lambda_functor<typename Args::head_type>::type lf_t;
+ typedef typename lf_t::inherited::template sig<SigArgs>::type el_t;
+public:
+ typedef
+ boost::tuples::cons<
+ el_t,
+ typename deduce_argument_types_<typename Args::tail_type, SigArgs>::type
+ > type;
+};
+
+template<class SigArgs>
+class deduce_argument_types_<null_type, SigArgs> {
+public:
+ typedef null_type type;
+};
+
+
+// // note that tuples cannot have plain function types as elements.
+// // Hence, all other types will be non-const, except references to
+// // functions.
+// template <class T> struct remove_reference_except_from_functions {
+// typedef typename boost::remove_reference<T>::type t;
+// typedef typename detail::IF<boost::is_function<t>::value, T, t>::RET type;
+// };
+
+template<class Args, class SigArgs>
+class deduce_non_ref_argument_types_ {
+ typedef typename as_lambda_functor<typename Args::head_type>::type lf_t;
+ typedef typename lf_t::inherited::template sig<SigArgs>::type el_t;
+public:
+ typedef
+ boost::tuples::cons<
+ // typename detail::remove_reference_except_from_functions<el_t>::type,
+ typename boost::remove_reference<el_t>::type,
+ typename deduce_non_ref_argument_types_<typename Args::tail_type, SigArgs>::type
+ > type;
+};
+
+template<class SigArgs>
+class deduce_non_ref_argument_types_<null_type, SigArgs> {
+public:
+ typedef null_type type;
+};
+
+ // -------------
+
+// take stored Args and Open Args, and return a const list with
+// deduced elements (real return types)
+template<class Args, class SigArgs>
+class deduce_argument_types {
+ typedef typename deduce_argument_types_<Args, SigArgs>::type t1;
+public:
+ typedef typename detail::IF<
+ has_null_type<t1>::value, null_type, t1
+ >::RET type;
+};
+
+// take stored Args and Open Args, and return a const list with
+// deduced elements (references are stripped from the element types)
+
+template<class Args, class SigArgs>
+class deduce_non_ref_argument_types {
+ typedef typename deduce_non_ref_argument_types_<Args, SigArgs>::type t1;
+public:
+ typedef typename detail::IF<
+ has_null_type<t1>::value, null_type, t1
+ >::RET type;
+};
+
+template <int N, class Args, class SigArgs>
+struct nth_return_type_sig {
+ typedef typename
+ as_lambda_functor<
+ typename boost::tuples::element<N, Args>::type
+ // typename tuple_element_as_reference<N, Args>::type
+ >::type lf_type;
+
+ typedef typename lf_type::inherited::template sig<SigArgs>::type type;
+};
+
+template<int N, class Tuple> struct element_or_null {
+ typedef typename boost::tuples::element<N, Tuple>::type type;
+};
+
+template<int N> struct element_or_null<N, null_type> {
+ typedef null_type type;
+};
+
+
+
+
+} // end detail
+
+ // -- lambda_functor base ---------------------
+
+// the explicit_return_type_action case -----------------------------------
+template<class RET, class Args>
+class lambda_functor_base<explicit_return_type_action<RET>, Args>
+{
+public:
+ Args args;
+
+ typedef RET result_type;
+
+ explicit lambda_functor_base(const Args& a) : args(a) {}
+
+ template <class SigArgs> struct sig { typedef RET type; };
+
+ template<class RET_, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const
+ {
+ return detail::constify_rvals<RET>::go(
+ detail::r_select<RET>::go(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS));
+ }
+};
+
+// the protect_action case -----------------------------------
+template<class Args>
+class lambda_functor_base<protect_action, Args>
+{
+public:
+ Args args;
+public:
+
+ explicit lambda_functor_base(const Args& a) : args(a) {}
+
+
+ template<class RET, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const
+ {
+ CALL_USE_ARGS;
+ return boost::tuples::get<0>(args);
+ }
+
+ template<class SigArgs> struct sig {
+ // typedef typename detail::tuple_element_as_reference<0, SigArgs>::type type;
+ typedef typename boost::tuples::element<0, Args>::type type;
+ };
+};
+
+// Do nothing --------------------------------------------------------
+class do_nothing_action {};
+
+template<class Args>
+class lambda_functor_base<do_nothing_action, Args> {
+ // Args args;
+public:
+ // explicit lambda_functor_base(const Args& a) {}
+ lambda_functor_base() {}
+
+
+ template<class RET, CALL_TEMPLATE_ARGS> RET call(CALL_FORMAL_ARGS) const {
+ return CALL_USE_ARGS;
+ }
+
+ template<class SigArgs> struct sig { typedef void type; };
+};
+
+
+// These specializations provide a shorter notation to define actions.
+// These lambda_functor_base instances take care of the recursive evaluation
+// of the arguments and pass the evaluated arguments to the apply function
+// of an action class. To make action X work with these classes, one must
+// instantiate the lambda_functor_base as:
+// lambda_functor_base<action<ARITY, X>, Args>
+// Where ARITY is the arity of the apply function in X
+
+// The return type is queried as:
+// return_type_N<X, EvaluatedArgumentTypes>::type
+// for which there must be a specialization.
+
+// Function actions, casts, throws,... all go via these classes.
+
+
+template<class Act, class Args>
+class lambda_functor_base<action<0, Act>, Args>
+{
+public:
+// Args args; not needed
+ explicit lambda_functor_base(const Args& /*a*/) {}
+
+ template<class SigArgs> struct sig {
+ typedef typename return_type_N<Act, null_type>::type type;
+ };
+
+ template<class RET, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const {
+ CALL_USE_ARGS;
+ return Act::template apply<RET>();
+ }
+};
+
+
+#if defined BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART
+#error "Multiple defines of BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART"
+#endif
+
+
+#define BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(ARITY) \
+template<class Act, class Args> \
+class lambda_functor_base<action<ARITY, Act>, Args> \
+{ \
+public: \
+ Args args; \
+ \
+ explicit lambda_functor_base(const Args& a) : args(a) {} \
+ \
+ template<class SigArgs> struct sig { \
+ typedef typename \
+ detail::deduce_argument_types<Args, SigArgs>::type rets_t; \
+ public: \
+ typedef typename \
+ return_type_N_prot<Act, rets_t>::type type; \
+ }; \
+ \
+ \
+ template<class RET, CALL_TEMPLATE_ARGS> \
+ RET call(CALL_FORMAL_ARGS) const { \
+ using boost::tuples::get; \
+ using detail::constify_rvals; \
+ using detail::r_select; \
+ using detail::element_or_null; \
+ using detail::deduce_argument_types;
+
+BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(1)
+
+ typedef typename
+ deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
+ typedef typename element_or_null<0, rets_t>::type rt0;
+
+ return Act::template apply<RET>(
+ constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS))
+ );
+ }
+};
+
+
+BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(2)
+
+ typedef typename
+ deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
+ typedef typename element_or_null<0, rets_t>::type rt0;
+ typedef typename element_or_null<1, rets_t>::type rt1;
+
+ return Act::template apply<RET>(
+ constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS))
+ );
+ }
+};
+
+BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(3)
+
+ typedef typename
+ deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
+
+ typedef typename element_or_null<0, rets_t>::type rt0;
+ typedef typename element_or_null<1, rets_t>::type rt1;
+ typedef typename element_or_null<2, rets_t>::type rt2;
+
+ return Act::template apply<RET>(
+ constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS))
+ );
+ }
+};
+
+BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(4)
+ typedef typename
+ deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
+ typedef typename element_or_null<0, rets_t>::type rt0;
+ typedef typename element_or_null<1, rets_t>::type rt1;
+ typedef typename element_or_null<2, rets_t>::type rt2;
+ typedef typename element_or_null<3, rets_t>::type rt3;
+
+ return Act::template apply<RET>(
+ constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS))
+ );
+ }
+};
+
+BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(5)
+ typedef typename
+ deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
+ typedef typename element_or_null<0, rets_t>::type rt0;
+ typedef typename element_or_null<1, rets_t>::type rt1;
+ typedef typename element_or_null<2, rets_t>::type rt2;
+ typedef typename element_or_null<3, rets_t>::type rt3;
+ typedef typename element_or_null<4, rets_t>::type rt4;
+
+ return Act::template apply<RET>(
+ constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS))
+ );
+ }
+};
+
+BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(6)
+
+ typedef typename
+ deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
+ typedef typename element_or_null<0, rets_t>::type rt0;
+ typedef typename element_or_null<1, rets_t>::type rt1;
+ typedef typename element_or_null<2, rets_t>::type rt2;
+ typedef typename element_or_null<3, rets_t>::type rt3;
+ typedef typename element_or_null<4, rets_t>::type rt4;
+ typedef typename element_or_null<5, rets_t>::type rt5;
+
+
+ return Act::template apply<RET>(
+ constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS))
+ );
+ }
+};
+
+BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(7)
+ typedef typename
+ deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
+ typedef typename element_or_null<0, rets_t>::type rt0;
+ typedef typename element_or_null<1, rets_t>::type rt1;
+ typedef typename element_or_null<2, rets_t>::type rt2;
+ typedef typename element_or_null<3, rets_t>::type rt3;
+ typedef typename element_or_null<4, rets_t>::type rt4;
+ typedef typename element_or_null<5, rets_t>::type rt5;
+ typedef typename element_or_null<6, rets_t>::type rt6;
+
+
+ return Act::template apply<RET>(
+ constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS))
+ );
+ }
+};
+
+BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(8)
+ typedef typename
+ deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
+ typedef typename element_or_null<0, rets_t>::type rt0;
+ typedef typename element_or_null<1, rets_t>::type rt1;
+ typedef typename element_or_null<2, rets_t>::type rt2;
+ typedef typename element_or_null<3, rets_t>::type rt3;
+ typedef typename element_or_null<4, rets_t>::type rt4;
+ typedef typename element_or_null<5, rets_t>::type rt5;
+ typedef typename element_or_null<6, rets_t>::type rt6;
+ typedef typename element_or_null<7, rets_t>::type rt7;
+
+ return Act::template apply<RET>(
+ constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt7>::go(r_select<rt7>::go(get<7>(args), CALL_ACTUAL_ARGS))
+ );
+ }
+};
+
+BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(9)
+ typedef typename
+ deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
+ typedef typename element_or_null<0, rets_t>::type rt0;
+ typedef typename element_or_null<1, rets_t>::type rt1;
+ typedef typename element_or_null<2, rets_t>::type rt2;
+ typedef typename element_or_null<3, rets_t>::type rt3;
+ typedef typename element_or_null<4, rets_t>::type rt4;
+ typedef typename element_or_null<5, rets_t>::type rt5;
+ typedef typename element_or_null<6, rets_t>::type rt6;
+ typedef typename element_or_null<7, rets_t>::type rt7;
+ typedef typename element_or_null<8, rets_t>::type rt8;
+
+ return Act::template apply<RET>(
+ constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt7>::go(r_select<rt7>::go(get<7>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt8>::go(r_select<rt8>::go(get<8>(args), CALL_ACTUAL_ARGS))
+ );
+ }
+};
+
+BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(10)
+ typedef typename
+ deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
+ typedef typename element_or_null<0, rets_t>::type rt0;
+ typedef typename element_or_null<1, rets_t>::type rt1;
+ typedef typename element_or_null<2, rets_t>::type rt2;
+ typedef typename element_or_null<3, rets_t>::type rt3;
+ typedef typename element_or_null<4, rets_t>::type rt4;
+ typedef typename element_or_null<5, rets_t>::type rt5;
+ typedef typename element_or_null<6, rets_t>::type rt6;
+ typedef typename element_or_null<7, rets_t>::type rt7;
+ typedef typename element_or_null<8, rets_t>::type rt8;
+ typedef typename element_or_null<9, rets_t>::type rt9;
+
+ return Act::template apply<RET>(
+ constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt7>::go(r_select<rt7>::go(get<7>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt8>::go(r_select<rt8>::go(get<8>(args), CALL_ACTUAL_ARGS)),
+ constify_rvals<rt9>::go(r_select<rt9>::go(get<9>(args), CALL_ACTUAL_ARGS))
+ );
+ }
+};
+
+#undef BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART
+
+
+} // namespace lambda
+} // namespace boost
+
+#endif
diff --git a/3rdParty/Boost/src/boost/lambda/detail/lambda_functors.hpp b/3rdParty/Boost/src/boost/lambda/detail/lambda_functors.hpp
new file mode 100644
index 0000000..9b1b082
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/lambda_functors.hpp
@@ -0,0 +1,324 @@
+// Boost Lambda Library - lambda_functors.hpp -------------------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see http://www.boost.org
+
+// ------------------------------------------------
+
+#ifndef BOOST_LAMBDA_LAMBDA_FUNCTORS_HPP
+#define BOOST_LAMBDA_LAMBDA_FUNCTORS_HPP
+
+#include <boost/config.hpp>
+#include <boost/detail/workaround.hpp>
+
+#if BOOST_WORKAROUND(BOOST_MSVC, == 1310)
+
+#include <boost/mpl/or.hpp>
+#include <boost/utility/enable_if.hpp>
+#include <boost/type_traits/is_array.hpp>
+
+#define BOOST_LAMBDA_DISABLE_IF_ARRAY1(A1, R1)\
+ typename lazy_disable_if<is_array<A1>, typename R1 >::type
+#define BOOST_LAMBDA_DISABLE_IF_ARRAY2(A1, A2, R1, R2) \
+ typename lazy_disable_if<mpl::or_<is_array<A1>, is_array<A2> >, typename R1, R2 >::type
+#define BOOST_LAMBDA_DISABLE_IF_ARRAY3(A1, A2, A3, R1, R2, R3) \
+ typename lazy_disable_if<mpl::or_<is_array<A1>, is_array<A2>, is_array<A3> >, typename R1, R2, R3 >::type
+
+#else
+
+#define BOOST_LAMBDA_DISABLE_IF_ARRAY1(A1, R1) typename R1::type
+#define BOOST_LAMBDA_DISABLE_IF_ARRAY2(A1, A2, R1, R2) typename R1, R2::type
+#define BOOST_LAMBDA_DISABLE_IF_ARRAY3(A1, A2, A3, R1, R2, R3) typename R1, R2, R3::type
+
+#endif
+
+namespace boost {
+namespace lambda {
+
+// -- lambda_functor --------------------------------------------
+// --------------------------------------------------------------
+
+//inline const null_type const_null_type() { return null_type(); }
+
+namespace detail {
+namespace {
+
+ static const null_type constant_null_type = null_type();
+
+} // unnamed
+} // detail
+
+class unused {};
+
+#define cnull_type() detail::constant_null_type
+
+// -- free variables types --------------------------------------------------
+
+ // helper to work around the case where the nullary return type deduction
+ // is always performed, even though the functor is not nullary
+namespace detail {
+ template<int N, class Tuple> struct get_element_or_null_type {
+ typedef typename
+ detail::tuple_element_as_reference<N, Tuple>::type type;
+ };
+ template<int N> struct get_element_or_null_type<N, null_type> {
+ typedef null_type type;
+ };
+}
+
+template <int I> struct placeholder;
+
+template<> struct placeholder<FIRST> {
+
+ template<class SigArgs> struct sig {
+ typedef typename detail::get_element_or_null_type<0, SigArgs>::type type;
+ };
+
+ template<class RET, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const {
+ BOOST_STATIC_ASSERT(boost::is_reference<RET>::value);
+ CALL_USE_ARGS; // does nothing, prevents warnings for unused args
+ return a;
+ }
+};
+
+template<> struct placeholder<SECOND> {
+
+ template<class SigArgs> struct sig {
+ typedef typename detail::get_element_or_null_type<1, SigArgs>::type type;
+ };
+
+ template<class RET, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return b; }
+};
+
+template<> struct placeholder<THIRD> {
+
+ template<class SigArgs> struct sig {
+ typedef typename detail::get_element_or_null_type<2, SigArgs>::type type;
+ };
+
+ template<class RET, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return c; }
+};
+
+template<> struct placeholder<EXCEPTION> {
+
+ template<class SigArgs> struct sig {
+ typedef typename detail::get_element_or_null_type<3, SigArgs>::type type;
+ };
+
+ template<class RET, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return env; }
+};
+
+typedef const lambda_functor<placeholder<FIRST> > placeholder1_type;
+typedef const lambda_functor<placeholder<SECOND> > placeholder2_type;
+typedef const lambda_functor<placeholder<THIRD> > placeholder3_type;
+
+
+///////////////////////////////////////////////////////////////////////////////
+
+
+// free variables are lambda_functors. This is to allow uniform handling with
+// other lambda_functors.
+// -------------------------------------------------------------------
+
+#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
+#pragma warning(push)
+#pragma warning(disable:4512) //assignment operator could not be generated
+#endif
+
+// -- lambda_functor NONE ------------------------------------------------
+template <class T>
+class lambda_functor : public T
+{
+
+BOOST_STATIC_CONSTANT(int, arity_bits = get_arity<T>::value);
+
+public:
+ typedef T inherited;
+
+ lambda_functor() {}
+ lambda_functor(const lambda_functor& l) : inherited(l) {}
+
+ lambda_functor(const T& t) : inherited(t) {}
+
+ template <class SigArgs> struct sig {
+ typedef typename inherited::template
+ sig<typename SigArgs::tail_type>::type type;
+ };
+
+ // Note that this return type deduction template is instantiated, even
+ // if the nullary
+ // operator() is not called at all. One must make sure that it does not fail.
+ typedef typename
+ inherited::template sig<null_type>::type
+ nullary_return_type;
+
+ // Support for boost::result_of.
+ template <class Sig> struct result;
+ template <class F>
+ struct result<F()> {
+ typedef nullary_return_type type;
+ };
+ template <class F, class A>
+ struct result<F(A)> {
+ typedef typename sig<tuple<F, A> >::type type;
+ };
+ template <class F, class A, class B>
+ struct result<F(A, B)> {
+ typedef typename sig<tuple<F, A, B> >::type type;
+ };
+ template <class F, class A, class B, class C>
+ struct result<F(A, B, C)> {
+ typedef typename sig<tuple<F, A, B, C> >::type type;
+ };
+
+ nullary_return_type operator()() const {
+ return inherited::template
+ call<nullary_return_type>
+ (cnull_type(), cnull_type(), cnull_type(), cnull_type());
+ }
+
+ template<class A>
+ typename inherited::template sig<tuple<A&> >::type
+ operator()(A& a) const {
+ return inherited::template call<
+ typename inherited::template sig<tuple<A&> >::type
+ >(a, cnull_type(), cnull_type(), cnull_type());
+ }
+
+ template<class A>
+ BOOST_LAMBDA_DISABLE_IF_ARRAY1(A, inherited::template sig<tuple<A const&> >)
+ operator()(A const& a) const {
+ return inherited::template call<
+ typename inherited::template sig<tuple<A const&> >::type
+ >(a, cnull_type(), cnull_type(), cnull_type());
+ }
+
+ template<class A, class B>
+ typename inherited::template sig<tuple<A&, B&> >::type
+ operator()(A& a, B& b) const {
+ return inherited::template call<
+ typename inherited::template sig<tuple<A&, B&> >::type
+ >(a, b, cnull_type(), cnull_type());
+ }
+
+ template<class A, class B>
+ BOOST_LAMBDA_DISABLE_IF_ARRAY2(A, B, inherited::template sig<tuple<A const&, B&> >)
+ operator()(A const& a, B& b) const {
+ return inherited::template call<
+ typename inherited::template sig<tuple<A const&, B&> >::type
+ >(a, b, cnull_type(), cnull_type());
+ }
+
+ template<class A, class B>
+ BOOST_LAMBDA_DISABLE_IF_ARRAY2(A, B, inherited::template sig<tuple<A&, B const&> >)
+ operator()(A& a, B const& b) const {
+ return inherited::template call<
+ typename inherited::template sig<tuple<A&, B const&> >::type
+ >(a, b, cnull_type(), cnull_type());
+ }
+
+ template<class A, class B>
+ BOOST_LAMBDA_DISABLE_IF_ARRAY2(A, B, inherited::template sig<tuple<A const&, B const&> >)
+ operator()(A const& a, B const& b) const {
+ return inherited::template call<
+ typename inherited::template sig<tuple<A const&, B const&> >::type
+ >(a, b, cnull_type(), cnull_type());
+ }
+
+ template<class A, class B, class C>
+ typename inherited::template sig<tuple<A&, B&, C&> >::type
+ operator()(A& a, B& b, C& c) const
+ {
+ return inherited::template call<
+ typename inherited::template sig<tuple<A&, B&, C&> >::type
+ >(a, b, c, cnull_type());
+ }
+
+ template<class A, class B, class C>
+ BOOST_LAMBDA_DISABLE_IF_ARRAY3(A, B, C, inherited::template sig<tuple<A const&, B const&, C const&> >)
+ operator()(A const& a, B const& b, C const& c) const
+ {
+ return inherited::template call<
+ typename inherited::template sig<tuple<A const&, B const&, C const&> >::type
+ >(a, b, c, cnull_type());
+ }
+
+ // for internal calls with env
+ template<CALL_TEMPLATE_ARGS>
+ typename inherited::template sig<tuple<CALL_REFERENCE_TYPES> >::type
+ internal_call(CALL_FORMAL_ARGS) const {
+ return inherited::template
+ call<typename inherited::template
+ sig<tuple<CALL_REFERENCE_TYPES> >::type>(CALL_ACTUAL_ARGS);
+ }
+
+ template<class A>
+ const lambda_functor<lambda_functor_base<
+ other_action<assignment_action>,
+ boost::tuple<lambda_functor,
+ typename const_copy_argument <const A>::type> > >
+ operator=(const A& a) const {
+ return lambda_functor_base<
+ other_action<assignment_action>,
+ boost::tuple<lambda_functor,
+ typename const_copy_argument <const A>::type> >
+ ( boost::tuple<lambda_functor,
+ typename const_copy_argument <const A>::type>(*this, a) );
+ }
+
+ template<class A>
+ const lambda_functor<lambda_functor_base<
+ other_action<subscript_action>,
+ boost::tuple<lambda_functor,
+ typename const_copy_argument <const A>::type> > >
+ operator[](const A& a) const {
+ return lambda_functor_base<
+ other_action<subscript_action>,
+ boost::tuple<lambda_functor,
+ typename const_copy_argument <const A>::type> >
+ ( boost::tuple<lambda_functor,
+ typename const_copy_argument <const A>::type>(*this, a ) );
+ }
+};
+
+#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
+#pragma warning(pop)
+#endif
+
+} // namespace lambda
+} // namespace boost
+
+// is_placeholder
+
+#include <boost/is_placeholder.hpp>
+
+namespace boost
+{
+
+template<> struct is_placeholder< lambda::lambda_functor< lambda::placeholder<lambda::FIRST> > >
+{
+ enum _vt { value = 1 };
+};
+
+template<> struct is_placeholder< lambda::lambda_functor< lambda::placeholder<lambda::SECOND> > >
+{
+ enum _vt { value = 2 };
+};
+
+template<> struct is_placeholder< lambda::lambda_functor< lambda::placeholder<lambda::THIRD> > >
+{
+ enum _vt { value = 3 };
+};
+
+} // namespace boost
+
+#endif
diff --git a/3rdParty/Boost/src/boost/lambda/detail/lambda_fwd.hpp b/3rdParty/Boost/src/boost/lambda/detail/lambda_fwd.hpp
new file mode 100644
index 0000000..a27bfad
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/lambda_fwd.hpp
@@ -0,0 +1,74 @@
+// lambda_fwd.hpp - Boost Lambda Library -------------------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+// -------------------------------------------------------
+
+#ifndef BOOST_LAMBDA_FWD_HPP
+#define BOOST_LAMBDA_FWD_HPP
+
+namespace boost {
+namespace lambda {
+
+namespace detail {
+
+template<class T> struct generate_error;
+
+}
+// -- placeholders --------------------------------------------
+
+template <int I> struct placeholder;
+
+// function_adaptors
+template <class Func>
+struct function_adaptor;
+
+template <int I, class Act> class action;
+
+template <class Base>
+class lambda_functor;
+
+template <class Act, class Args>
+class lambda_functor_base;
+
+} // namespace lambda
+} // namespace boost
+
+
+// #define CALL_TEMPLATE_ARGS class A, class Env
+// #define CALL_FORMAL_ARGS A& a, Env& env
+// #define CALL_ACTUAL_ARGS a, env
+// #define CALL_ACTUAL_ARGS_NO_ENV a
+// #define CALL_REFERENCE_TYPES A&, Env&
+// #define CALL_PLAIN_TYPES A, Env
+#define CALL_TEMPLATE_ARGS class A, class B, class C, class Env
+#define CALL_FORMAL_ARGS A& a, B& b, C& c, Env& env
+#define CALL_ACTUAL_ARGS a, b, c, env
+#define CALL_ACTUAL_ARGS_NO_ENV a, b, c
+#define CALL_REFERENCE_TYPES A&, B&, C&, Env&
+#define CALL_PLAIN_TYPES A, B, C, Env
+
+namespace boost {
+namespace lambda {
+namespace detail {
+
+template<class A1, class A2, class A3, class A4>
+void do_nothing(A1&, A2&, A3&, A4&) {}
+
+} // detail
+} // lambda
+} // boost
+
+// prevent the warnings from unused arguments
+#define CALL_USE_ARGS \
+::boost::lambda::detail::do_nothing(a, b, c, env)
+
+
+
+#endif
diff --git a/3rdParty/Boost/src/boost/lambda/detail/lambda_traits.hpp b/3rdParty/Boost/src/boost/lambda/detail/lambda_traits.hpp
new file mode 100644
index 0000000..f35fa09
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/lambda_traits.hpp
@@ -0,0 +1,578 @@
+// - lambda_traits.hpp --- Boost Lambda Library ----------------------------
+//
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+// -------------------------------------------------------------------------
+
+#ifndef BOOST_LAMBDA_LAMBDA_TRAITS_HPP
+#define BOOST_LAMBDA_LAMBDA_TRAITS_HPP
+
+#include "boost/type_traits/transform_traits.hpp"
+#include "boost/type_traits/cv_traits.hpp"
+#include "boost/type_traits/function_traits.hpp"
+#include "boost/type_traits/object_traits.hpp"
+#include "boost/tuple/tuple.hpp"
+
+namespace boost {
+namespace lambda {
+
+// -- if construct ------------------------------------------------
+// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
+
+namespace detail {
+
+template <bool If, class Then, class Else> struct IF { typedef Then RET; };
+
+template <class Then, class Else> struct IF<false, Then, Else> {
+ typedef Else RET;
+};
+
+
+// An if construct that doesn't instantiate the non-matching template:
+
+// Called as:
+// IF_type<condition, A, B>::type
+// The matching template must define the typeded 'type'
+// I.e. A::type if condition is true, B::type if condition is false
+// Idea from Vesa Karvonen (from C&E as well I guess)
+template<class T>
+struct IF_type_
+{
+ typedef typename T::type type;
+};
+
+
+template<bool C, class T, class E>
+struct IF_type
+{
+ typedef typename
+ IF_type_<typename IF<C, T, E>::RET >::type type;
+};
+
+// helper that can be used to give typedef T to some type
+template <class T> struct identity_mapping { typedef T type; };
+
+// An if construct for finding an integral constant 'value'
+// Does not instantiate the non-matching branch
+// Called as IF_value<condition, A, B>::value
+// If condition is true A::value must be defined, otherwise B::value
+
+template<class T>
+struct IF_value_
+{
+ BOOST_STATIC_CONSTANT(int, value = T::value);
+};
+
+
+template<bool C, class T, class E>
+struct IF_value
+{
+ BOOST_STATIC_CONSTANT(int, value = (IF_value_<typename IF<C, T, E>::RET>::value));
+};
+
+
+// --------------------------------------------------------------
+
+// removes reference from other than function types:
+template<class T> class remove_reference_if_valid
+{
+
+ typedef typename boost::remove_reference<T>::type plainT;
+public:
+ typedef typename IF<
+ boost::is_function<plainT>::value,
+ T,
+ plainT
+ >::RET type;
+
+};
+
+
+template<class T> struct remove_reference_and_cv {
+ typedef typename boost::remove_cv<
+ typename boost::remove_reference<T>::type
+ >::type type;
+};
+
+
+
+// returns a reference to the element of tuple T
+template<int N, class T> struct tuple_element_as_reference {
+ typedef typename
+ boost::tuples::access_traits<
+ typename boost::tuples::element<N, T>::type
+ >::non_const_type type;
+};
+
+// returns the cv and reverence stripped type of a tuple element
+template<int N, class T> struct tuple_element_stripped {
+ typedef typename
+ remove_reference_and_cv<
+ typename boost::tuples::element<N, T>::type
+ >::type type;
+};
+
+// is_lambda_functor -------------------------------------------------
+
+template <class T> struct is_lambda_functor_ {
+ BOOST_STATIC_CONSTANT(bool, value = false);
+};
+
+template <class Arg> struct is_lambda_functor_<lambda_functor<Arg> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+
+} // end detail
+
+
+template <class T> struct is_lambda_functor {
+ BOOST_STATIC_CONSTANT(bool,
+ value =
+ detail::is_lambda_functor_<
+ typename detail::remove_reference_and_cv<T>::type
+ >::value);
+};
+
+
+namespace detail {
+
+// -- parameter_traits_ ---------------------------------------------
+
+// An internal parameter type traits class that respects
+// the reference_wrapper class.
+
+// The conversions performed are:
+// references -> compile_time_error
+// T1 -> T2,
+// reference_wrapper<T> -> T&
+// const array -> ref to const array
+// array -> ref to array
+// function -> ref to function
+
+// ------------------------------------------------------------------------
+
+template<class T1, class T2>
+struct parameter_traits_ {
+ typedef T2 type;
+};
+
+// Do not instantiate with reference types
+template<class T, class Any> struct parameter_traits_<T&, Any> {
+ typedef typename
+ generate_error<T&>::
+ parameter_traits_class_instantiated_with_reference_type type;
+};
+
+// Arrays can't be stored as plain types; convert them to references
+template<class T, int n, class Any> struct parameter_traits_<T[n], Any> {
+ typedef T (&type)[n];
+};
+
+template<class T, int n, class Any>
+struct parameter_traits_<const T[n], Any> {
+ typedef const T (&type)[n];
+};
+
+template<class T, int n, class Any>
+struct parameter_traits_<volatile T[n], Any> {
+ typedef volatile T (&type)[n];
+};
+template<class T, int n, class Any>
+struct parameter_traits_<const volatile T[n], Any> {
+ typedef const volatile T (&type)[n];
+};
+
+
+template<class T, class Any>
+struct parameter_traits_<boost::reference_wrapper<T>, Any >{
+ typedef T& type;
+};
+
+template<class T, class Any>
+struct parameter_traits_<const boost::reference_wrapper<T>, Any >{
+ typedef T& type;
+};
+
+template<class T, class Any>
+struct parameter_traits_<volatile boost::reference_wrapper<T>, Any >{
+ typedef T& type;
+};
+
+template<class T, class Any>
+struct parameter_traits_<const volatile boost::reference_wrapper<T>, Any >{
+ typedef T& type;
+};
+
+template<class Any>
+struct parameter_traits_<void, Any> {
+ typedef void type;
+};
+
+template<class Arg, class Any>
+struct parameter_traits_<lambda_functor<Arg>, Any > {
+ typedef lambda_functor<Arg> type;
+};
+
+template<class Arg, class Any>
+struct parameter_traits_<const lambda_functor<Arg>, Any > {
+ typedef lambda_functor<Arg> type;
+};
+
+// Are the volatile versions needed?
+template<class Arg, class Any>
+struct parameter_traits_<volatile lambda_functor<Arg>, Any > {
+ typedef lambda_functor<Arg> type;
+};
+
+template<class Arg, class Any>
+struct parameter_traits_<const volatile lambda_functor<Arg>, Any > {
+ typedef lambda_functor<Arg> type;
+};
+
+} // end namespace detail
+
+
+// ------------------------------------------------------------------------
+// traits classes for lambda expressions (bind functions, operators ...)
+
+// must be instantiated with non-reference types
+
+// The default is const plain type -------------------------
+// const T -> const T,
+// T -> const T,
+// references -> compile_time_error
+// reference_wrapper<T> -> T&
+// array -> const ref array
+template<class T>
+struct const_copy_argument {
+ typedef typename
+ detail::parameter_traits_<
+ T,
+ typename detail::IF<boost::is_function<T>::value, T&, const T>::RET
+ >::type type;
+};
+
+// T may be a function type. Without the IF test, const would be added
+// to a function type, which is illegal.
+
+// all arrays are converted to const.
+// This traits template is used for 'const T&' parameter passing
+// and thus the knowledge of the potential
+// non-constness of an actual argument is lost.
+template<class T, int n> struct const_copy_argument <T[n]> {
+ typedef const T (&type)[n];
+};
+template<class T, int n> struct const_copy_argument <volatile T[n]> {
+ typedef const volatile T (&type)[n];
+};
+
+template<class T>
+struct const_copy_argument<T&> {};
+// do not instantiate with references
+ // typedef typename detail::generate_error<T&>::references_not_allowed type;
+
+
+template<>
+struct const_copy_argument<void> {
+ typedef void type;
+};
+
+
+// Does the same as const_copy_argument, but passes references through as such
+template<class T>
+struct bound_argument_conversion {
+ typedef typename const_copy_argument<T>::type type;
+};
+
+template<class T>
+struct bound_argument_conversion<T&> {
+ typedef T& type;
+};
+
+// The default is non-const reference -------------------------
+// const T -> const T&,
+// T -> T&,
+// references -> compile_time_error
+// reference_wrapper<T> -> T&
+template<class T>
+struct reference_argument {
+ typedef typename detail::parameter_traits_<T, T&>::type type;
+};
+
+template<class T>
+struct reference_argument<T&> {
+ typedef typename detail::generate_error<T&>::references_not_allowed type;
+};
+
+template<class Arg>
+struct reference_argument<lambda_functor<Arg> > {
+ typedef lambda_functor<Arg> type;
+};
+
+template<class Arg>
+struct reference_argument<const lambda_functor<Arg> > {
+ typedef lambda_functor<Arg> type;
+};
+
+// Are the volatile versions needed?
+template<class Arg>
+struct reference_argument<volatile lambda_functor<Arg> > {
+ typedef lambda_functor<Arg> type;
+};
+
+template<class Arg>
+struct reference_argument<const volatile lambda_functor<Arg> > {
+ typedef lambda_functor<Arg> type;
+};
+
+template<>
+struct reference_argument<void> {
+ typedef void type;
+};
+
+namespace detail {
+
+// Array to pointer conversion
+template <class T>
+struct array_to_pointer {
+ typedef T type;
+};
+
+template <class T, int N>
+struct array_to_pointer <const T[N]> {
+ typedef const T* type;
+};
+template <class T, int N>
+struct array_to_pointer <T[N]> {
+ typedef T* type;
+};
+
+template <class T, int N>
+struct array_to_pointer <const T (&) [N]> {
+ typedef const T* type;
+};
+template <class T, int N>
+struct array_to_pointer <T (&) [N]> {
+ typedef T* type;
+};
+
+
+// ---------------------------------------------------------------------------
+// The call_traits for bind
+// Respects the reference_wrapper class.
+
+// These templates are used outside of bind functions as well.
+// the bind_tuple_mapper provides a shorter notation for default
+// bound argument storing semantics, if all arguments are treated
+// uniformly.
+
+// from template<class T> foo(const T& t) : bind_traits<const T>::type
+// from template<class T> foo(T& t) : bind_traits<T>::type
+
+// Conversions:
+// T -> const T,
+// cv T -> cv T,
+// T& -> T&
+// reference_wrapper<T> -> T&
+// const reference_wrapper<T> -> T&
+// array -> const ref array
+
+// make bound arguments const, this is a deliberate design choice, the
+// purpose is to prevent side effects to bound arguments that are stored
+// as copies
+template<class T>
+struct bind_traits {
+ typedef const T type;
+};
+
+template<class T>
+struct bind_traits<T&> {
+ typedef T& type;
+};
+
+// null_types are an exception, we always want to store them as non const
+// so that other templates can assume that null_type is always without const
+template<>
+struct bind_traits<null_type> {
+ typedef null_type type;
+};
+
+// the bind_tuple_mapper, bind_type_generators may
+// introduce const to null_type
+template<>
+struct bind_traits<const null_type> {
+ typedef null_type type;
+};
+
+// Arrays can't be stored as plain types; convert them to references.
+// All arrays are converted to const. This is because bind takes its
+// parameters as const T& and thus the knowledge of the potential
+// non-constness of actual argument is lost.
+template<class T, int n> struct bind_traits <T[n]> {
+ typedef const T (&type)[n];
+};
+
+template<class T, int n>
+struct bind_traits<const T[n]> {
+ typedef const T (&type)[n];
+};
+
+template<class T, int n> struct bind_traits<volatile T[n]> {
+ typedef const volatile T (&type)[n];
+};
+
+template<class T, int n>
+struct bind_traits<const volatile T[n]> {
+ typedef const volatile T (&type)[n];
+};
+
+template<class R>
+struct bind_traits<R()> {
+ typedef R(&type)();
+};
+
+template<class R, class Arg1>
+struct bind_traits<R(Arg1)> {
+ typedef R(&type)(Arg1);
+};
+
+template<class R, class Arg1, class Arg2>
+struct bind_traits<R(Arg1, Arg2)> {
+ typedef R(&type)(Arg1, Arg2);
+};
+
+template<class R, class Arg1, class Arg2, class Arg3>
+struct bind_traits<R(Arg1, Arg2, Arg3)> {
+ typedef R(&type)(Arg1, Arg2, Arg3);
+};
+
+template<class R, class Arg1, class Arg2, class Arg3, class Arg4>
+struct bind_traits<R(Arg1, Arg2, Arg3, Arg4)> {
+ typedef R(&type)(Arg1, Arg2, Arg3, Arg4);
+};
+
+template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
+struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5)> {
+ typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5);
+};
+
+template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6>
+struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
+ typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6);
+};
+
+template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7>
+struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
+ typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7);
+};
+
+template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8>
+struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
+ typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8);
+};
+
+template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9>
+struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
+ typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9);
+};
+
+template<class T>
+struct bind_traits<reference_wrapper<T> >{
+ typedef T& type;
+};
+
+template<class T>
+struct bind_traits<const reference_wrapper<T> >{
+ typedef T& type;
+};
+
+template<>
+struct bind_traits<void> {
+ typedef void type;
+};
+
+
+
+template <
+ class T0 = null_type, class T1 = null_type, class T2 = null_type,
+ class T3 = null_type, class T4 = null_type, class T5 = null_type,
+ class T6 = null_type, class T7 = null_type, class T8 = null_type,
+ class T9 = null_type
+>
+struct bind_tuple_mapper {
+ typedef
+ tuple<typename bind_traits<T0>::type,
+ typename bind_traits<T1>::type,
+ typename bind_traits<T2>::type,
+ typename bind_traits<T3>::type,
+ typename bind_traits<T4>::type,
+ typename bind_traits<T5>::type,
+ typename bind_traits<T6>::type,
+ typename bind_traits<T7>::type,
+ typename bind_traits<T8>::type,
+ typename bind_traits<T9>::type> type;
+};
+
+// bind_traits, except map const T& -> const T
+ // this is needed e.g. in currying. Const reference arguments can
+ // refer to temporaries, so it is not safe to store them as references.
+ template <class T> struct remove_const_reference {
+ typedef typename bind_traits<T>::type type;
+ };
+
+ template <class T> struct remove_const_reference<const T&> {
+ typedef const T type;
+ };
+
+
+// maps the bind argument types to the resulting lambda functor type
+template <
+ class T0 = null_type, class T1 = null_type, class T2 = null_type,
+ class T3 = null_type, class T4 = null_type, class T5 = null_type,
+ class T6 = null_type, class T7 = null_type, class T8 = null_type,
+ class T9 = null_type
+>
+class bind_type_generator {
+
+ typedef typename
+ detail::bind_tuple_mapper<
+ T0, T1, T2, T3, T4, T5, T6, T7, T8, T9
+ >::type args_t;
+
+ BOOST_STATIC_CONSTANT(int, nof_elems = boost::tuples::length<args_t>::value);
+
+ typedef
+ action<
+ nof_elems,
+ function_action<nof_elems>
+ > action_type;
+
+public:
+ typedef
+ lambda_functor<
+ lambda_functor_base<
+ action_type,
+ args_t
+ >
+ > type;
+
+};
+
+
+
+} // detail
+
+template <class T> inline const T& make_const(const T& t) { return t; }
+
+
+} // end of namespace lambda
+} // end of namespace boost
+
+
+
+#endif // BOOST_LAMBDA_TRAITS_HPP
diff --git a/3rdParty/Boost/src/boost/lambda/detail/member_ptr.hpp b/3rdParty/Boost/src/boost/lambda/detail/member_ptr.hpp
new file mode 100644
index 0000000..288f70c
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/member_ptr.hpp
@@ -0,0 +1,737 @@
+// Boost Lambda Library -- member_ptr.hpp ---------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+// Copyright (C) 2000 Gary Powell (gary.powell@sierra.com)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+// --------------------------------------------------------------------------
+
+#if !defined(BOOST_LAMBDA_MEMBER_PTR_HPP)
+#define BOOST_LAMBDA_MEMBER_PTR_HPP
+
+namespace boost {
+namespace lambda {
+
+
+class member_pointer_action {};
+
+
+namespace detail {
+
+// the boost type_traits member_pointer traits are not enough,
+// need to know more details.
+template<class T>
+struct member_pointer {
+ typedef typename boost::add_reference<T>::type type;
+ typedef detail::unspecified class_type;
+ typedef detail::unspecified qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = false);
+};
+
+template<class T, class U>
+struct member_pointer<T U::*> {
+ typedef typename boost::add_reference<T>::type type;
+ typedef U class_type;
+ typedef U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = true);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = false);
+};
+
+template<class T, class U>
+struct member_pointer<const T U::*> {
+ typedef typename boost::add_reference<const T>::type type;
+ typedef U class_type;
+ typedef const U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = true);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = false);
+};
+
+template<class T, class U>
+struct member_pointer<volatile T U::*> {
+ typedef typename boost::add_reference<volatile T>::type type;
+ typedef U class_type;
+ typedef volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = true);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = false);
+};
+
+template<class T, class U>
+struct member_pointer<const volatile T U::*> {
+ typedef typename boost::add_reference<const volatile T>::type type;
+ typedef U class_type;
+ typedef const volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = true);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = false);
+};
+
+// -- nonconst member functions --
+template<class T, class U>
+struct member_pointer<T (U::*)()> {
+ typedef T type;
+ typedef U class_type;
+ typedef U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1>
+struct member_pointer<T (U::*)(A1)> {
+ typedef T type;
+ typedef U class_type;
+ typedef U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2>
+struct member_pointer<T (U::*)(A1, A2)> {
+ typedef T type;
+ typedef U class_type;
+ typedef U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3>
+struct member_pointer<T (U::*)(A1, A2, A3)> {
+ typedef T type;
+ typedef U class_type;
+ typedef U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4>
+struct member_pointer<T (U::*)(A1, A2, A3, A4)> {
+ typedef T type;
+ typedef U class_type;
+ typedef U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5)> {
+ typedef T type;
+ typedef U class_type;
+ typedef U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6)> {
+ typedef T type;
+ typedef U class_type;
+ typedef U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7)> {
+ typedef T type;
+ typedef U class_type;
+ typedef U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7, class A8>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8)> {
+ typedef T type;
+ typedef U class_type;
+ typedef U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7, class A8, class A9>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9)> {
+ typedef T type;
+ typedef U class_type;
+ typedef U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+// -- const member functions --
+template<class T, class U>
+struct member_pointer<T (U::*)() const> {
+ typedef T type;
+ typedef U class_type;
+ typedef const U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1>
+struct member_pointer<T (U::*)(A1) const> {
+ typedef T type;
+ typedef U class_type;
+ typedef const U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2>
+struct member_pointer<T (U::*)(A1, A2) const> {
+ typedef T type;
+ typedef U class_type;
+ typedef const U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3>
+struct member_pointer<T (U::*)(A1, A2, A3) const> {
+ typedef T type;
+ typedef U class_type;
+ typedef const U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4>
+struct member_pointer<T (U::*)(A1, A2, A3, A4) const> {
+ typedef T type;
+ typedef U class_type;
+ typedef const U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5) const> {
+ typedef T type;
+ typedef U class_type;
+ typedef const U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6) const> {
+ typedef T type;
+ typedef U class_type;
+ typedef const U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7) const> {
+ typedef T type;
+ typedef U class_type;
+ typedef const U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7, class A8>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8) const> {
+ typedef T type;
+ typedef U class_type;
+ typedef const U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7, class A8, class A9>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9) const> {
+ typedef T type;
+ typedef U class_type;
+ typedef const U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+ // -- volatile --
+template<class T, class U>
+struct member_pointer<T (U::*)() volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1>
+struct member_pointer<T (U::*)(A1) volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2>
+struct member_pointer<T (U::*)(A1, A2) volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3>
+struct member_pointer<T (U::*)(A1, A2, A3) volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4>
+struct member_pointer<T (U::*)(A1, A2, A3, A4) volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5) volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6) volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7) volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7, class A8>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8) volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7, class A8, class A9>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9) volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+ // -- const volatile
+template<class T, class U>
+struct member_pointer<T (U::*)() const volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef const volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1>
+struct member_pointer<T (U::*)(A1) const volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef const volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2>
+struct member_pointer<T (U::*)(A1, A2) const volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef const volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3>
+struct member_pointer<T (U::*)(A1, A2, A3) const volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef const volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4>
+struct member_pointer<T (U::*)(A1, A2, A3, A4) const volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef const volatile U qualified_class_type;
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5) const volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef const volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6) const volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef const volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7) const volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef const volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7, class A8>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8) const volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef const volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+template<class T, class U, class A1, class A2, class A3, class A4, class A5,
+ class A6, class A7, class A8, class A9>
+struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9) const volatile> {
+ typedef T type;
+ typedef U class_type;
+ typedef const volatile U qualified_class_type;
+ BOOST_STATIC_CONSTANT(bool, is_data_member = false);
+ BOOST_STATIC_CONSTANT(bool, is_function_member = true);
+};
+
+} // detail
+
+namespace detail {
+
+ // this class holds a pointer to a member function and the object.
+ // when called, it just calls the member function with the parameters
+ // provided
+
+ // It would have been possible to use existing lambda_functors to represent
+ // a bound member function like this, but to have a separate template is
+ // safer, since now this functor doesn't mix and match with lambda_functors
+ // only thing you can do with this is to call it
+
+ // note that previously instantiated classes
+ // (other_action<member_pointer_action> and member_pointer_action_helper
+ // guarantee, that A and B are
+ // such types, that for objects a and b of corresponding types, a->*b leads
+ // to the builtin ->* to be called. So types that would end in a call to
+ // a user defined ->* do not create a member_pointer_caller object.
+
+template<class RET, class A, class B>
+class member_pointer_caller {
+ A a; B b;
+
+public:
+ member_pointer_caller(const A& aa, const B& bb) : a(aa), b(bb) {}
+
+ RET operator()() const { return (a->*b)(); }
+
+ template<class A1>
+ RET operator()(const A1& a1) const { return (a->*b)(a1); }
+
+ template<class A1, class A2>
+ RET operator()(const A1& a1, const A2& a2) const { return (a->*b)(a1, a2); }
+
+ template<class A1, class A2, class A3>
+ RET operator()(const A1& a1, const A2& a2, const A3& a3) const {
+ return (a->*b)(a1, a2, a3);
+ }
+
+ template<class A1, class A2, class A3, class A4>
+ RET operator()(const A1& a1, const A2& a2, const A3& a3,
+ const A4& a4) const {
+ return (a->*b)(a1, a2, a3, a4);
+ }
+
+ template<class A1, class A2, class A3, class A4, class A5>
+ RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
+ const A5& a5) const {
+ return (a->*b)(a1, a2, a3, a4, a5);
+ }
+
+ template<class A1, class A2, class A3, class A4, class A5, class A6>
+ RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
+ const A5& a5, const A6& a6) const {
+ return (a->*b)(a1, a2, a3, a4, a5, a6);
+ }
+
+ template<class A1, class A2, class A3, class A4, class A5, class A6,
+ class A7>
+ RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
+ const A5& a5, const A6& a6, const A7& a7) const {
+ return (a->*b)(a1, a2, a3, a4, a5, a6, a7);
+ }
+
+ template<class A1, class A2, class A3, class A4, class A5, class A6,
+ class A7, class A8>
+ RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
+ const A5& a5, const A6& a6, const A7& a7,
+ const A8& a8) const {
+ return (a->*b)(a1, a2, a3, a4, a5, a6, a7, a8);
+ }
+
+ template<class A1, class A2, class A3, class A4, class A5, class A6,
+ class A7, class A8, class A9>
+ RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
+ const A5& a5, const A6& a6, const A7& a7,
+ const A8& a8, const A9& a9) const {
+ return (a->*b)(a1, a2, a3, a4, a5, a6, a7, a8, a9);
+ }
+
+};
+
+// helper templates for return type deduction and action classes
+// different cases for data member, function member, neither
+
+// true-true case
+template <bool Is_data_member, bool Is_function_member>
+struct member_pointer_action_helper;
+ // cannot be both, no body provided
+
+ // data member case
+ // this means, that B is a data member and A is a pointer type,
+ // so either built-in ->* should be called, or there is an error
+template <>
+struct member_pointer_action_helper<true, false> {
+public:
+
+ template<class RET, class A, class B>
+ static RET apply(A& a, B& b) {
+ return a->*b;
+ }
+
+ template<class A, class B>
+ struct return_type {
+ private:
+ typedef typename detail::remove_reference_and_cv<B>::type plainB;
+
+ typedef typename detail::member_pointer<plainB>::type type0;
+ // we remove the reference now, as we may have to add cv:s
+ typedef typename boost::remove_reference<type0>::type type1;
+
+ // A is a reference to pointer
+ // remove the top level cv qualifiers and reference
+ typedef typename
+ detail::remove_reference_and_cv<A>::type non_ref_A;
+
+ // A is a pointer type, so take the type pointed to
+ typedef typename ::boost::remove_pointer<non_ref_A>::type non_pointer_A;
+
+ public:
+ // For non-reference types, we must add const and/or volatile if
+ // the pointer type has these qualifiers
+ // If the member is a reference, these do not have any effect
+ // (cv T == T if T is a reference type)
+ typedef typename detail::IF<
+ ::boost::is_const<non_pointer_A>::value,
+ typename ::boost::add_const<type1>::type,
+ type1
+ >::RET type2;
+ typedef typename detail::IF<
+ ::boost::is_volatile<non_pointer_A>::value,
+ typename ::boost::add_volatile<type2>::type,
+ type2
+ >::RET type3;
+ // add reference back
+ typedef typename ::boost::add_reference<type3>::type type;
+ };
+};
+
+ // neither case
+template <>
+struct member_pointer_action_helper<false, false> {
+public:
+ template<class RET, class A, class B>
+ static RET apply(A& a, B& b) {
+// not a built in member pointer operator, just call ->*
+ return a->*b;
+ }
+ // an overloaded member pointer operators, user should have specified
+ // the return type
+ // At this point we know that there is no matching specialization for
+ // return_type_2, so try return_type_2_plain
+ template<class A, class B>
+ struct return_type {
+
+ typedef typename plain_return_type_2<
+ other_action<member_pointer_action>, A, B
+ >::type type;
+ };
+
+};
+
+
+// member pointer function case
+// This is a built in ->* call for a member function,
+// the only thing that you can do with that, is to give it some arguments
+// note, it is guaranteed that A is a pointer type, and thus it cannot
+// be a call to overloaded ->*
+template <>
+struct member_pointer_action_helper<false, true> {
+ public:
+
+ template<class RET, class A, class B>
+ static RET apply(A& a, B& b) {
+ typedef typename ::boost::remove_cv<B>::type plainB;
+ typedef typename detail::member_pointer<plainB>::type ret_t;
+ typedef typename ::boost::remove_cv<A>::type plainA;
+
+ // we always strip cv:s to
+ // make the two routes (calling and type deduction)
+ // to give the same results (and the const does not make any functional
+ // difference)
+ return detail::member_pointer_caller<ret_t, plainA, plainB>(a, b);
+ }
+
+ template<class A, class B>
+ struct return_type {
+ typedef typename detail::remove_reference_and_cv<B>::type plainB;
+ typedef typename detail::member_pointer<plainB>::type ret_t;
+ typedef typename detail::remove_reference_and_cv<A>::type plainA;
+
+ typedef detail::member_pointer_caller<ret_t, plainA, plainB> type;
+ };
+};
+
+} // detail
+
+template<> class other_action<member_pointer_action> {
+public:
+ template<class RET, class A, class B>
+ static RET apply(A& a, B& b) {
+ typedef typename
+ ::boost::remove_cv<B>::type plainB;
+
+ return detail::member_pointer_action_helper<
+ boost::is_pointer<A>::value &&
+ detail::member_pointer<plainB>::is_data_member,
+ boost::is_pointer<A>::value &&
+ detail::member_pointer<plainB>::is_function_member
+ >::template apply<RET>(a, b);
+ }
+};
+
+ // return type deduction --
+
+ // If the right argument is a pointer to data member,
+ // and the left argument is of compatible pointer to class type
+ // return type is a reference to the data member type
+
+ // if right argument is a pointer to a member function, and the left
+ // argument is of a compatible type, the return type is a
+ // member_pointer_caller (see above)
+
+ // Otherwise, return type deduction fails. There is either an error,
+ // or the user is trying to call an overloaded ->*
+ // In such a case either ret<> must be used, or a return_type_2 user
+ // defined specialization must be provided
+
+
+template<class A, class B>
+struct return_type_2<other_action<member_pointer_action>, A, B> {
+private:
+ typedef typename
+ detail::remove_reference_and_cv<B>::type plainB;
+public:
+ typedef typename
+ detail::member_pointer_action_helper<
+ detail::member_pointer<plainB>::is_data_member,
+ detail::member_pointer<plainB>::is_function_member
+ >::template return_type<A, B>::type type;
+};
+
+ // this is the way the generic lambda_functor_base functions instantiate
+ // return type deduction. We turn it into return_type_2, so that the
+ // user can provide specializations on that level.
+template<class Args>
+struct return_type_N<other_action<member_pointer_action>, Args> {
+ typedef typename boost::tuples::element<0, Args>::type A;
+ typedef typename boost::tuples::element<1, Args>::type B;
+ typedef typename
+ return_type_2<other_action<member_pointer_action>,
+ typename boost::remove_reference<A>::type,
+ typename boost::remove_reference<B>::type
+ >::type type;
+};
+
+
+template<class Arg1, class Arg2>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<2, other_action<member_pointer_action> >,
+ tuple<lambda_functor<Arg1>, typename const_copy_argument<Arg2>::type>
+ >
+>
+operator->*(const lambda_functor<Arg1>& a1, const Arg2& a2)
+{
+ return
+ lambda_functor_base<
+ action<2, other_action<member_pointer_action> >,
+ tuple<lambda_functor<Arg1>, typename const_copy_argument<Arg2>::type>
+ >
+ (tuple<lambda_functor<Arg1>,
+ typename const_copy_argument<Arg2>::type>(a1, a2));
+}
+
+template<class Arg1, class Arg2>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<2, other_action<member_pointer_action> >,
+ tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
+ >
+>
+operator->*(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2)
+{
+ return
+ lambda_functor_base<
+ action<2, other_action<member_pointer_action> >,
+ tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
+ >
+ (tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2));
+}
+
+template<class Arg1, class Arg2>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<2, other_action<member_pointer_action> >,
+ tuple<typename const_copy_argument<Arg1>::type, lambda_functor<Arg2> >
+ >
+>
+operator->*(const Arg1& a1, const lambda_functor<Arg2>& a2)
+{
+ return
+ lambda_functor_base<
+ action<2, other_action<member_pointer_action> >,
+ tuple<typename const_copy_argument<Arg1>::type, lambda_functor<Arg2> >
+ >
+ (tuple<typename const_copy_argument<Arg1>::type,
+ lambda_functor<Arg2> >(a1, a2));
+}
+
+
+} // namespace lambda
+} // namespace boost
+
+
+#endif
+
+
+
+
+
+
diff --git a/3rdParty/Boost/src/boost/lambda/detail/operator_actions.hpp b/3rdParty/Boost/src/boost/lambda/detail/operator_actions.hpp
new file mode 100644
index 0000000..949b40f
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/operator_actions.hpp
@@ -0,0 +1,139 @@
+// -- operator_actions.hpp - Boost Lambda Library ----------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+// For more information, see http://lambda.cs.utu.fi
+
+#ifndef BOOST_LAMBDA_OPERATOR_ACTIONS_HPP
+#define BOOST_LAMBDA_OPERATOR_ACTIONS_HPP
+
+namespace boost {
+namespace lambda {
+
+
+// -- artihmetic ----------------------
+
+class plus_action {};
+class minus_action {};
+class multiply_action {};
+class divide_action {};
+class remainder_action {};
+
+// -- bitwise -------------------
+
+class leftshift_action {};
+class rightshift_action {};
+class xor_action {};
+
+
+// -- bitwise/logical -------------------
+
+class and_action {};
+class or_action {};
+class not_action {};
+
+// -- relational -------------------------
+
+class less_action {};
+class greater_action {};
+class lessorequal_action {};
+class greaterorequal_action {};
+class equal_action {};
+class notequal_action {};
+
+// -- increment/decrement ------------------------------
+
+class increment_action {};
+class decrement_action {};
+
+// -- void return ------------------------------
+
+// -- other ------------------------------
+
+class addressof_action {};
+ // class comma_action {}; // defined in actions.hpp
+class contentsof_action {};
+// class member_pointer_action {}; (defined in member_ptr.hpp)
+
+
+// -- actioun group templates --------------------
+
+template <class Action> class arithmetic_action;
+template <class Action> class bitwise_action;
+template <class Action> class logical_action;
+template <class Action> class relational_action;
+template <class Action> class arithmetic_assignment_action;
+template <class Action> class bitwise_assignment_action;
+template <class Action> class unary_arithmetic_action;
+template <class Action> class pre_increment_decrement_action;
+template <class Action> class post_increment_decrement_action;
+
+// ---------------------------------------------------------
+
+ // actions, for which the existence of protect is checked in return type
+ // deduction.
+
+template <class Act> struct is_protectable<arithmetic_action<Act> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+template <class Act> struct is_protectable<bitwise_action<Act> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+template <class Act> struct is_protectable<logical_action<Act> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+template <class Act> struct is_protectable<relational_action<Act> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+template <class Act>
+struct is_protectable<arithmetic_assignment_action<Act> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+template <class Act> struct is_protectable<bitwise_assignment_action<Act> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+template <class Act> struct is_protectable<unary_arithmetic_action<Act> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+template <class Act>
+struct is_protectable<pre_increment_decrement_action<Act> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+template <class Act> struct
+is_protectable<post_increment_decrement_action<Act> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+
+template <> struct is_protectable<other_action<addressof_action> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+template <> struct is_protectable<other_action<contentsof_action> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+
+template<> struct is_protectable<other_action<subscript_action> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+template<> struct is_protectable<other_action<assignment_action> > {
+ BOOST_STATIC_CONSTANT(bool, value = true);
+};
+
+// NOTE: comma action is also protectable, but the specialization is
+ // in actions.hpp
+
+
+} // namespace lambda
+} // namespace boost
+
+#endif
+
+
+
+
+
+
+
diff --git a/3rdParty/Boost/src/boost/lambda/detail/operator_lambda_func_base.hpp b/3rdParty/Boost/src/boost/lambda/detail/operator_lambda_func_base.hpp
new file mode 100644
index 0000000..12a6d93
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/operator_lambda_func_base.hpp
@@ -0,0 +1,271 @@
+// Boost Lambda Library - operator_lambda_func_base.hpp -----------------
+//
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+// ------------------------------------------------------------
+
+#ifndef BOOST_LAMBDA_OPERATOR_LAMBDA_FUNC_BASE_HPP
+#define BOOST_LAMBDA_OPERATOR_LAMBDA_FUNC_BASE_HPP
+
+namespace boost {
+namespace lambda {
+
+
+// These operators cannot be implemented as apply functions of action
+// templates
+
+
+// Specialization for comma.
+template<class Args>
+class lambda_functor_base<other_action<comma_action>, Args> {
+public:
+ Args args;
+public:
+ explicit lambda_functor_base(const Args& a) : args(a) {}
+
+ template<class RET, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const {
+ return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS),
+ detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
+ }
+
+
+ template<class SigArgs> struct sig {
+ private:
+ typedef typename
+ detail::deduce_argument_types<Args, SigArgs>::type rets_t;
+ public:
+ typedef typename return_type_2_comma< // comma needs special handling
+ typename detail::element_or_null<0, rets_t>::type,
+ typename detail::element_or_null<1, rets_t>::type
+ >::type type;
+ };
+
+};
+
+namespace detail {
+
+// helper traits to make the expression shorter, takes binary action
+// bound argument tuple, open argument tuple and gives the return type
+
+template<class Action, class Bound, class Open> class binary_rt {
+ private:
+ typedef typename
+ detail::deduce_argument_types<Bound, Open>::type rets_t;
+ public:
+ typedef typename return_type_2_prot<
+ Action,
+ typename detail::element_or_null<0, rets_t>::type,
+ typename detail::element_or_null<1, rets_t>::type
+ >::type type;
+};
+
+
+ // same for unary actions
+template<class Action, class Bound, class Open> class unary_rt {
+ private:
+ typedef typename
+ detail::deduce_argument_types<Bound, Open>::type rets_t;
+ public:
+ typedef typename return_type_1_prot<
+ Action,
+ typename detail::element_or_null<0, rets_t>::type
+ >::type type;
+};
+
+
+} // end detail
+
+// Specialization for logical and (to preserve shortcircuiting)
+// this could be done with a macro as the others, code used to be different
+template<class Args>
+class lambda_functor_base<logical_action<and_action>, Args> {
+public:
+ Args args;
+public:
+ explicit lambda_functor_base(const Args& a) : args(a) {}
+
+ template<class RET, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const {
+ return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) &&
+ detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
+ }
+ template<class SigArgs> struct sig {
+ typedef typename
+ detail::binary_rt<logical_action<and_action>, Args, SigArgs>::type type;
+ };
+};
+
+// Specialization for logical or (to preserve shortcircuiting)
+// this could be done with a macro as the others, code used to be different
+template<class Args>
+class lambda_functor_base<logical_action< or_action>, Args> {
+public:
+ Args args;
+public:
+ explicit lambda_functor_base(const Args& a) : args(a) {}
+
+ template<class RET, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const {
+ return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) ||
+ detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
+ }
+
+ template<class SigArgs> struct sig {
+ typedef typename
+ detail::binary_rt<logical_action<or_action>, Args, SigArgs>::type type;
+ };
+};
+
+// Specialization for subscript
+template<class Args>
+class lambda_functor_base<other_action<subscript_action>, Args> {
+public:
+ Args args;
+public:
+ explicit lambda_functor_base(const Args& a) : args(a) {}
+
+ template<class RET, CALL_TEMPLATE_ARGS>
+ RET call(CALL_FORMAL_ARGS) const {
+ return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)
+ [detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS)];
+ }
+
+ template<class SigArgs> struct sig {
+ typedef typename
+ detail::binary_rt<other_action<subscript_action>, Args, SigArgs>::type
+ type;
+ };
+};
+
+
+#define BOOST_LAMBDA_BINARY_ACTION(SYMBOL, ACTION_CLASS) \
+template<class Args> \
+class lambda_functor_base<ACTION_CLASS, Args> { \
+public: \
+ Args args; \
+public: \
+ explicit lambda_functor_base(const Args& a) : args(a) {} \
+ \
+ template<class RET, CALL_TEMPLATE_ARGS> \
+ RET call(CALL_FORMAL_ARGS) const { \
+ return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) \
+ SYMBOL \
+ detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS); \
+ } \
+ template<class SigArgs> struct sig { \
+ typedef typename \
+ detail::binary_rt<ACTION_CLASS, Args, SigArgs>::type type; \
+ }; \
+};
+
+#define BOOST_LAMBDA_PREFIX_UNARY_ACTION(SYMBOL, ACTION_CLASS) \
+template<class Args> \
+class lambda_functor_base<ACTION_CLASS, Args> { \
+public: \
+ Args args; \
+public: \
+ explicit lambda_functor_base(const Args& a) : args(a) {} \
+ \
+ template<class RET, CALL_TEMPLATE_ARGS> \
+ RET call(CALL_FORMAL_ARGS) const { \
+ return SYMBOL \
+ detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS); \
+ } \
+ template<class SigArgs> struct sig { \
+ typedef typename \
+ detail::unary_rt<ACTION_CLASS, Args, SigArgs>::type type; \
+ }; \
+};
+
+#define BOOST_LAMBDA_POSTFIX_UNARY_ACTION(SYMBOL, ACTION_CLASS) \
+template<class Args> \
+class lambda_functor_base<ACTION_CLASS, Args> { \
+public: \
+ Args args; \
+public: \
+ explicit lambda_functor_base(const Args& a) : args(a) {} \
+ \
+ template<class RET, CALL_TEMPLATE_ARGS> \
+ RET call(CALL_FORMAL_ARGS) const { \
+ return \
+ detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) SYMBOL; \
+ } \
+ template<class SigArgs> struct sig { \
+ typedef typename \
+ detail::unary_rt<ACTION_CLASS, Args, SigArgs>::type type; \
+ }; \
+};
+
+BOOST_LAMBDA_BINARY_ACTION(+,arithmetic_action<plus_action>)
+BOOST_LAMBDA_BINARY_ACTION(-,arithmetic_action<minus_action>)
+BOOST_LAMBDA_BINARY_ACTION(*,arithmetic_action<multiply_action>)
+BOOST_LAMBDA_BINARY_ACTION(/,arithmetic_action<divide_action>)
+BOOST_LAMBDA_BINARY_ACTION(%,arithmetic_action<remainder_action>)
+
+BOOST_LAMBDA_BINARY_ACTION(<<,bitwise_action<leftshift_action>)
+BOOST_LAMBDA_BINARY_ACTION(>>,bitwise_action<rightshift_action>)
+BOOST_LAMBDA_BINARY_ACTION(&,bitwise_action<and_action>)
+BOOST_LAMBDA_BINARY_ACTION(|,bitwise_action<or_action>)
+BOOST_LAMBDA_BINARY_ACTION(^,bitwise_action<xor_action>)
+
+BOOST_LAMBDA_BINARY_ACTION(<,relational_action<less_action>)
+BOOST_LAMBDA_BINARY_ACTION(>,relational_action<greater_action>)
+BOOST_LAMBDA_BINARY_ACTION(<=,relational_action<lessorequal_action>)
+BOOST_LAMBDA_BINARY_ACTION(>=,relational_action<greaterorequal_action>)
+BOOST_LAMBDA_BINARY_ACTION(==,relational_action<equal_action>)
+BOOST_LAMBDA_BINARY_ACTION(!=,relational_action<notequal_action>)
+
+BOOST_LAMBDA_BINARY_ACTION(+=,arithmetic_assignment_action<plus_action>)
+BOOST_LAMBDA_BINARY_ACTION(-=,arithmetic_assignment_action<minus_action>)
+BOOST_LAMBDA_BINARY_ACTION(*=,arithmetic_assignment_action<multiply_action>)
+BOOST_LAMBDA_BINARY_ACTION(/=,arithmetic_assignment_action<divide_action>)
+BOOST_LAMBDA_BINARY_ACTION(%=,arithmetic_assignment_action<remainder_action>)
+
+BOOST_LAMBDA_BINARY_ACTION(<<=,bitwise_assignment_action<leftshift_action>)
+BOOST_LAMBDA_BINARY_ACTION(>>=,bitwise_assignment_action<rightshift_action>)
+BOOST_LAMBDA_BINARY_ACTION(&=,bitwise_assignment_action<and_action>)
+BOOST_LAMBDA_BINARY_ACTION(|=,bitwise_assignment_action<or_action>)
+BOOST_LAMBDA_BINARY_ACTION(^=,bitwise_assignment_action<xor_action>)
+
+BOOST_LAMBDA_BINARY_ACTION(=,other_action< assignment_action>)
+
+
+BOOST_LAMBDA_PREFIX_UNARY_ACTION(+, unary_arithmetic_action<plus_action>)
+BOOST_LAMBDA_PREFIX_UNARY_ACTION(-, unary_arithmetic_action<minus_action>)
+BOOST_LAMBDA_PREFIX_UNARY_ACTION(~, bitwise_action<not_action>)
+BOOST_LAMBDA_PREFIX_UNARY_ACTION(!, logical_action<not_action>)
+BOOST_LAMBDA_PREFIX_UNARY_ACTION(++, pre_increment_decrement_action<increment_action>)
+BOOST_LAMBDA_PREFIX_UNARY_ACTION(--, pre_increment_decrement_action<decrement_action>)
+
+BOOST_LAMBDA_PREFIX_UNARY_ACTION(&,other_action<addressof_action>)
+BOOST_LAMBDA_PREFIX_UNARY_ACTION(*,other_action<contentsof_action>)
+
+BOOST_LAMBDA_POSTFIX_UNARY_ACTION(++, post_increment_decrement_action<increment_action>)
+BOOST_LAMBDA_POSTFIX_UNARY_ACTION(--, post_increment_decrement_action<decrement_action>)
+
+
+#undef BOOST_LAMBDA_POSTFIX_UNARY_ACTION
+#undef BOOST_LAMBDA_PREFIX_UNARY_ACTION
+#undef BOOST_LAMBDA_BINARY_ACTION
+
+} // namespace lambda
+} // namespace boost
+
+#endif
+
+
+
+
+
+
+
+
+
+
diff --git a/3rdParty/Boost/src/boost/lambda/detail/operator_return_type_traits.hpp b/3rdParty/Boost/src/boost/lambda/detail/operator_return_type_traits.hpp
new file mode 100644
index 0000000..b2d3d3a
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/operator_return_type_traits.hpp
@@ -0,0 +1,917 @@
+// operator_return_type_traits.hpp -- Boost Lambda Library ------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+#ifndef BOOST_LAMBDA_OPERATOR_RETURN_TYPE_TRAITS_HPP
+#define BOOST_LAMBDA_OPERATOR_RETURN_TYPE_TRAITS_HPP
+
+#include "boost/lambda/detail/is_instance_of.hpp"
+#include "boost/type_traits/same_traits.hpp"
+
+#include "boost/indirect_reference.hpp"
+#include "boost/detail/container_fwd.hpp"
+
+#include <cstddef> // needed for the ptrdiff_t
+#include <iosfwd> // for istream and ostream
+
+#include <iterator> // needed for operator&
+
+namespace boost {
+namespace lambda {
+namespace detail {
+
+// -- general helper templates for type deduction ------------------
+
+// Much of the type deduction code for standard arithmetic types from Gary Powell
+
+template <class A> struct promote_code { static const int value = -1; };
+// this means that a code is not defined for A
+
+// -- the next 5 types are needed in if_then_else_return
+// the promotion order is not important, but they must have distinct values.
+template <> struct promote_code<bool> { static const int value = 10; };
+template <> struct promote_code<char> { static const int value = 20; };
+template <> struct promote_code<unsigned char> { static const int value = 30; };
+template <> struct promote_code<signed char> { static const int value = 40; };
+template <> struct promote_code<short int> { static const int value = 50; };
+// ----------
+
+template <> struct promote_code<int> { static const int value = 100; };
+template <> struct promote_code<unsigned int> { static const int value = 200; };
+template <> struct promote_code<long> { static const int value = 300; };
+template <> struct promote_code<unsigned long> { static const int value = 400; };
+
+template <> struct promote_code<float> { static const int value = 500; };
+template <> struct promote_code<double> { static const int value = 600; };
+template <> struct promote_code<long double> { static const int value = 700; };
+
+// TODO: wchar_t
+
+// forward delcaration of complex.
+
+} // namespace detail
+} // namespace lambda
+} // namespace boost
+
+namespace boost {
+namespace lambda {
+namespace detail {
+
+template <> struct promote_code< std::complex<float> > { static const int value = 800; };
+template <> struct promote_code< std::complex<double> > { static const int value = 900; };
+template <> struct promote_code< std::complex<long double> > { static const int value = 1000; };
+
+// -- int promotion -------------------------------------------
+template <class T> struct promote_to_int { typedef T type; };
+
+template <> struct promote_to_int<bool> { typedef int type; };
+template <> struct promote_to_int<char> { typedef int type; };
+template <> struct promote_to_int<unsigned char> { typedef int type; };
+template <> struct promote_to_int<signed char> { typedef int type; };
+template <> struct promote_to_int<short int> { typedef int type; };
+
+// The unsigned short int promotion rule is this:
+// unsigned short int to signed int if a signed int can hold all values
+// of unsigned short int, otherwise go to unsigned int.
+template <> struct promote_to_int<unsigned short int>
+{
+ typedef
+ detail::IF<sizeof(int) <= sizeof(unsigned short int),
+// I had the logic reversed but ">" messes up the parsing.
+ unsigned int,
+ int>::RET type;
+};
+
+
+// TODO: think, should there be default behaviour for non-standard types?
+
+} // namespace detail
+
+// ------------------------------------------
+// Unary actions ----------------------------
+// ------------------------------------------
+
+template<class Act, class A>
+struct plain_return_type_1 {
+ typedef detail::unspecified type;
+};
+
+
+
+template<class Act, class A>
+struct plain_return_type_1<unary_arithmetic_action<Act>, A> {
+ typedef A type;
+};
+
+template<class Act, class A>
+struct return_type_1<unary_arithmetic_action<Act>, A> {
+ typedef
+ typename plain_return_type_1<
+ unary_arithmetic_action<Act>,
+ typename detail::remove_reference_and_cv<A>::type
+ >::type type;
+};
+
+
+template<class A>
+struct plain_return_type_1<bitwise_action<not_action>, A> {
+ typedef A type;
+};
+
+// bitwise not, operator~()
+template<class A> struct return_type_1<bitwise_action<not_action>, A> {
+ typedef
+ typename plain_return_type_1<
+ bitwise_action<not_action>,
+ typename detail::remove_reference_and_cv<A>::type
+ >::type type;
+};
+
+
+// prefix increment and decrement operators return
+// their argument by default as a non-const reference
+template<class Act, class A>
+struct plain_return_type_1<pre_increment_decrement_action<Act>, A> {
+ typedef A& type;
+};
+
+template<class Act, class A>
+struct return_type_1<pre_increment_decrement_action<Act>, A> {
+ typedef
+ typename plain_return_type_1<
+ pre_increment_decrement_action<Act>,
+ typename detail::remove_reference_and_cv<A>::type
+ >::type type;
+};
+
+// post decrement just returns the same plain type.
+template<class Act, class A>
+struct plain_return_type_1<post_increment_decrement_action<Act>, A> {
+ typedef A type;
+};
+
+template<class Act, class A>
+struct return_type_1<post_increment_decrement_action<Act>, A>
+{
+ typedef
+ typename plain_return_type_1<
+ post_increment_decrement_action<Act>,
+ typename detail::remove_reference_and_cv<A>::type
+ >::type type;
+};
+
+// logical not, operator!()
+template<class A>
+struct plain_return_type_1<logical_action<not_action>, A> {
+ typedef bool type;
+};
+
+template<class A>
+struct return_type_1<logical_action<not_action>, A> {
+ typedef
+ typename plain_return_type_1<
+ logical_action<not_action>,
+ typename detail::remove_reference_and_cv<A>::type
+ >::type type;
+};
+
+// address of action ---------------------------------------
+
+
+template<class A>
+struct return_type_1<other_action<addressof_action>, A> {
+ typedef
+ typename plain_return_type_1<
+ other_action<addressof_action>,
+ typename detail::remove_reference_and_cv<A>::type
+ >::type type1;
+
+ // If no user defined specialization for A, then return the
+ // cv qualified pointer to A
+ typedef typename detail::IF<
+ boost::is_same<type1, detail::unspecified>::value,
+ typename boost::remove_reference<A>::type*,
+ type1
+ >::RET type;
+};
+
+// contentsof action ------------------------------------
+
+// TODO: this deduction may lead to fail directly,
+// (if A has no specialization for iterator_traits and has no
+// typedef A::reference.
+// There is no easy way around this, cause there doesn't seem to be a way
+// to test whether a class is an iterator or not.
+
+// The default works with std::iterators.
+
+namespace detail {
+
+ // A is a nonreference type
+template <class A> struct contentsof_type {
+ typedef typename boost::indirect_reference<A>::type type;
+};
+
+ // this is since the nullary () in lambda_functor is always instantiated
+template <> struct contentsof_type<null_type> {
+ typedef detail::unspecified type;
+};
+
+
+template <class A> struct contentsof_type<const A> {
+ typedef typename contentsof_type<A>::type type;
+};
+
+template <class A> struct contentsof_type<volatile A> {
+ typedef typename contentsof_type<A>::type type;
+};
+
+template <class A> struct contentsof_type<const volatile A> {
+ typedef typename contentsof_type<A>::type type;
+};
+
+ // standard iterator traits should take care of the pointer types
+ // but just to be on the safe side, we have the specializations here:
+ // these work even if A is cv-qualified.
+template <class A> struct contentsof_type<A*> {
+ typedef A& type;
+};
+template <class A> struct contentsof_type<A* const> {
+ typedef A& type;
+};
+template <class A> struct contentsof_type<A* volatile> {
+ typedef A& type;
+};
+template <class A> struct contentsof_type<A* const volatile> {
+ typedef A& type;
+};
+
+template<class A, int N> struct contentsof_type<A[N]> {
+ typedef A& type;
+};
+template<class A, int N> struct contentsof_type<const A[N]> {
+ typedef const A& type;
+};
+template<class A, int N> struct contentsof_type<volatile A[N]> {
+ typedef volatile A& type;
+};
+template<class A, int N> struct contentsof_type<const volatile A[N]> {
+ typedef const volatile A& type;
+};
+
+
+
+
+
+} // end detail
+
+template<class A>
+struct return_type_1<other_action<contentsof_action>, A> {
+
+ typedef
+ typename plain_return_type_1<
+ other_action<contentsof_action>,
+ typename detail::remove_reference_and_cv<A>::type
+ >::type type1;
+
+ // If no user defined specialization for A, then return the
+ // cv qualified pointer to A
+ typedef typename
+ detail::IF_type<
+ boost::is_same<type1, detail::unspecified>::value,
+ detail::contentsof_type<
+ typename boost::remove_reference<A>::type
+ >,
+ detail::identity_mapping<type1>
+ >::type type;
+};
+
+
+// ------------------------------------------------------------------
+// binary actions ---------------------------------------------------
+// ------------------------------------------------------------------
+
+// here the default case is: no user defined versions:
+template <class Act, class A, class B>
+struct plain_return_type_2 {
+ typedef detail::unspecified type;
+};
+
+namespace detail {
+
+// error classes
+class illegal_pointer_arithmetic{};
+
+// pointer arithmetic type deductions ----------------------
+// value = false means that this is not a pointer arithmetic case
+// value = true means, that this can be a pointer arithmetic case, but not necessarily is
+// This means, that for user defined operators for pointer types, say for some operator+(X, *Y),
+// the deductions must be coded at an earliel level (return_type_2).
+
+template<class Act, class A, class B>
+struct pointer_arithmetic_traits { static const bool value = false; };
+
+template<class A, class B>
+struct pointer_arithmetic_traits<plus_action, A, B> {
+
+ typedef typename
+ array_to_pointer<typename boost::remove_reference<A>::type>::type AP;
+ typedef typename
+ array_to_pointer<typename boost::remove_reference<B>::type>::type BP;
+
+ static const bool is_pointer_A = boost::is_pointer<AP>::value;
+ static const bool is_pointer_B = boost::is_pointer<BP>::value;
+
+ static const bool value = is_pointer_A || is_pointer_B;
+
+ // can't add two pointers.
+ // note, that we do not check wether the other type is valid for
+ // addition with a pointer.
+ // the compiler will catch it in the apply function
+
+ typedef typename
+ detail::IF<
+ is_pointer_A && is_pointer_B,
+ detail::return_type_deduction_failure<
+ detail::illegal_pointer_arithmetic
+ >,
+ typename detail::IF<is_pointer_A, AP, BP>::RET
+ >::RET type;
+
+};
+
+template<class A, class B>
+struct pointer_arithmetic_traits<minus_action, A, B> {
+ typedef typename
+ array_to_pointer<typename boost::remove_reference<A>::type>::type AP;
+ typedef typename
+ array_to_pointer<typename boost::remove_reference<B>::type>::type BP;
+
+ static const bool is_pointer_A = boost::is_pointer<AP>::value;
+ static const bool is_pointer_B = boost::is_pointer<BP>::value;
+
+ static const bool value = is_pointer_A || is_pointer_B;
+
+ static const bool same_pointer_type =
+ is_pointer_A && is_pointer_B &&
+ boost::is_same<
+ typename boost::remove_const<
+ typename boost::remove_pointer<
+ typename boost::remove_const<AP>::type
+ >::type
+ >::type,
+ typename boost::remove_const<
+ typename boost::remove_pointer<
+ typename boost::remove_const<BP>::type
+ >::type
+ >::type
+ >::value;
+
+ // ptr - ptr has type ptrdiff_t
+ // note, that we do not check if, in ptr - B, B is
+ // valid for subtraction with a pointer.
+ // the compiler will catch it in the apply function
+
+ typedef typename
+ detail::IF<
+ same_pointer_type, const std::ptrdiff_t,
+ typename detail::IF<
+ is_pointer_A,
+ AP,
+ detail::return_type_deduction_failure<detail::illegal_pointer_arithmetic>
+ >::RET
+ >::RET type;
+};
+
+} // namespace detail
+
+// -- arithmetic actions ---------------------------------------------
+
+namespace detail {
+
+template<bool is_pointer_arithmetic, class Act, class A, class B>
+struct return_type_2_arithmetic_phase_1;
+
+template<class A, class B> struct return_type_2_arithmetic_phase_2;
+template<class A, class B> struct return_type_2_arithmetic_phase_3;
+
+} // namespace detail
+
+
+// drop any qualifiers from the argument types within arithmetic_action
+template<class A, class B, class Act>
+struct return_type_2<arithmetic_action<Act>, A, B>
+{
+ typedef typename detail::remove_reference_and_cv<A>::type plain_A;
+ typedef typename detail::remove_reference_and_cv<B>::type plain_B;
+
+ typedef typename
+ plain_return_type_2<arithmetic_action<Act>, plain_A, plain_B>::type type1;
+
+ // if user defined return type, do not enter the whole arithmetic deductions
+ typedef typename
+ detail::IF_type<
+ boost::is_same<type1, detail::unspecified>::value,
+ detail::return_type_2_arithmetic_phase_1<
+ detail::pointer_arithmetic_traits<Act, A, B>::value, Act, A, B
+ >,
+ plain_return_type_2<arithmetic_action<Act>, plain_A, plain_B>
+ >::type type;
+};
+
+namespace detail {
+
+// perform integral promotion, no pointer arithmetic
+template<bool is_pointer_arithmetic, class Act, class A, class B>
+struct return_type_2_arithmetic_phase_1
+{
+ typedef typename
+ return_type_2_arithmetic_phase_2<
+ typename remove_reference_and_cv<A>::type,
+ typename remove_reference_and_cv<B>::type
+ >::type type;
+};
+
+// pointer_arithmetic
+template<class Act, class A, class B>
+struct return_type_2_arithmetic_phase_1<true, Act, A, B>
+{
+ typedef typename
+ pointer_arithmetic_traits<Act, A, B>::type type;
+};
+
+template<class A, class B>
+struct return_type_2_arithmetic_phase_2 {
+ typedef typename
+ return_type_2_arithmetic_phase_3<
+ typename promote_to_int<A>::type,
+ typename promote_to_int<B>::type
+ >::type type;
+};
+
+// specialization for unsigned int.
+// We only have to do these two specialization because the value promotion will
+// take care of the other cases.
+// The unsigned int promotion rule is this:
+// unsigned int to long if a long can hold all values of unsigned int,
+// otherwise go to unsigned long.
+
+// struct so I don't have to type this twice.
+struct promotion_of_unsigned_int
+{
+ typedef
+ detail::IF<sizeof(long) <= sizeof(unsigned int),
+ unsigned long,
+ long>::RET type;
+};
+
+template<>
+struct return_type_2_arithmetic_phase_2<unsigned int, long>
+{
+ typedef promotion_of_unsigned_int::type type;
+};
+template<>
+struct return_type_2_arithmetic_phase_2<long, unsigned int>
+{
+ typedef promotion_of_unsigned_int::type type;
+};
+
+
+template<class A, class B> struct return_type_2_arithmetic_phase_3 {
+ enum { promote_code_A_value = promote_code<A>::value,
+ promote_code_B_value = promote_code<B>::value }; // enums for KCC
+ typedef typename
+ detail::IF<
+ promote_code_A_value == -1 || promote_code_B_value == -1,
+ detail::return_type_deduction_failure<return_type_2_arithmetic_phase_3>,
+ typename detail::IF<
+ ((int)promote_code_A_value > (int)promote_code_B_value),
+ A,
+ B
+ >::RET
+ >::RET type;
+};
+
+} // namespace detail
+
+// -- bitwise actions -------------------------------------------
+// note: for integral types deuduction is similar to arithmetic actions.
+
+// drop any qualifiers from the argument types within arithmetic action
+template<class A, class B, class Act>
+struct return_type_2<bitwise_action<Act>, A, B>
+{
+
+ typedef typename detail::remove_reference_and_cv<A>::type plain_A;
+ typedef typename detail::remove_reference_and_cv<B>::type plain_B;
+
+ typedef typename
+ plain_return_type_2<bitwise_action<Act>, plain_A, plain_B>::type type1;
+
+ // if user defined return type, do not enter type deductions
+ typedef typename
+ detail::IF_type<
+ boost::is_same<type1, detail::unspecified>::value,
+ return_type_2<arithmetic_action<plus_action>, A, B>,
+ plain_return_type_2<bitwise_action<Act>, plain_A, plain_B>
+ >::type type;
+
+ // plus_action is just a random pick, has to be a concrete instance
+
+ // TODO: This check is only valid for built-in types, overloaded types might
+ // accept floating point operators
+
+ // bitwise operators not defined for floating point types
+ // these test are not strictly needed here, since the error will be caught in
+ // the apply function
+ BOOST_STATIC_ASSERT(!(boost::is_float<plain_A>::value && boost::is_float<plain_B>::value));
+
+};
+
+namespace detail {
+
+#ifdef BOOST_NO_TEMPLATED_STREAMS
+
+template<class A, class B>
+struct leftshift_type {
+
+ typedef typename detail::IF<
+ boost::is_convertible<
+ typename boost::remove_reference<A>::type*,
+ std::ostream*
+ >::value,
+ std::ostream&,
+ typename detail::remove_reference_and_cv<A>::type
+ >::RET type;
+};
+
+template<class A, class B>
+struct rightshift_type {
+
+ typedef typename detail::IF<
+
+ boost::is_convertible<
+ typename boost::remove_reference<A>::type*,
+ std::istream*
+ >::value,
+ std::istream&,
+ typename detail::remove_reference_and_cv<A>::type
+ >::RET type;
+};
+
+#else
+
+template <class T> struct get_ostream_type {
+ typedef std::basic_ostream<typename T::char_type,
+ typename T::traits_type>& type;
+};
+
+template <class T> struct get_istream_type {
+ typedef std::basic_istream<typename T::char_type,
+ typename T::traits_type>& type;
+};
+
+template<class A, class B>
+struct leftshift_type {
+private:
+ typedef typename boost::remove_reference<A>::type plainA;
+public:
+ typedef typename detail::IF_type<
+ is_instance_of_2<plainA, std::basic_ostream>::value,
+ get_ostream_type<plainA>, //reference to the stream
+ detail::remove_reference_and_cv<A>
+ >::type type;
+};
+
+template<class A, class B>
+struct rightshift_type {
+private:
+ typedef typename boost::remove_reference<A>::type plainA;
+public:
+ typedef typename detail::IF_type<
+ is_instance_of_2<plainA, std::basic_istream>::value,
+ get_istream_type<plainA>, //reference to the stream
+ detail::remove_reference_and_cv<A>
+ >::type type;
+};
+
+
+#endif
+
+} // end detail
+
+// ostream
+template<class A, class B>
+struct return_type_2<bitwise_action<leftshift_action>, A, B>
+{
+ typedef typename detail::remove_reference_and_cv<A>::type plain_A;
+ typedef typename detail::remove_reference_and_cv<B>::type plain_B;
+
+ typedef typename
+ plain_return_type_2<bitwise_action<leftshift_action>, plain_A, plain_B>::type type1;
+
+ // if user defined return type, do not enter type deductions
+ typedef typename
+ detail::IF_type<
+ boost::is_same<type1, detail::unspecified>::value,
+ detail::leftshift_type<A, B>,
+ plain_return_type_2<bitwise_action<leftshift_action>, plain_A, plain_B>
+ >::type type;
+};
+
+// istream
+template<class A, class B>
+struct return_type_2<bitwise_action<rightshift_action>, A, B>
+{
+ typedef typename detail::remove_reference_and_cv<A>::type plain_A;
+ typedef typename detail::remove_reference_and_cv<B>::type plain_B;
+
+ typedef typename
+ plain_return_type_2<bitwise_action<rightshift_action>, plain_A, plain_B>::type type1;
+
+ // if user defined return type, do not enter type deductions
+ typedef typename
+ detail::IF_type<
+ boost::is_same<type1, detail::unspecified>::value,
+ detail::rightshift_type<A, B>,
+ plain_return_type_2<bitwise_action<rightshift_action>, plain_A, plain_B>
+ >::type type;
+};
+
+// -- logical actions ----------------------------------------
+// always bool
+// NOTE: this may not be true for some weird user-defined types,
+template<class A, class B, class Act>
+struct plain_return_type_2<logical_action<Act>, A, B> {
+ typedef bool type;
+};
+
+template<class A, class B, class Act>
+struct return_type_2<logical_action<Act>, A, B> {
+
+ typedef typename detail::remove_reference_and_cv<A>::type plain_A;
+ typedef typename detail::remove_reference_and_cv<B>::type plain_B;
+
+ typedef typename
+ plain_return_type_2<logical_action<Act>, plain_A, plain_B>::type type;
+
+};
+
+
+// -- relational actions ----------------------------------------
+// always bool
+// NOTE: this may not be true for some weird user-defined types,
+template<class A, class B, class Act>
+struct plain_return_type_2<relational_action<Act>, A, B> {
+ typedef bool type;
+};
+
+template<class A, class B, class Act>
+struct return_type_2<relational_action<Act>, A, B> {
+
+ typedef typename detail::remove_reference_and_cv<A>::type plain_A;
+ typedef typename detail::remove_reference_and_cv<B>::type plain_B;
+
+ typedef typename
+ plain_return_type_2<relational_action<Act>, plain_A, plain_B>::type type;
+};
+
+// Assingment actions -----------------------------------------------
+// return type is the type of the first argument as reference
+
+// note that cv-qualifiers are preserved.
+// Yes, assignment operator can be const!
+
+// NOTE: this may not be true for some weird user-defined types,
+
+template<class A, class B, class Act>
+struct return_type_2<arithmetic_assignment_action<Act>, A, B> {
+
+ typedef typename detail::remove_reference_and_cv<A>::type plain_A;
+ typedef typename detail::remove_reference_and_cv<B>::type plain_B;
+
+ typedef typename
+ plain_return_type_2<
+ arithmetic_assignment_action<Act>, plain_A, plain_B
+ >::type type1;
+
+ typedef typename
+ detail::IF<
+ boost::is_same<type1, detail::unspecified>::value,
+ typename boost::add_reference<A>::type,
+ type1
+ >::RET type;
+};
+
+template<class A, class B, class Act>
+struct return_type_2<bitwise_assignment_action<Act>, A, B> {
+
+ typedef typename detail::remove_reference_and_cv<A>::type plain_A;
+ typedef typename detail::remove_reference_and_cv<B>::type plain_B;
+
+ typedef typename
+ plain_return_type_2<
+ bitwise_assignment_action<Act>, plain_A, plain_B
+ >::type type1;
+
+ typedef typename
+ detail::IF<
+ boost::is_same<type1, detail::unspecified>::value,
+ typename boost::add_reference<A>::type,
+ type1
+ >::RET type;
+};
+
+template<class A, class B>
+struct return_type_2<other_action<assignment_action>, A, B> {
+ typedef typename detail::remove_reference_and_cv<A>::type plain_A;
+ typedef typename detail::remove_reference_and_cv<B>::type plain_B;
+
+ typedef typename
+ plain_return_type_2<
+ other_action<assignment_action>, plain_A, plain_B
+ >::type type1;
+
+ typedef typename
+ detail::IF<
+ boost::is_same<type1, detail::unspecified>::value,
+ typename boost::add_reference<A>::type,
+ type1
+ >::RET type;
+};
+
+// -- other actions ----------------------------------------
+
+// comma action ----------------------------------
+// Note: this may not be true for some weird user-defined types,
+
+// NOTE! This only tries the plain_return_type_2 layer and gives
+// detail::unspecified as default. If no such specialization is found, the
+// type rule in the spcecialization of the return_type_2_prot is used
+// to give the type of the right argument (which can be a reference too)
+// (The built in operator, can return a l- or rvalue).
+template<class A, class B>
+struct return_type_2<other_action<comma_action>, A, B> {
+
+ typedef typename detail::remove_reference_and_cv<A>::type plain_A;
+ typedef typename detail::remove_reference_and_cv<B>::type plain_B;
+
+ typedef typename
+ plain_return_type_2<
+ other_action<comma_action>, plain_A, plain_B
+ >::type type;
+ };
+
+// subscript action -----------------------------------------------
+
+
+namespace detail {
+ // A and B are nonreference types
+template <class A, class B> struct subscript_type {
+ typedef detail::unspecified type;
+};
+
+template <class A, class B> struct subscript_type<A*, B> {
+ typedef A& type;
+};
+template <class A, class B> struct subscript_type<A* const, B> {
+ typedef A& type;
+};
+template <class A, class B> struct subscript_type<A* volatile, B> {
+ typedef A& type;
+};
+template <class A, class B> struct subscript_type<A* const volatile, B> {
+ typedef A& type;
+};
+
+
+template<class A, class B, int N> struct subscript_type<A[N], B> {
+ typedef A& type;
+};
+
+ // these 3 specializations are needed to make gcc <3 happy
+template<class A, class B, int N> struct subscript_type<const A[N], B> {
+ typedef const A& type;
+};
+template<class A, class B, int N> struct subscript_type<volatile A[N], B> {
+ typedef volatile A& type;
+};
+template<class A, class B, int N> struct subscript_type<const volatile A[N], B> {
+ typedef const volatile A& type;
+};
+
+} // end detail
+
+template<class A, class B>
+struct return_type_2<other_action<subscript_action>, A, B> {
+
+ typedef typename detail::remove_reference_and_cv<A>::type plain_A;
+ typedef typename detail::remove_reference_and_cv<B>::type plain_B;
+
+ typedef typename boost::remove_reference<A>::type nonref_A;
+ typedef typename boost::remove_reference<B>::type nonref_B;
+
+ typedef typename
+ plain_return_type_2<
+ other_action<subscript_action>, plain_A, plain_B
+ >::type type1;
+
+ typedef typename
+ detail::IF_type<
+ boost::is_same<type1, detail::unspecified>::value,
+ detail::subscript_type<nonref_A, nonref_B>,
+ plain_return_type_2<other_action<subscript_action>, plain_A, plain_B>
+ >::type type;
+
+};
+
+template<class Key, class T, class Cmp, class Allocator, class B>
+struct plain_return_type_2<other_action<subscript_action>, std::map<Key, T, Cmp, Allocator>, B> {
+ typedef T& type;
+ // T == std::map<Key, T, Cmp, Allocator>::mapped_type;
+};
+
+template<class Key, class T, class Cmp, class Allocator, class B>
+struct plain_return_type_2<other_action<subscript_action>, std::multimap<Key, T, Cmp, Allocator>, B> {
+ typedef T& type;
+ // T == std::map<Key, T, Cmp, Allocator>::mapped_type;
+};
+
+ // deque
+template<class T, class Allocator, class B>
+struct plain_return_type_2<other_action<subscript_action>, std::deque<T, Allocator>, B> {
+ typedef typename std::deque<T, Allocator>::reference type;
+};
+template<class T, class Allocator, class B>
+struct plain_return_type_2<other_action<subscript_action>, const std::deque<T, Allocator>, B> {
+ typedef typename std::deque<T, Allocator>::const_reference type;
+};
+
+ // vector
+template<class T, class Allocator, class B>
+struct plain_return_type_2<other_action<subscript_action>, std::vector<T, Allocator>, B> {
+ typedef typename std::vector<T, Allocator>::reference type;
+};
+template<class T, class Allocator, class B>
+struct plain_return_type_2<other_action<subscript_action>, const std::vector<T, Allocator>, B> {
+ typedef typename std::vector<T, Allocator>::const_reference type;
+};
+
+ // basic_string
+template<class Char, class Traits, class Allocator, class B>
+struct plain_return_type_2<other_action<subscript_action>, std::basic_string<Char, Traits, Allocator>, B> {
+ typedef typename std::basic_string<Char, Traits, Allocator>::reference type;
+};
+template<class Char, class Traits, class Allocator, class B>
+struct plain_return_type_2<other_action<subscript_action>, const std::basic_string<Char, Traits, Allocator>, B> {
+ typedef typename std::basic_string<Char, Traits, Allocator>::const_reference type;
+};
+
+template<class Char, class Traits, class Allocator>
+struct plain_return_type_2<arithmetic_action<plus_action>,
+ std::basic_string<Char, Traits, Allocator>,
+ std::basic_string<Char, Traits, Allocator> > {
+ typedef std::basic_string<Char, Traits, Allocator> type;
+};
+
+template<class Char, class Traits, class Allocator>
+struct plain_return_type_2<arithmetic_action<plus_action>,
+ const Char*,
+ std::basic_string<Char, Traits, Allocator> > {
+ typedef std::basic_string<Char, Traits, Allocator> type;
+};
+
+template<class Char, class Traits, class Allocator>
+struct plain_return_type_2<arithmetic_action<plus_action>,
+ std::basic_string<Char, Traits, Allocator>,
+ const Char*> {
+ typedef std::basic_string<Char, Traits, Allocator> type;
+};
+
+template<class Char, class Traits, class Allocator, std::size_t N>
+struct plain_return_type_2<arithmetic_action<plus_action>,
+ Char[N],
+ std::basic_string<Char, Traits, Allocator> > {
+ typedef std::basic_string<Char, Traits, Allocator> type;
+};
+
+template<class Char, class Traits, class Allocator, std::size_t N>
+struct plain_return_type_2<arithmetic_action<plus_action>,
+ std::basic_string<Char, Traits, Allocator>,
+ Char[N]> {
+ typedef std::basic_string<Char, Traits, Allocator> type;
+};
+
+
+} // namespace lambda
+} // namespace boost
+
+#endif
+
+
diff --git a/3rdParty/Boost/src/boost/lambda/detail/operators.hpp b/3rdParty/Boost/src/boost/lambda/detail/operators.hpp
new file mode 100644
index 0000000..149e1ee
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/operators.hpp
@@ -0,0 +1,370 @@
+// Boost Lambda Library - operators.hpp --------------------------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+// ---------------------------------------------------------------
+
+#ifndef BOOST_LAMBDA_OPERATORS_HPP
+#define BOOST_LAMBDA_OPERATORS_HPP
+
+#include "boost/lambda/detail/is_instance_of.hpp"
+
+namespace boost {
+namespace lambda {
+
+#if defined BOOST_LAMBDA_BE1
+#error "Multiple defines of BOOST_LAMBDA_BE1"
+#endif
+
+ // For all BOOSTA_LAMBDA_BE* macros:
+
+ // CONSTA must be either 'A' or 'const A'
+ // CONSTB must be either 'B' or 'const B'
+
+ // It is stupid to have the names A and B as macro arguments, but it avoids
+ // the need to pass in emtpy macro arguments, which gives warnings on some
+ // compilers
+
+#define BOOST_LAMBDA_BE1(OPER_NAME, ACTION, CONSTA, CONSTB, CONVERSION) \
+template<class Arg, class B> \
+inline const \
+lambda_functor< \
+ lambda_functor_base< \
+ ACTION, \
+ tuple<lambda_functor<Arg>, typename const_copy_argument <CONSTB>::type> \
+ > \
+> \
+OPER_NAME (const lambda_functor<Arg>& a, CONSTB& b) { \
+ return \
+ lambda_functor_base< \
+ ACTION, \
+ tuple<lambda_functor<Arg>, typename const_copy_argument <CONSTB>::type>\
+ > \
+ (tuple<lambda_functor<Arg>, typename const_copy_argument <CONSTB>::type>(a, b)); \
+}
+
+
+#if defined BOOST_LAMBDA_BE2
+#error "Multiple defines of BOOST_LAMBDA_BE2"
+#endif
+
+#define BOOST_LAMBDA_BE2(OPER_NAME, ACTION, CONSTA, CONSTB, CONVERSION) \
+template<class A, class Arg> \
+inline const \
+lambda_functor< \
+ lambda_functor_base< \
+ ACTION, \
+ tuple<typename CONVERSION <CONSTA>::type, lambda_functor<Arg> > \
+ > \
+> \
+OPER_NAME (CONSTA& a, const lambda_functor<Arg>& b) { \
+ return \
+ lambda_functor_base< \
+ ACTION, \
+ tuple<typename CONVERSION <CONSTA>::type, lambda_functor<Arg> > \
+ > \
+ (tuple<typename CONVERSION <CONSTA>::type, lambda_functor<Arg> >(a, b)); \
+}
+
+
+#if defined BOOST_LAMBDA_BE3
+#error "Multiple defines of BOOST_LAMBDA_BE3"
+#endif
+
+#define BOOST_LAMBDA_BE3(OPER_NAME, ACTION, CONSTA, CONSTB, CONVERSION) \
+template<class ArgA, class ArgB> \
+inline const \
+lambda_functor< \
+ lambda_functor_base< \
+ ACTION, \
+ tuple<lambda_functor<ArgA>, lambda_functor<ArgB> > \
+ > \
+> \
+OPER_NAME (const lambda_functor<ArgA>& a, const lambda_functor<ArgB>& b) { \
+ return \
+ lambda_functor_base< \
+ ACTION, \
+ tuple<lambda_functor<ArgA>, lambda_functor<ArgB> > \
+ > \
+ (tuple<lambda_functor<ArgA>, lambda_functor<ArgB> >(a, b)); \
+}
+
+#if defined BOOST_LAMBDA_BE
+#error "Multiple defines of BOOST_LAMBDA_BE"
+#endif
+
+#define BOOST_LAMBDA_BE(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION) \
+BOOST_LAMBDA_BE1(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION) \
+BOOST_LAMBDA_BE2(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION) \
+BOOST_LAMBDA_BE3(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION)
+
+#define BOOST_LAMBDA_EMPTY()
+
+BOOST_LAMBDA_BE(operator+, arithmetic_action<plus_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator-, arithmetic_action<minus_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator*, arithmetic_action<multiply_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator/, arithmetic_action<divide_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator%, arithmetic_action<remainder_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator<<, bitwise_action<leftshift_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator>>, bitwise_action<rightshift_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator&, bitwise_action<and_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator|, bitwise_action<or_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator^, bitwise_action<xor_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator&&, logical_action<and_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator||, logical_action<or_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator<, relational_action<less_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator>, relational_action<greater_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator<=, relational_action<lessorequal_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator>=, relational_action<greaterorequal_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator==, relational_action<equal_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE(operator!=, relational_action<notequal_action>, const A, const B, const_copy_argument)
+
+BOOST_LAMBDA_BE(operator+=, arithmetic_assignment_action<plus_action>, A, const B, reference_argument)
+BOOST_LAMBDA_BE(operator-=, arithmetic_assignment_action<minus_action>, A, const B, reference_argument)
+BOOST_LAMBDA_BE(operator*=, arithmetic_assignment_action<multiply_action>, A, const B, reference_argument)
+BOOST_LAMBDA_BE(operator/=, arithmetic_assignment_action<divide_action>, A, const B, reference_argument)
+BOOST_LAMBDA_BE(operator%=, arithmetic_assignment_action<remainder_action>, A, const B, reference_argument)
+BOOST_LAMBDA_BE(operator<<=, bitwise_assignment_action<leftshift_action>, A, const B, reference_argument)
+BOOST_LAMBDA_BE(operator>>=, bitwise_assignment_action<rightshift_action>, A, const B, reference_argument)
+BOOST_LAMBDA_BE(operator&=, bitwise_assignment_action<and_action>, A, const B, reference_argument)
+BOOST_LAMBDA_BE(operator|=, bitwise_assignment_action<or_action>, A, const B, reference_argument)
+BOOST_LAMBDA_BE(operator^=, bitwise_assignment_action<xor_action>, A, const B, reference_argument)
+
+
+// A special trick for comma operator for correct preprocessing
+#if defined BOOST_LAMBDA_COMMA_OPERATOR_NAME
+#error "Multiple defines of BOOST_LAMBDA_COMMA_OPERATOR_NAME"
+#endif
+
+#define BOOST_LAMBDA_COMMA_OPERATOR_NAME operator,
+
+BOOST_LAMBDA_BE1(BOOST_LAMBDA_COMMA_OPERATOR_NAME, other_action<comma_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE2(BOOST_LAMBDA_COMMA_OPERATOR_NAME, other_action<comma_action>, const A, const B, const_copy_argument)
+BOOST_LAMBDA_BE3(BOOST_LAMBDA_COMMA_OPERATOR_NAME, other_action<comma_action>, const A, const B, const_copy_argument)
+
+
+
+namespace detail {
+
+// special cases for ostream& << Any and istream& >> Any ---------------
+// the actual stream classes may vary and thus a specialisation for,
+// say ostream& does not match (the general case above is chosen).
+// Therefore we specialise for non-const reference:
+// if the left argument is a stream, we store the stream as reference
+// if it is something else, we store a const plain by default
+
+// Note that the overloading is const vs. non-const first argument
+
+#ifdef BOOST_NO_TEMPLATED_STREAMS
+template<class T> struct convert_ostream_to_ref_others_to_c_plain_by_default {
+ typedef typename detail::IF<
+ boost::is_convertible<T*, std::ostream*>::value,
+ T&,
+ typename const_copy_argument <T>::type
+ >::RET type;
+};
+
+template<class T> struct convert_istream_to_ref_others_to_c_plain_by_default {
+ typedef typename detail::IF<
+ boost::is_convertible<T*, std::istream*>::value,
+ T&,
+ typename const_copy_argument <T>::type
+ >::RET type;
+};
+#else
+
+template<class T> struct convert_ostream_to_ref_others_to_c_plain_by_default {
+ typedef typename detail::IF<
+ is_instance_of_2<
+ T, std::basic_ostream
+ >::value,
+ T&,
+ typename const_copy_argument <T>::type
+ >::RET type;
+};
+
+template<class T> struct convert_istream_to_ref_others_to_c_plain_by_default {
+ typedef typename detail::IF<
+ is_instance_of_2<
+ T, std::basic_istream
+ >::value,
+ T&,
+ typename const_copy_argument <T>::type
+ >::RET type;
+};
+#endif
+
+} // detail
+
+BOOST_LAMBDA_BE2(operator<<, bitwise_action< leftshift_action>, A, const B, detail::convert_ostream_to_ref_others_to_c_plain_by_default)
+BOOST_LAMBDA_BE2(operator>>, bitwise_action< rightshift_action>, A, const B, detail::convert_istream_to_ref_others_to_c_plain_by_default)
+
+
+// special case for io_manipulators.
+// function references cannot be given as arguments to lambda operator
+// expressions in general. With << and >> the use of manipulators is
+// so common, that specializations are provided to make them work.
+
+template<class Arg, class Ret, class ManipArg>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ bitwise_action<leftshift_action>,
+ tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
+ >
+>
+operator<<(const lambda_functor<Arg>& a, Ret(&b)(ManipArg))
+{
+ return
+ lambda_functor_base<
+ bitwise_action<leftshift_action>,
+ tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
+ >
+ ( tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>(a, b) );
+}
+
+template<class Arg, class Ret, class ManipArg>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ bitwise_action<rightshift_action>,
+ tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
+ >
+>
+operator>>(const lambda_functor<Arg>& a, Ret(&b)(ManipArg))
+{
+ return
+ lambda_functor_base<
+ bitwise_action<rightshift_action>,
+ tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
+ >
+ ( tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>(a, b) );
+}
+
+
+// (+ and -) take their arguments as const references.
+// This has consquences with pointer artihmetic
+// E.g int a[]; ... *a = 1 works but not *(a+1) = 1.
+// the result of a+1 would be const
+// To make the latter work too,
+// non-const arrays are taken as non-const and stored as non-const as well.
+#if defined BOOST_LAMBDA_PTR_ARITHMETIC_E1
+#error "Multiple defines of BOOST_LAMBDA_PTR_ARITHMETIC_E1"
+#endif
+
+#define BOOST_LAMBDA_PTR_ARITHMETIC_E1(OPER_NAME, ACTION, CONSTB) \
+template<class Arg, int N, class B> \
+inline const \
+lambda_functor< \
+ lambda_functor_base<ACTION, tuple<lambda_functor<Arg>, CONSTB(&)[N]> > \
+> \
+OPER_NAME (const lambda_functor<Arg>& a, CONSTB(&b)[N]) \
+{ \
+ return \
+ lambda_functor_base<ACTION, tuple<lambda_functor<Arg>, CONSTB(&)[N]> > \
+ (tuple<lambda_functor<Arg>, CONSTB(&)[N]>(a, b)); \
+}
+
+
+#if defined BOOST_LAMBDA_PTR_ARITHMETIC_E2
+#error "Multiple defines of BOOST_LAMBDA_PTR_ARITHMETIC_E2"
+#endif
+
+#define BOOST_LAMBDA_PTR_ARITHMETIC_E2(OPER_NAME, ACTION, CONSTA) \
+template<int N, class A, class Arg> \
+inline const \
+lambda_functor< \
+ lambda_functor_base<ACTION, tuple<CONSTA(&)[N], lambda_functor<Arg> > > \
+> \
+OPER_NAME (CONSTA(&a)[N], const lambda_functor<Arg>& b) \
+{ \
+ return \
+ lambda_functor_base<ACTION, tuple<CONSTA(&)[N], lambda_functor<Arg> > > \
+ (tuple<CONSTA(&)[N], lambda_functor<Arg> >(a, b)); \
+}
+
+
+BOOST_LAMBDA_PTR_ARITHMETIC_E1(operator+, arithmetic_action<plus_action>, B)
+BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator+, arithmetic_action<plus_action>, A)
+BOOST_LAMBDA_PTR_ARITHMETIC_E1(operator+, arithmetic_action<plus_action>,const B)
+BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator+, arithmetic_action<plus_action>,const A)
+
+
+//BOOST_LAMBDA_PTR_ARITHMETIC_E1(operator-, arithmetic_action<minus_action>)
+// This is not needed, since the result of ptr-ptr is an rvalue anyway
+
+BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator-, arithmetic_action<minus_action>, A)
+BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator-, arithmetic_action<minus_action>, const A)
+
+
+#undef BOOST_LAMBDA_BE1
+#undef BOOST_LAMBDA_BE2
+#undef BOOST_LAMBDA_BE3
+#undef BOOST_LAMBDA_BE
+#undef BOOST_LAMBDA_COMMA_OPERATOR_NAME
+
+#undef BOOST_LAMBDA_PTR_ARITHMETIC_E1
+#undef BOOST_LAMBDA_PTR_ARITHMETIC_E2
+
+
+// ---------------------------------------------------------------------
+// unary operators -----------------------------------------------------
+// ---------------------------------------------------------------------
+
+#if defined BOOST_LAMBDA_UE
+#error "Multiple defines of BOOST_LAMBDA_UE"
+#endif
+
+#define BOOST_LAMBDA_UE(OPER_NAME, ACTION) \
+template<class Arg> \
+inline const \
+lambda_functor<lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > > \
+OPER_NAME (const lambda_functor<Arg>& a) \
+{ \
+ return \
+ lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > \
+ ( tuple<lambda_functor<Arg> >(a) ); \
+}
+
+
+BOOST_LAMBDA_UE(operator+, unary_arithmetic_action<plus_action>)
+BOOST_LAMBDA_UE(operator-, unary_arithmetic_action<minus_action>)
+BOOST_LAMBDA_UE(operator~, bitwise_action<not_action>)
+BOOST_LAMBDA_UE(operator!, logical_action<not_action>)
+BOOST_LAMBDA_UE(operator++, pre_increment_decrement_action<increment_action>)
+BOOST_LAMBDA_UE(operator--, pre_increment_decrement_action<decrement_action>)
+BOOST_LAMBDA_UE(operator*, other_action<contentsof_action>)
+BOOST_LAMBDA_UE(operator&, other_action<addressof_action>)
+
+#if defined BOOST_LAMBDA_POSTFIX_UE
+#error "Multiple defines of BOOST_LAMBDA_POSTFIX_UE"
+#endif
+
+#define BOOST_LAMBDA_POSTFIX_UE(OPER_NAME, ACTION) \
+template<class Arg> \
+inline const \
+lambda_functor<lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > > \
+OPER_NAME (const lambda_functor<Arg>& a, int) \
+{ \
+ return \
+ lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > \
+ ( tuple<lambda_functor<Arg> >(a) ); \
+}
+
+
+BOOST_LAMBDA_POSTFIX_UE(operator++, post_increment_decrement_action<increment_action>)
+BOOST_LAMBDA_POSTFIX_UE(operator--, post_increment_decrement_action<decrement_action>)
+
+#undef BOOST_LAMBDA_UE
+#undef BOOST_LAMBDA_POSTFIX_UE
+
+} // namespace lambda
+} // namespace boost
+
+#endif
diff --git a/3rdParty/Boost/src/boost/lambda/detail/ret.hpp b/3rdParty/Boost/src/boost/lambda/detail/ret.hpp
new file mode 100644
index 0000000..fbd8b3a
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/ret.hpp
@@ -0,0 +1,325 @@
+// Boost Lambda Library ret.hpp -----------------------------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+
+#ifndef BOOST_LAMBDA_RET_HPP
+#define BOOST_LAMBDA_RET_HPP
+
+namespace boost {
+namespace lambda {
+
+ // TODO:
+
+// Add specializations for function references for ret, protect and unlambda
+// e.g void foo(); unlambda(foo); fails, as it would add a const qualifier
+ // for a function type.
+ // on the other hand unlambda(*foo) does work
+
+
+// -- ret -------------------------
+// the explicit return type template
+
+ // TODO: It'd be nice to make ret a nop for other than lambda functors
+ // but causes an ambiguiyty with gcc (not with KCC), check what is the
+ // right interpretation.
+
+ // // ret for others than lambda functors has no effect
+ // template <class U, class T>
+ // inline const T& ret(const T& t) { return t; }
+
+
+template<class RET, class Arg>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ explicit_return_type_action<RET>,
+ tuple<lambda_functor<Arg> >
+ >
+>
+ret(const lambda_functor<Arg>& a1)
+{
+ return
+ lambda_functor_base<
+ explicit_return_type_action<RET>,
+ tuple<lambda_functor<Arg> >
+ >
+ (tuple<lambda_functor<Arg> >(a1));
+}
+
+// protect ------------------
+
+ // protecting others than lambda functors has no effect
+template <class T>
+inline const T& protect(const T& t) { return t; }
+
+template<class Arg>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ protect_action,
+ tuple<lambda_functor<Arg> >
+ >
+>
+protect(const lambda_functor<Arg>& a1)
+{
+ return
+ lambda_functor_base<
+ protect_action,
+ tuple<lambda_functor<Arg> >
+ >
+ (tuple<lambda_functor<Arg> >(a1));
+}
+
+// -------------------------------------------------------------------
+
+// Hides the lambda functorness of a lambda functor.
+// After this, the functor is immune to argument substitution, etc.
+// This can be used, e.g. to make it safe to pass lambda functors as
+// arguments to functions, which might use them as target functions
+
+// note, unlambda and protect are different things. Protect hides the lambda
+// functor for one application, unlambda for good.
+
+template <class LambdaFunctor>
+class non_lambda_functor
+{
+ LambdaFunctor lf;
+public:
+
+ // This functor defines the result_type typedef.
+ // The result type must be deducible without knowing the arguments
+
+ template <class SigArgs> struct sig {
+ typedef typename
+ LambdaFunctor::inherited::
+ template sig<typename SigArgs::tail_type>::type type;
+ };
+
+ explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {}
+
+ typename LambdaFunctor::nullary_return_type
+ operator()() const {
+ return lf.template
+ call<typename LambdaFunctor::nullary_return_type>
+ (cnull_type(), cnull_type(), cnull_type(), cnull_type());
+ }
+
+ template<class A>
+ typename sig<tuple<const non_lambda_functor, A&> >::type
+ operator()(A& a) const {
+ return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
+ }
+
+ template<class A, class B>
+ typename sig<tuple<const non_lambda_functor, A&, B&> >::type
+ operator()(A& a, B& b) const {
+ return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type());
+ }
+
+ template<class A, class B, class C>
+ typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type
+ operator()(A& a, B& b, C& c) const {
+ return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type());
+ }
+};
+
+template <class Arg>
+inline const Arg& unlambda(const Arg& a) { return a; }
+
+template <class Arg>
+inline const non_lambda_functor<lambda_functor<Arg> >
+unlambda(const lambda_functor<Arg>& a)
+{
+ return non_lambda_functor<lambda_functor<Arg> >(a);
+}
+
+ // Due to a language restriction, lambda functors cannot be made to
+ // accept non-const rvalue arguments. Usually iterators do not return
+ // temporaries, but sometimes they do. That's why a workaround is provided.
+ // Note, that this potentially breaks const correctness, so be careful!
+
+// any lambda functor can be turned into a const_incorrect_lambda_functor
+// The operator() takes arguments as consts and then casts constness
+// away. So this breaks const correctness!!! but is a necessary workaround
+// in some cases due to language limitations.
+// Note, that this is not a lambda_functor anymore, so it can not be used
+// as a sub lambda expression.
+
+template <class LambdaFunctor>
+struct const_incorrect_lambda_functor {
+ LambdaFunctor lf;
+public:
+
+ explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {}
+
+ template <class SigArgs> struct sig {
+ typedef typename
+ LambdaFunctor::inherited::template
+ sig<typename SigArgs::tail_type>::type type;
+ };
+
+ // The nullary case is not needed (no arguments, no parameter type problems)
+
+ template<class A>
+ typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type
+ operator()(const A& a) const {
+ return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type());
+ }
+
+ template<class A, class B>
+ typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type
+ operator()(const A& a, const B& b) const {
+ return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type());
+ }
+
+ template<class A, class B, class C>
+ typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type
+ operator()(const A& a, const B& b, const C& c) const {
+ return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type());
+ }
+};
+
+// ------------------------------------------------------------------------
+// any lambda functor can be turned into a const_parameter_lambda_functor
+// The operator() takes arguments as const.
+// This is useful if lambda functors are called with non-const rvalues.
+// Note, that this is not a lambda_functor anymore, so it can not be used
+// as a sub lambda expression.
+
+template <class LambdaFunctor>
+struct const_parameter_lambda_functor {
+ LambdaFunctor lf;
+public:
+
+ explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {}
+
+ template <class SigArgs> struct sig {
+ typedef typename
+ LambdaFunctor::inherited::template
+ sig<typename SigArgs::tail_type>::type type;
+ };
+
+ // The nullary case is not needed: no arguments, no constness problems.
+
+ template<class A>
+ typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type
+ operator()(const A& a) const {
+ return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
+ }
+
+ template<class A, class B>
+ typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type
+ operator()(const A& a, const B& b) const {
+ return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type());
+ }
+
+ template<class A, class B, class C>
+ typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&>
+>::type
+ operator()(const A& a, const B& b, const C& c) const {
+ return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type());
+ }
+};
+
+template <class Arg>
+inline const const_incorrect_lambda_functor<lambda_functor<Arg> >
+break_const(const lambda_functor<Arg>& lf)
+{
+ return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf);
+}
+
+
+template <class Arg>
+inline const const_parameter_lambda_functor<lambda_functor<Arg> >
+const_parameters(const lambda_functor<Arg>& lf)
+{
+ return const_parameter_lambda_functor<lambda_functor<Arg> >(lf);
+}
+
+// make void ------------------------------------------------
+// make_void( x ) turns a lambda functor x with some return type y into
+// another lambda functor, which has a void return type
+// when called, the original return type is discarded
+
+// we use this action. The action class will be called, which means that
+// the wrapped lambda functor is evaluated, but we just don't do anything
+// with the result.
+struct voidifier_action {
+ template<class Ret, class A> static void apply(A&) {}
+};
+
+template<class Args> struct return_type_N<voidifier_action, Args> {
+ typedef void type;
+};
+
+template<class Arg1>
+inline const
+lambda_functor<
+ lambda_functor_base<
+ action<1, voidifier_action>,
+ tuple<lambda_functor<Arg1> >
+ >
+>
+make_void(const lambda_functor<Arg1>& a1) {
+return
+ lambda_functor_base<
+ action<1, voidifier_action>,
+ tuple<lambda_functor<Arg1> >
+ >
+ (tuple<lambda_functor<Arg1> > (a1));
+}
+
+// for non-lambda functors, make_void does nothing
+// (the argument gets evaluated immediately)
+
+template<class Arg1>
+inline const
+lambda_functor<
+ lambda_functor_base<do_nothing_action, null_type>
+>
+make_void(const Arg1& a1) {
+return
+ lambda_functor_base<do_nothing_action, null_type>();
+}
+
+// std_functor -----------------------------------------------------
+
+// The STL uses the result_type typedef as the convention to let binders know
+// the return type of a function object.
+// LL uses the sig template.
+// To let LL know that the function object has the result_type typedef
+// defined, it can be wrapped with the std_functor function.
+
+
+// Just inherit form the template parameter (the standard functor),
+// and provide a sig template. So we have a class which is still the
+// same functor + the sig template.
+
+template<class T>
+struct result_type_to_sig : public T {
+ template<class Args> struct sig { typedef typename T::result_type type; };
+ result_type_to_sig(const T& t) : T(t) {}
+};
+
+template<class F>
+inline result_type_to_sig<F> std_functor(const F& f) { return f; }
+
+
+} // namespace lambda
+} // namespace boost
+
+#endif
+
+
+
+
+
+
+
diff --git a/3rdParty/Boost/src/boost/lambda/detail/return_type_traits.hpp b/3rdParty/Boost/src/boost/lambda/detail/return_type_traits.hpp
new file mode 100644
index 0000000..bf2394e
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/return_type_traits.hpp
@@ -0,0 +1,282 @@
+// return_type_traits.hpp -- Boost Lambda Library ---------------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see www.boost.org
+
+
+#ifndef BOOST_LAMBDA_RETURN_TYPE_TRAITS_HPP
+#define BOOST_LAMBDA_RETURN_TYPE_TRAITS_HPP
+
+#include "boost/mpl/has_xxx.hpp"
+
+#include <cstddef> // needed for the ptrdiff_t
+
+namespace boost {
+namespace lambda {
+
+using ::boost::type_traits::ice_and;
+using ::boost::type_traits::ice_or;
+using ::boost::type_traits::ice_not;
+
+// Much of the type deduction code for standard arithmetic types
+// from Gary Powell
+
+ // different arities:
+template <class Act, class A1> struct return_type_1; // 1-ary actions
+template <class Act, class A1, class A2> struct return_type_2; // 2-ary
+template <class Act, class Args> struct return_type_N; // >3- ary
+
+template <class Act, class A1> struct return_type_1_prot;
+template <class Act, class A1, class A2> struct return_type_2_prot; // 2-ary
+template <class Act, class A1> struct return_type_N_prot; // >3-ary
+
+
+namespace detail {
+
+template<class> class return_type_deduction_failure {};
+
+ // In some cases return type deduction should fail (an invalid lambda
+ // expression). Sometimes the lambda expression can be ok, the return type
+ // just is not deducible (user defined operators). Then return type deduction
+ // should never be entered at all, and the use of ret<> does this.
+ // However, for nullary lambda functors, return type deduction is always
+ // entered, and there seems to be no way around this.
+
+ // (the return type is part of the prototype of the non-template
+ // operator()(). The prototype is instantiated, even though the body
+ // is not.)
+
+ // So, in the case the return type deduction should fail, it should not
+ // fail directly, but rather result in a valid but wrong return type,
+ // causing a compile time error only if the function is really called.
+
+
+
+} // end detail
+
+
+
+// return_type_X_prot classes --------------------------------------------
+// These classes are the first layer that gets instantiated from the
+// lambda_functor_base sig templates. It will check whether
+// the action is protectable and one of arguments is "protected" or its
+// evaluation will otherwise result in another lambda functor.
+// If this is a case, the result type will be another lambda functor.
+
+// The arguments are always non-reference types, except for comma action
+// where the right argument can be a reference too. This is because it
+// matters (in the builtin case) whether the argument is an lvalue or
+// rvalue: int i; i, 1 -> rvalue; 1, i -> lvalue
+
+template <class Act, class A> struct return_type_1_prot {
+public:
+ typedef typename
+ detail::IF<
+ // is_protectable<Act>::value && is_lambda_functor<A>::value,
+ ice_and<is_protectable<Act>::value, is_lambda_functor<A>::value>::value,
+ lambda_functor<
+ lambda_functor_base<
+ Act,
+ tuple<typename detail::remove_reference_and_cv<A>::type>
+ >
+ >,
+ typename return_type_1<Act, A>::type
+ >::RET type;
+};
+
+ // take care of the unavoidable instantiation for nullary case
+template<class Act> struct return_type_1_prot<Act, null_type> {
+ typedef null_type type;
+};
+
+// Unary actions (result from unary operators)
+// do not have a default return type.
+template<class Act, class A> struct return_type_1 {
+ typedef typename
+ detail::return_type_deduction_failure<return_type_1> type;
+};
+
+
+namespace detail {
+
+ template <class T>
+ class protect_conversion {
+ typedef typename boost::remove_reference<T>::type non_ref_T;
+ public:
+
+ // add const to rvalues, so that all rvalues are stored as const in
+ // the args tuple
+ typedef typename detail::IF_type<
+// boost::is_reference<T>::value && !boost::is_const<non_ref_T>::value,
+ ice_and<boost::is_reference<T>::value,
+ ice_not<boost::is_const<non_ref_T>::value>::value>::value,
+ detail::identity_mapping<T>,
+ const_copy_argument<non_ref_T> // handles funtion and array
+ >::type type; // types correctly
+ };
+
+} // end detail
+
+template <class Act, class A, class B> struct return_type_2_prot {
+
+// experimental feature
+ // We may have a lambda functor as a result type of a subexpression
+ // (if protect) has been used.
+ // Thus, if one of the parameter types is a lambda functor, the result
+ // is a lambda functor as well.
+ // We need to make a conservative choise here.
+ // The resulting lambda functor stores all const reference arguments as
+ // const copies. References to non-const are stored as such.
+ // So if the source of the argument is a const open argument, a bound
+ // argument stored as a const reference, or a function returning a
+ // const reference, that information is lost. There is no way of
+ // telling apart 'real const references' from just 'LL internal
+ // const references' (or it would be really hard)
+
+ // The return type is a subclass of lambda_functor, which has a converting
+ // copy constructor. It can copy any lambda functor, that has the same
+ // action type and code, and a copy compatible argument tuple.
+
+
+ typedef typename boost::remove_reference<A>::type non_ref_A;
+ typedef typename boost::remove_reference<B>::type non_ref_B;
+
+typedef typename
+ detail::IF<
+// is_protectable<Act>::value &&
+// (is_lambda_functor<A>::value || is_lambda_functor<B>::value),
+ ice_and<is_protectable<Act>::value,
+ ice_or<is_lambda_functor<A>::value,
+ is_lambda_functor<B>::value>::value>::value,
+ lambda_functor<
+ lambda_functor_base<
+ Act,
+ tuple<typename detail::protect_conversion<A>::type,
+ typename detail::protect_conversion<B>::type>
+ >
+ >,
+ typename return_type_2<Act, non_ref_A, non_ref_B>::type
+ >::RET type;
+};
+
+ // take care of the unavoidable instantiation for nullary case
+template<class Act> struct return_type_2_prot<Act, null_type, null_type> {
+ typedef null_type type;
+};
+ // take care of the unavoidable instantiation for nullary case
+template<class Act, class Other> struct return_type_2_prot<Act, Other, null_type> {
+ typedef null_type type;
+};
+ // take care of the unavoidable instantiation for nullary case
+template<class Act, class Other> struct return_type_2_prot<Act, null_type, Other> {
+ typedef null_type type;
+};
+
+ // comma is a special case, as the user defined operator can return
+ // an lvalue (reference) too, hence it must be handled at this level.
+template<class A, class B>
+struct return_type_2_comma
+{
+ typedef typename boost::remove_reference<A>::type non_ref_A;
+ typedef typename boost::remove_reference<B>::type non_ref_B;
+
+typedef typename
+ detail::IF<
+// is_protectable<other_action<comma_action> >::value && // it is protectable
+// (is_lambda_functor<A>::value || is_lambda_functor<B>::value),
+ ice_and<is_protectable<other_action<comma_action> >::value, // it is protectable
+ ice_or<is_lambda_functor<A>::value,
+ is_lambda_functor<B>::value>::value>::value,
+ lambda_functor<
+ lambda_functor_base<
+ other_action<comma_action>,
+ tuple<typename detail::protect_conversion<A>::type,
+ typename detail::protect_conversion<B>::type>
+ >
+ >,
+ typename
+ return_type_2<other_action<comma_action>, non_ref_A, non_ref_B>::type
+ >::RET type1;
+
+ // if no user defined return_type_2 (or plain_return_type_2) specialization
+ // matches, then return the righthand argument
+ typedef typename
+ detail::IF<
+ boost::is_same<type1, detail::unspecified>::value,
+ B,
+ type1
+ >::RET type;
+
+};
+
+
+ // currently there are no protectable actions with > 2 args
+
+template<class Act, class Args> struct return_type_N_prot {
+ typedef typename return_type_N<Act, Args>::type type;
+};
+
+ // take care of the unavoidable instantiation for nullary case
+template<class Act> struct return_type_N_prot<Act, null_type> {
+ typedef null_type type;
+};
+
+// handle different kind of actions ------------------------
+
+ // use the return type given in the bind invocation as bind<Ret>(...)
+template<int I, class Args, class Ret>
+struct return_type_N<function_action<I, Ret>, Args> {
+ typedef Ret type;
+};
+
+// ::result_type support
+
+namespace detail
+{
+
+BOOST_MPL_HAS_XXX_TRAIT_DEF(result_type)
+
+template<class F> struct get_result_type
+{
+ typedef typename F::result_type type;
+};
+
+template<class F, class A> struct get_sig
+{
+ typedef typename function_adaptor<F>::template sig<A>::type type;
+};
+
+} // namespace detail
+
+ // Ret is detail::unspecified, so try to deduce return type
+template<int I, class Args>
+struct return_type_N<function_action<I, detail::unspecified>, Args > {
+
+ // in the case of function action, the first element in Args is
+ // some type of function
+ typedef typename Args::head_type Func;
+ typedef typename detail::remove_reference_and_cv<Func>::type plain_Func;
+
+public:
+ // pass the function to function_adaptor, and get the return type from
+ // that
+ typedef typename detail::IF<
+ detail::has_result_type<plain_Func>::value,
+ detail::get_result_type<plain_Func>,
+ detail::get_sig<plain_Func, Args>
+ >::RET::type type;
+};
+
+
+} // namespace lambda
+} // namespace boost
+
+#endif
+
+
+
diff --git a/3rdParty/Boost/src/boost/lambda/detail/select_functions.hpp b/3rdParty/Boost/src/boost/lambda/detail/select_functions.hpp
new file mode 100644
index 0000000..956045c
--- /dev/null
+++ b/3rdParty/Boost/src/boost/lambda/detail/select_functions.hpp
@@ -0,0 +1,74 @@
+// -- select_functions.hpp -- Boost Lambda Library --------------------------
+
+// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
+//
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// For more information, see http://www.boost.org
+
+
+#ifndef BOOST_LAMBDA_SELECT_FUNCTIONS_HPP
+#define BOOST_LAMBDA_SELECT_FUNCTIONS_HPP
+
+namespace boost {
+namespace lambda {
+namespace detail {
+
+
+// select functions -------------------------------
+template<class Any, CALL_TEMPLATE_ARGS>
+inline Any& select(Any& any, CALL_FORMAL_ARGS) { CALL_USE_ARGS; return any; }
+
+
+template<class Arg, CALL_TEMPLATE_ARGS>
+inline typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
+select ( const lambda_functor<Arg>& op, CALL_FORMAL_ARGS ) {
+ return op.template call<
+ typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
+ >(CALL_ACTUAL_ARGS);
+}
+template<class Arg, CALL_TEMPLATE_ARGS>
+inline typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
+select ( lambda_functor<Arg>& op, CALL_FORMAL_ARGS) {
+ return op.template call<
+ typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
+ >(CALL_ACTUAL_ARGS);
+}
+
+// ------------------------------------------------------------------------
+// select functions where the return type is explicitly given
+// Note: on many functions, this return type is just discarded.
+// The select functions are inside a class template, and the return type
+// is a class template argument.
+// The first implementation used function templates with an explicitly
+// specified template parameter.
+// However, this resulted in ambiguous calls (at least with gcc 2.95.2
+// and edg 2.44). Not sure whether the compilers were right or wrong.
+
+template<class RET> struct r_select {
+
+// Any == RET
+ template<class Any, CALL_TEMPLATE_ARGS>
+ static
+ inline RET go (Any& any, CALL_FORMAL_ARGS) { CALL_USE_ARGS; return any; }
+
+
+ template<class Arg, CALL_TEMPLATE_ARGS>
+ static
+ inline RET go (const lambda_functor<Arg>& op, CALL_FORMAL_ARGS ) {
+ return op.template call<RET>(CALL_ACTUAL_ARGS);
+ }
+ template<class Arg, CALL_TEMPLATE_ARGS>
+ static
+ inline RET go (lambda_functor<Arg>& op, CALL_FORMAL_ARGS ) {
+ return op.template call<RET>(CALL_ACTUAL_ARGS);
+ }
+};
+
+} // namespace detail
+} // namespace lambda
+} // namespace boost
+
+#endif