summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '3rdParty/Boost/src/boost/math')
-rw-r--r--3rdParty/Boost/src/boost/math/common_factor_ct.hpp180
-rw-r--r--3rdParty/Boost/src/boost/math/common_factor_rt.hpp530
-rw-r--r--3rdParty/Boost/src/boost/math/policies/policy.hpp982
-rw-r--r--3rdParty/Boost/src/boost/math/special_functions/detail/fp_traits.hpp570
-rw-r--r--3rdParty/Boost/src/boost/math/special_functions/detail/round_fwd.hpp80
-rw-r--r--3rdParty/Boost/src/boost/math/special_functions/fpclassify.hpp537
-rw-r--r--3rdParty/Boost/src/boost/math/special_functions/math_fwd.hpp1296
-rw-r--r--3rdParty/Boost/src/boost/math/special_functions/sign.hpp145
-rw-r--r--3rdParty/Boost/src/boost/math/tools/config.hpp330
-rw-r--r--3rdParty/Boost/src/boost/math/tools/promotion.hpp150
-rw-r--r--3rdParty/Boost/src/boost/math/tools/real_cast.hpp29
-rw-r--r--3rdParty/Boost/src/boost/math/tools/user.hpp97
12 files changed, 4926 insertions, 0 deletions
diff --git a/3rdParty/Boost/src/boost/math/common_factor_ct.hpp b/3rdParty/Boost/src/boost/math/common_factor_ct.hpp
new file mode 100644
index 0000000..848c925
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/common_factor_ct.hpp
@@ -0,0 +1,180 @@
+// Boost common_factor_ct.hpp header file ----------------------------------//
+
+// (C) Copyright Daryle Walker and Stephen Cleary 2001-2002.
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+// See http://www.boost.org for updates, documentation, and revision history.
+
+#ifndef BOOST_MATH_COMMON_FACTOR_CT_HPP
+#define BOOST_MATH_COMMON_FACTOR_CT_HPP
+
+#include <boost/math_fwd.hpp> // self include
+#include <boost/config.hpp> // for BOOST_STATIC_CONSTANT, etc.
+#include <boost/mpl/integral_c.hpp>
+
+namespace boost
+{
+namespace math
+{
+
+// Implementation details --------------------------------------------------//
+
+namespace detail
+{
+#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
+ // Build GCD with Euclid's recursive algorithm
+ template < static_gcd_type Value1, static_gcd_type Value2 >
+ struct static_gcd_helper_t
+ {
+ private:
+ BOOST_STATIC_CONSTANT( static_gcd_type, new_value1 = Value2 );
+ BOOST_STATIC_CONSTANT( static_gcd_type, new_value2 = Value1 % Value2 );
+
+ #ifndef __BORLANDC__
+ #define BOOST_DETAIL_GCD_HELPER_VAL(Value) static_cast<static_gcd_type>(Value)
+ #else
+ typedef static_gcd_helper_t self_type;
+ #define BOOST_DETAIL_GCD_HELPER_VAL(Value) (self_type:: Value )
+ #endif
+
+ typedef static_gcd_helper_t< BOOST_DETAIL_GCD_HELPER_VAL(new_value1),
+ BOOST_DETAIL_GCD_HELPER_VAL(new_value2) > next_step_type;
+
+ #undef BOOST_DETAIL_GCD_HELPER_VAL
+
+ public:
+ BOOST_STATIC_CONSTANT( static_gcd_type, value = next_step_type::value );
+ };
+
+ // Non-recursive case
+ template < static_gcd_type Value1 >
+ struct static_gcd_helper_t< Value1, 0UL >
+ {
+ BOOST_STATIC_CONSTANT( static_gcd_type, value = Value1 );
+ };
+#else
+ // Use inner class template workaround from Peter Dimov
+ template < static_gcd_type Value1 >
+ struct static_gcd_helper2_t
+ {
+ template < static_gcd_type Value2 >
+ struct helper
+ {
+ BOOST_STATIC_CONSTANT( static_gcd_type, value
+ = static_gcd_helper2_t<Value2>::BOOST_NESTED_TEMPLATE
+ helper<Value1 % Value2>::value );
+ };
+
+ template < >
+ struct helper< 0UL >
+ {
+ BOOST_STATIC_CONSTANT( static_gcd_type, value = Value1 );
+ };
+ };
+
+ // Special case
+ template < >
+ struct static_gcd_helper2_t< 0UL >
+ {
+ template < static_gcd_type Value2 >
+ struct helper
+ {
+ BOOST_STATIC_CONSTANT( static_gcd_type, value = Value2 );
+ };
+ };
+
+ // Build the GCD from the above template(s)
+ template < static_gcd_type Value1, static_gcd_type Value2 >
+ struct static_gcd_helper_t
+ {
+ BOOST_STATIC_CONSTANT( static_gcd_type, value
+ = static_gcd_helper2_t<Value1>::BOOST_NESTED_TEMPLATE
+ helper<Value2>::value );
+ };
+#endif
+
+#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
+ // Build the LCM from the GCD
+ template < static_gcd_type Value1, static_gcd_type Value2 >
+ struct static_lcm_helper_t
+ {
+ typedef static_gcd_helper_t<Value1, Value2> gcd_type;
+
+ BOOST_STATIC_CONSTANT( static_gcd_type, value = Value1 / gcd_type::value
+ * Value2 );
+ };
+
+ // Special case for zero-GCD values
+ template < >
+ struct static_lcm_helper_t< 0UL, 0UL >
+ {
+ BOOST_STATIC_CONSTANT( static_gcd_type, value = 0UL );
+ };
+#else
+ // Adapt GCD's inner class template workaround for LCM
+ template < static_gcd_type Value1 >
+ struct static_lcm_helper2_t
+ {
+ template < static_gcd_type Value2 >
+ struct helper
+ {
+ typedef static_gcd_helper_t<Value1, Value2> gcd_type;
+
+ BOOST_STATIC_CONSTANT( static_gcd_type, value = Value1
+ / gcd_type::value * Value2 );
+ };
+
+ template < >
+ struct helper< 0UL >
+ {
+ BOOST_STATIC_CONSTANT( static_gcd_type, value = 0UL );
+ };
+ };
+
+ // Special case
+ template < >
+ struct static_lcm_helper2_t< 0UL >
+ {
+ template < static_gcd_type Value2 >
+ struct helper
+ {
+ BOOST_STATIC_CONSTANT( static_gcd_type, value = 0UL );
+ };
+ };
+
+ // Build the LCM from the above template(s)
+ template < static_gcd_type Value1, static_gcd_type Value2 >
+ struct static_lcm_helper_t
+ {
+ BOOST_STATIC_CONSTANT( static_gcd_type, value
+ = static_lcm_helper2_t<Value1>::BOOST_NESTED_TEMPLATE
+ helper<Value2>::value );
+ };
+#endif
+
+} // namespace detail
+
+
+// Compile-time greatest common divisor evaluator class declaration --------//
+
+template < static_gcd_type Value1, static_gcd_type Value2 >
+struct static_gcd : public mpl::integral_c<static_gcd_type, (detail::static_gcd_helper_t<Value1, Value2>::value) >
+{
+}; // boost::math::static_gcd
+
+
+// Compile-time least common multiple evaluator class declaration ----------//
+
+template < static_gcd_type Value1, static_gcd_type Value2 >
+struct static_lcm : public mpl::integral_c<static_gcd_type, (detail::static_lcm_helper_t<Value1, Value2>::value) >
+{
+}; // boost::math::static_lcm
+
+
+} // namespace math
+} // namespace boost
+
+
+#endif // BOOST_MATH_COMMON_FACTOR_CT_HPP
diff --git a/3rdParty/Boost/src/boost/math/common_factor_rt.hpp b/3rdParty/Boost/src/boost/math/common_factor_rt.hpp
new file mode 100644
index 0000000..4582a96
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/common_factor_rt.hpp
@@ -0,0 +1,530 @@
+// Boost common_factor_rt.hpp header file ----------------------------------//
+
+// (C) Copyright Daryle Walker and Paul Moore 2001-2002. Permission to copy,
+// use, modify, sell and distribute this software is granted provided this
+// copyright notice appears in all copies. This software is provided "as is"
+// without express or implied warranty, and with no claim as to its suitability
+// for any purpose.
+
+// boostinspect:nolicense (don't complain about the lack of a Boost license)
+// (Paul Moore hasn't been in contact for years, so there's no way to change the
+// license.)
+
+// See http://www.boost.org for updates, documentation, and revision history.
+
+#ifndef BOOST_MATH_COMMON_FACTOR_RT_HPP
+#define BOOST_MATH_COMMON_FACTOR_RT_HPP
+
+#include <boost/math_fwd.hpp> // self include
+
+#include <boost/config.hpp> // for BOOST_NESTED_TEMPLATE, etc.
+#include <boost/limits.hpp> // for std::numeric_limits
+#include <climits> // for CHAR_MIN
+#include <boost/detail/workaround.hpp>
+
+#ifdef BOOST_MSVC
+#pragma warning(push)
+#pragma warning(disable:4127 4244) // Conditional expression is constant
+#endif
+
+namespace boost
+{
+namespace math
+{
+
+
+// Forward declarations for function templates -----------------------------//
+
+template < typename IntegerType >
+ IntegerType gcd( IntegerType const &a, IntegerType const &b );
+
+template < typename IntegerType >
+ IntegerType lcm( IntegerType const &a, IntegerType const &b );
+
+
+// Greatest common divisor evaluator class declaration ---------------------//
+
+template < typename IntegerType >
+class gcd_evaluator
+{
+public:
+ // Types
+ typedef IntegerType result_type, first_argument_type, second_argument_type;
+
+ // Function object interface
+ result_type operator ()( first_argument_type const &a,
+ second_argument_type const &b ) const;
+
+}; // boost::math::gcd_evaluator
+
+
+// Least common multiple evaluator class declaration -----------------------//
+
+template < typename IntegerType >
+class lcm_evaluator
+{
+public:
+ // Types
+ typedef IntegerType result_type, first_argument_type, second_argument_type;
+
+ // Function object interface
+ result_type operator ()( first_argument_type const &a,
+ second_argument_type const &b ) const;
+
+}; // boost::math::lcm_evaluator
+
+
+// Implementation details --------------------------------------------------//
+
+namespace detail
+{
+ // Greatest common divisor for rings (including unsigned integers)
+ template < typename RingType >
+ RingType
+ gcd_euclidean
+ (
+ RingType a,
+ RingType b
+ )
+ {
+ // Avoid repeated construction
+ #ifndef __BORLANDC__
+ RingType const zero = static_cast<RingType>( 0 );
+ #else
+ RingType zero = static_cast<RingType>( 0 );
+ #endif
+
+ // Reduce by GCD-remainder property [GCD(a,b) == GCD(b,a MOD b)]
+ while ( true )
+ {
+ if ( a == zero )
+ return b;
+ b %= a;
+
+ if ( b == zero )
+ return a;
+ a %= b;
+ }
+ }
+
+ // Greatest common divisor for (signed) integers
+ template < typename IntegerType >
+ inline
+ IntegerType
+ gcd_integer
+ (
+ IntegerType const & a,
+ IntegerType const & b
+ )
+ {
+ // Avoid repeated construction
+ IntegerType const zero = static_cast<IntegerType>( 0 );
+ IntegerType const result = gcd_euclidean( a, b );
+
+ return ( result < zero ) ? static_cast<IntegerType>(-result) : result;
+ }
+
+ // Greatest common divisor for unsigned binary integers
+ template < typename BuiltInUnsigned >
+ BuiltInUnsigned
+ gcd_binary
+ (
+ BuiltInUnsigned u,
+ BuiltInUnsigned v
+ )
+ {
+ if ( u && v )
+ {
+ // Shift out common factors of 2
+ unsigned shifts = 0;
+
+ while ( !(u & 1u) && !(v & 1u) )
+ {
+ ++shifts;
+ u >>= 1;
+ v >>= 1;
+ }
+
+ // Start with the still-even one, if any
+ BuiltInUnsigned r[] = { u, v };
+ unsigned which = static_cast<bool>( u & 1u );
+
+ // Whittle down the values via their differences
+ do
+ {
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+ while ( !(r[ which ] & 1u) )
+ {
+ r[ which ] = (r[which] >> 1);
+ }
+#else
+ // Remove factors of two from the even one
+ while ( !(r[ which ] & 1u) )
+ {
+ r[ which ] >>= 1;
+ }
+#endif
+
+ // Replace the larger of the two with their difference
+ if ( r[!which] > r[which] )
+ {
+ which ^= 1u;
+ }
+
+ r[ which ] -= r[ !which ];
+ }
+ while ( r[which] );
+
+ // Shift-in the common factor of 2 to the residues' GCD
+ return r[ !which ] << shifts;
+ }
+ else
+ {
+ // At least one input is zero, return the other
+ // (adding since zero is the additive identity)
+ // or zero if both are zero.
+ return u + v;
+ }
+ }
+
+ // Least common multiple for rings (including unsigned integers)
+ template < typename RingType >
+ inline
+ RingType
+ lcm_euclidean
+ (
+ RingType const & a,
+ RingType const & b
+ )
+ {
+ RingType const zero = static_cast<RingType>( 0 );
+ RingType const temp = gcd_euclidean( a, b );
+
+ return ( temp != zero ) ? ( a / temp * b ) : zero;
+ }
+
+ // Least common multiple for (signed) integers
+ template < typename IntegerType >
+ inline
+ IntegerType
+ lcm_integer
+ (
+ IntegerType const & a,
+ IntegerType const & b
+ )
+ {
+ // Avoid repeated construction
+ IntegerType const zero = static_cast<IntegerType>( 0 );
+ IntegerType const result = lcm_euclidean( a, b );
+
+ return ( result < zero ) ? static_cast<IntegerType>(-result) : result;
+ }
+
+ // Function objects to find the best way of computing GCD or LCM
+#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
+ template < typename T, bool IsSpecialized, bool IsSigned >
+ struct gcd_optimal_evaluator_helper_t
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ return gcd_euclidean( a, b );
+ }
+ };
+
+ template < typename T >
+ struct gcd_optimal_evaluator_helper_t< T, true, true >
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ return gcd_integer( a, b );
+ }
+ };
+#else
+ template < bool IsSpecialized, bool IsSigned >
+ struct gcd_optimal_evaluator_helper2_t
+ {
+ template < typename T >
+ struct helper
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ return gcd_euclidean( a, b );
+ }
+ };
+ };
+
+ template < >
+ struct gcd_optimal_evaluator_helper2_t< true, true >
+ {
+ template < typename T >
+ struct helper
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ return gcd_integer( a, b );
+ }
+ };
+ };
+
+ template < typename T, bool IsSpecialized, bool IsSigned >
+ struct gcd_optimal_evaluator_helper_t
+ : gcd_optimal_evaluator_helper2_t<IsSpecialized, IsSigned>
+ ::BOOST_NESTED_TEMPLATE helper<T>
+ {
+ };
+#endif
+
+ template < typename T >
+ struct gcd_optimal_evaluator
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ typedef ::std::numeric_limits<T> limits_type;
+
+ typedef gcd_optimal_evaluator_helper_t<T,
+ limits_type::is_specialized, limits_type::is_signed> helper_type;
+
+ helper_type solver;
+
+ return solver( a, b );
+ }
+ };
+#else // BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ template < typename T >
+ struct gcd_optimal_evaluator
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ return gcd_integer( a, b );
+ }
+ };
+#endif
+
+ // Specialize for the built-in integers
+#define BOOST_PRIVATE_GCD_UF( Ut ) \
+ template < > struct gcd_optimal_evaluator<Ut> \
+ { Ut operator ()( Ut a, Ut b ) const { return gcd_binary( a, b ); } }
+
+ BOOST_PRIVATE_GCD_UF( unsigned char );
+ BOOST_PRIVATE_GCD_UF( unsigned short );
+ BOOST_PRIVATE_GCD_UF( unsigned );
+ BOOST_PRIVATE_GCD_UF( unsigned long );
+
+#ifdef BOOST_HAS_LONG_LONG
+ BOOST_PRIVATE_GCD_UF( boost::ulong_long_type );
+#elif defined(BOOST_HAS_MS_INT64)
+ BOOST_PRIVATE_GCD_UF( unsigned __int64 );
+#endif
+
+#if CHAR_MIN == 0
+ BOOST_PRIVATE_GCD_UF( char ); // char is unsigned
+#endif
+
+#undef BOOST_PRIVATE_GCD_UF
+
+#define BOOST_PRIVATE_GCD_SF( St, Ut ) \
+ template < > struct gcd_optimal_evaluator<St> \
+ { St operator ()( St a, St b ) const { Ut const a_abs = \
+ static_cast<Ut>( a < 0 ? -a : +a ), b_abs = static_cast<Ut>( \
+ b < 0 ? -b : +b ); return static_cast<St>( \
+ gcd_optimal_evaluator<Ut>()(a_abs, b_abs) ); } }
+
+ BOOST_PRIVATE_GCD_SF( signed char, unsigned char );
+ BOOST_PRIVATE_GCD_SF( short, unsigned short );
+ BOOST_PRIVATE_GCD_SF( int, unsigned );
+ BOOST_PRIVATE_GCD_SF( long, unsigned long );
+
+#if CHAR_MIN < 0
+ BOOST_PRIVATE_GCD_SF( char, unsigned char ); // char is signed
+#endif
+
+#ifdef BOOST_HAS_LONG_LONG
+ BOOST_PRIVATE_GCD_SF( boost::long_long_type, boost::ulong_long_type );
+#elif defined(BOOST_HAS_MS_INT64)
+ BOOST_PRIVATE_GCD_SF( __int64, unsigned __int64 );
+#endif
+
+#undef BOOST_PRIVATE_GCD_SF
+
+#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
+ template < typename T, bool IsSpecialized, bool IsSigned >
+ struct lcm_optimal_evaluator_helper_t
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ return lcm_euclidean( a, b );
+ }
+ };
+
+ template < typename T >
+ struct lcm_optimal_evaluator_helper_t< T, true, true >
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ return lcm_integer( a, b );
+ }
+ };
+#else
+ template < bool IsSpecialized, bool IsSigned >
+ struct lcm_optimal_evaluator_helper2_t
+ {
+ template < typename T >
+ struct helper
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ return lcm_euclidean( a, b );
+ }
+ };
+ };
+
+ template < >
+ struct lcm_optimal_evaluator_helper2_t< true, true >
+ {
+ template < typename T >
+ struct helper
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ return lcm_integer( a, b );
+ }
+ };
+ };
+
+ template < typename T, bool IsSpecialized, bool IsSigned >
+ struct lcm_optimal_evaluator_helper_t
+ : lcm_optimal_evaluator_helper2_t<IsSpecialized, IsSigned>
+ ::BOOST_NESTED_TEMPLATE helper<T>
+ {
+ };
+#endif
+
+ template < typename T >
+ struct lcm_optimal_evaluator
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ typedef ::std::numeric_limits<T> limits_type;
+
+ typedef lcm_optimal_evaluator_helper_t<T,
+ limits_type::is_specialized, limits_type::is_signed> helper_type;
+
+ helper_type solver;
+
+ return solver( a, b );
+ }
+ };
+#else // BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ template < typename T >
+ struct lcm_optimal_evaluator
+ {
+ T operator ()( T const &a, T const &b )
+ {
+ return lcm_integer( a, b );
+ }
+ };
+#endif
+
+ // Functions to find the GCD or LCM in the best way
+ template < typename T >
+ inline
+ T
+ gcd_optimal
+ (
+ T const & a,
+ T const & b
+ )
+ {
+ gcd_optimal_evaluator<T> solver;
+
+ return solver( a, b );
+ }
+
+ template < typename T >
+ inline
+ T
+ lcm_optimal
+ (
+ T const & a,
+ T const & b
+ )
+ {
+ lcm_optimal_evaluator<T> solver;
+
+ return solver( a, b );
+ }
+
+} // namespace detail
+
+
+// Greatest common divisor evaluator member function definition ------------//
+
+template < typename IntegerType >
+inline
+typename gcd_evaluator<IntegerType>::result_type
+gcd_evaluator<IntegerType>::operator ()
+(
+ first_argument_type const & a,
+ second_argument_type const & b
+) const
+{
+ return detail::gcd_optimal( a, b );
+}
+
+
+// Least common multiple evaluator member function definition --------------//
+
+template < typename IntegerType >
+inline
+typename lcm_evaluator<IntegerType>::result_type
+lcm_evaluator<IntegerType>::operator ()
+(
+ first_argument_type const & a,
+ second_argument_type const & b
+) const
+{
+ return detail::lcm_optimal( a, b );
+}
+
+
+// Greatest common divisor and least common multiple function definitions --//
+
+template < typename IntegerType >
+inline
+IntegerType
+gcd
+(
+ IntegerType const & a,
+ IntegerType const & b
+)
+{
+ gcd_evaluator<IntegerType> solver;
+
+ return solver( a, b );
+}
+
+template < typename IntegerType >
+inline
+IntegerType
+lcm
+(
+ IntegerType const & a,
+ IntegerType const & b
+)
+{
+ lcm_evaluator<IntegerType> solver;
+
+ return solver( a, b );
+}
+
+
+} // namespace math
+} // namespace boost
+
+#ifdef BOOST_MSVC
+#pragma warning(pop)
+#endif
+
+#endif // BOOST_MATH_COMMON_FACTOR_RT_HPP
diff --git a/3rdParty/Boost/src/boost/math/policies/policy.hpp b/3rdParty/Boost/src/boost/math/policies/policy.hpp
new file mode 100644
index 0000000..01fe3d0
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/policies/policy.hpp
@@ -0,0 +1,982 @@
+// Copyright John Maddock 2007.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_POLICY_HPP
+#define BOOST_MATH_POLICY_HPP
+
+#include <boost/mpl/list.hpp>
+#include <boost/mpl/contains.hpp>
+#include <boost/mpl/if.hpp>
+#include <boost/mpl/find_if.hpp>
+#include <boost/mpl/remove_if.hpp>
+#include <boost/mpl/vector.hpp>
+#include <boost/mpl/push_back.hpp>
+#include <boost/mpl/at.hpp>
+#include <boost/mpl/size.hpp>
+#include <boost/mpl/comparison.hpp>
+#include <boost/type_traits/is_same.hpp>
+#include <boost/static_assert.hpp>
+#include <boost/assert.hpp>
+#include <boost/math/tools/config.hpp>
+#include <limits>
+// Sadly we do need the .h versions of these to be sure of getting
+// FLT_MANT_DIG etc.
+#include <limits.h>
+#include <stdlib.h>
+#include <stddef.h>
+#include <math.h>
+
+namespace boost{ namespace math{
+
+namespace tools{
+
+template <class T>
+int digits(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T));
+template <class T>
+T epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T));
+
+}
+
+namespace policies{
+
+//
+// Define macros for our default policies, if they're not defined already:
+//
+#ifndef BOOST_MATH_DOMAIN_ERROR_POLICY
+#define BOOST_MATH_DOMAIN_ERROR_POLICY throw_on_error
+#endif
+#ifndef BOOST_MATH_POLE_ERROR_POLICY
+#define BOOST_MATH_POLE_ERROR_POLICY throw_on_error
+#endif
+#ifndef BOOST_MATH_OVERFLOW_ERROR_POLICY
+#define BOOST_MATH_OVERFLOW_ERROR_POLICY throw_on_error
+#endif
+#ifndef BOOST_MATH_EVALUATION_ERROR_POLICY
+#define BOOST_MATH_EVALUATION_ERROR_POLICY throw_on_error
+#endif
+#ifndef BOOST_MATH_ROUNDING_ERROR_POLICY
+#define BOOST_MATH_ROUNDING_ERROR_POLICY throw_on_error
+#endif
+#ifndef BOOST_MATH_UNDERFLOW_ERROR_POLICY
+#define BOOST_MATH_UNDERFLOW_ERROR_POLICY ignore_error
+#endif
+#ifndef BOOST_MATH_DENORM_ERROR_POLICY
+#define BOOST_MATH_DENORM_ERROR_POLICY ignore_error
+#endif
+#ifndef BOOST_MATH_INDETERMINATE_RESULT_ERROR_POLICY
+#define BOOST_MATH_INDETERMINATE_RESULT_ERROR_POLICY ignore_error
+#endif
+#ifndef BOOST_MATH_DIGITS10_POLICY
+#define BOOST_MATH_DIGITS10_POLICY 0
+#endif
+#ifndef BOOST_MATH_PROMOTE_FLOAT_POLICY
+#define BOOST_MATH_PROMOTE_FLOAT_POLICY true
+#endif
+#ifndef BOOST_MATH_PROMOTE_DOUBLE_POLICY
+#ifdef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#define BOOST_MATH_PROMOTE_DOUBLE_POLICY false
+#else
+#define BOOST_MATH_PROMOTE_DOUBLE_POLICY true
+#endif
+#endif
+#ifndef BOOST_MATH_DISCRETE_QUANTILE_POLICY
+#define BOOST_MATH_DISCRETE_QUANTILE_POLICY integer_round_outwards
+#endif
+#ifndef BOOST_MATH_ASSERT_UNDEFINED_POLICY
+#define BOOST_MATH_ASSERT_UNDEFINED_POLICY true
+#endif
+#ifndef BOOST_MATH_MAX_SERIES_ITERATION_POLICY
+#define BOOST_MATH_MAX_SERIES_ITERATION_POLICY 1000000
+#endif
+#ifndef BOOST_MATH_MAX_ROOT_ITERATION_POLICY
+#define BOOST_MATH_MAX_ROOT_ITERATION_POLICY 200
+#endif
+
+#if !defined(__BORLANDC__) \
+ && !(defined(__GNUC__) && (__GNUC__ == 3) && (__GNUC_MINOR__ <= 2))
+#define BOOST_MATH_META_INT(type, name, Default)\
+ template <type N = Default> struct name : public boost::mpl::int_<N>{};\
+ namespace detail{\
+ template <type N>\
+ char test_is_valid_arg(const name<N>*);\
+ char test_is_default_arg(const name<Default>*);\
+ template <class T> struct is_##name##_imp\
+ {\
+ template <type N> static char test(const name<N>*);\
+ static double test(...);\
+ BOOST_STATIC_CONSTANT(bool, value = sizeof(test(static_cast<T*>(0))) == 1);\
+ };\
+ }\
+ template <class T> struct is_##name : public boost::mpl::bool_< ::boost::math::policies::detail::is_##name##_imp<T>::value>{};
+
+#define BOOST_MATH_META_BOOL(name, Default)\
+ template <bool N = Default> struct name : public boost::mpl::bool_<N>{};\
+ namespace detail{\
+ template <bool N>\
+ char test_is_valid_arg(const name<N>*);\
+ char test_is_default_arg(const name<Default>*);\
+ template <class T> struct is_##name##_imp\
+ {\
+ template <bool N> static char test(const name<N>*);\
+ static double test(...);\
+ BOOST_STATIC_CONSTANT(bool, value = sizeof(test(static_cast<T*>(0))) == 1);\
+ };\
+ }\
+ template <class T> struct is_##name : public boost::mpl::bool_< ::boost::math::policies::detail::is_##name##_imp<T>::value>{};
+#else
+#define BOOST_MATH_META_INT(Type, name, Default)\
+ template <Type N = Default> struct name : public boost::mpl::int_<N>{};\
+ namespace detail{\
+ template <Type N>\
+ char test_is_valid_arg(const name<N>*);\
+ char test_is_default_arg(const name<Default>*);\
+ template <class T> struct is_##name##_tester\
+ {\
+ template <Type N> static char test(const name<N>&);\
+ static double test(...);\
+ };\
+ template <class T> struct is_##name##_imp\
+ {\
+ static T inst;\
+ BOOST_STATIC_CONSTANT(bool, value = sizeof( ::boost::math::policies::detail::is_##name##_tester<T>::test(inst)) == 1);\
+ };\
+ }\
+ template <class T> struct is_##name : public boost::mpl::bool_< ::boost::math::policies::detail::is_##name##_imp<T>::value>\
+ {\
+ template <class U> struct apply{ typedef is_##name<U> type; };\
+ };
+
+#define BOOST_MATH_META_BOOL(name, Default)\
+ template <bool N = Default> struct name : public boost::mpl::bool_<N>{};\
+ namespace detail{\
+ template <bool N>\
+ char test_is_valid_arg(const name<N>*);\
+ char test_is_default_arg(const name<Default>*);\
+ template <class T> struct is_##name##_tester\
+ {\
+ template <bool N> static char test(const name<N>&);\
+ static double test(...);\
+ };\
+ template <class T> struct is_##name##_imp\
+ {\
+ static T inst;\
+ BOOST_STATIC_CONSTANT(bool, value = sizeof( ::boost::math::policies::detail::is_##name##_tester<T>::test(inst)) == 1);\
+ };\
+ }\
+ template <class T> struct is_##name : public boost::mpl::bool_< ::boost::math::policies::detail::is_##name##_imp<T>::value>\
+ {\
+ template <class U> struct apply{ typedef is_##name<U> type; };\
+ };
+#endif
+//
+// Begin by defining policy types for error handling:
+//
+enum error_policy_type
+{
+ throw_on_error = 0,
+ errno_on_error = 1,
+ ignore_error = 2,
+ user_error = 3
+};
+
+BOOST_MATH_META_INT(error_policy_type, domain_error, BOOST_MATH_DOMAIN_ERROR_POLICY)
+BOOST_MATH_META_INT(error_policy_type, pole_error, BOOST_MATH_POLE_ERROR_POLICY)
+BOOST_MATH_META_INT(error_policy_type, overflow_error, BOOST_MATH_OVERFLOW_ERROR_POLICY)
+BOOST_MATH_META_INT(error_policy_type, underflow_error, BOOST_MATH_UNDERFLOW_ERROR_POLICY)
+BOOST_MATH_META_INT(error_policy_type, denorm_error, BOOST_MATH_DENORM_ERROR_POLICY)
+BOOST_MATH_META_INT(error_policy_type, evaluation_error, BOOST_MATH_EVALUATION_ERROR_POLICY)
+BOOST_MATH_META_INT(error_policy_type, rounding_error, BOOST_MATH_ROUNDING_ERROR_POLICY)
+BOOST_MATH_META_INT(error_policy_type, indeterminate_result_error, BOOST_MATH_INDETERMINATE_RESULT_ERROR_POLICY)
+
+//
+// Policy types for internal promotion:
+//
+BOOST_MATH_META_BOOL(promote_float, BOOST_MATH_PROMOTE_FLOAT_POLICY)
+BOOST_MATH_META_BOOL(promote_double, BOOST_MATH_PROMOTE_DOUBLE_POLICY)
+BOOST_MATH_META_BOOL(assert_undefined, BOOST_MATH_ASSERT_UNDEFINED_POLICY)
+//
+// Policy types for discrete quantiles:
+//
+enum discrete_quantile_policy_type
+{
+ real,
+ integer_round_outwards,
+ integer_round_inwards,
+ integer_round_down,
+ integer_round_up,
+ integer_round_nearest
+};
+
+BOOST_MATH_META_INT(discrete_quantile_policy_type, discrete_quantile, BOOST_MATH_DISCRETE_QUANTILE_POLICY)
+//
+// Precision:
+//
+BOOST_MATH_META_INT(int, digits10, BOOST_MATH_DIGITS10_POLICY)
+BOOST_MATH_META_INT(int, digits2, 0)
+//
+// Iterations:
+//
+BOOST_MATH_META_INT(unsigned long, max_series_iterations, BOOST_MATH_MAX_SERIES_ITERATION_POLICY)
+BOOST_MATH_META_INT(unsigned long, max_root_iterations, BOOST_MATH_MAX_ROOT_ITERATION_POLICY)
+//
+// Define the names for each possible policy:
+//
+#define BOOST_MATH_PARAMETER(name)\
+ BOOST_PARAMETER_TEMPLATE_KEYWORD(name##_name)\
+ BOOST_PARAMETER_NAME(name##_name)
+
+struct default_policy{};
+
+namespace detail{
+//
+// Trait to work out bits precision from digits10 and digits2:
+//
+template <class Digits10, class Digits2>
+struct precision
+{
+ //
+ // Now work out the precision:
+ //
+ typedef typename mpl::if_c<
+ (Digits10::value == 0),
+ digits2<0>,
+ digits2<((Digits10::value + 1) * 1000L) / 301L>
+ >::type digits2_type;
+public:
+#ifdef __BORLANDC__
+ typedef typename mpl::if_c<
+ (Digits2::value > ::boost::math::policies::detail::precision<Digits10,Digits2>::digits2_type::value),
+ Digits2, digits2_type>::type type;
+#else
+ typedef typename mpl::if_c<
+ (Digits2::value > digits2_type::value),
+ Digits2, digits2_type>::type type;
+#endif
+};
+
+template <class A, class B, bool b>
+struct select_result
+{
+ typedef A type;
+};
+template <class A, class B>
+struct select_result<A, B, false>
+{
+ typedef typename mpl::deref<B>::type type;
+};
+
+template <class Seq, class Pred, class DefaultType>
+struct find_arg
+{
+private:
+ typedef typename mpl::find_if<Seq, Pred>::type iter;
+ typedef typename mpl::end<Seq>::type end_type;
+public:
+ typedef typename select_result<
+ DefaultType, iter,
+ ::boost::is_same<iter, end_type>::value>::type type;
+};
+
+double test_is_valid_arg(...);
+double test_is_default_arg(...);
+char test_is_valid_arg(const default_policy*);
+char test_is_default_arg(const default_policy*);
+
+template <class T>
+struct is_valid_policy_imp
+{
+ BOOST_STATIC_CONSTANT(bool, value = sizeof(::boost::math::policies::detail::test_is_valid_arg(static_cast<T*>(0))) == 1);
+};
+
+template <class T>
+struct is_default_policy_imp
+{
+ BOOST_STATIC_CONSTANT(bool, value = sizeof(::boost::math::policies::detail::test_is_default_arg(static_cast<T*>(0))) == 1);
+};
+
+template <class T> struct is_valid_policy
+: public mpl::bool_<
+ ::boost::math::policies::detail::is_valid_policy_imp<T>::value>
+{};
+
+template <class T> struct is_default_policy
+: public mpl::bool_<
+ ::boost::math::policies::detail::is_default_policy_imp<T>::value>
+{
+ template <class U>
+ struct apply
+ {
+ typedef is_default_policy<U> type;
+ };
+};
+
+template <class Seq, class T, int N>
+struct append_N
+{
+ typedef typename mpl::push_back<Seq, T>::type new_seq;
+ typedef typename append_N<new_seq, T, N-1>::type type;
+};
+
+template <class Seq, class T>
+struct append_N<Seq, T, 0>
+{
+ typedef Seq type;
+};
+
+//
+// Traits class to work out what template parameters our default
+// policy<> class will have when modified for forwarding:
+//
+template <bool f, bool d>
+struct default_args
+{
+ typedef promote_float<false> arg1;
+ typedef promote_double<false> arg2;
+};
+
+template <>
+struct default_args<false, false>
+{
+ typedef default_policy arg1;
+ typedef default_policy arg2;
+};
+
+template <>
+struct default_args<true, false>
+{
+ typedef promote_float<false> arg1;
+ typedef default_policy arg2;
+};
+
+template <>
+struct default_args<false, true>
+{
+ typedef promote_double<false> arg1;
+ typedef default_policy arg2;
+};
+
+typedef default_args<BOOST_MATH_PROMOTE_FLOAT_POLICY, BOOST_MATH_PROMOTE_DOUBLE_POLICY>::arg1 forwarding_arg1;
+typedef default_args<BOOST_MATH_PROMOTE_FLOAT_POLICY, BOOST_MATH_PROMOTE_DOUBLE_POLICY>::arg2 forwarding_arg2;
+
+} // detail
+//
+// Now define the policy type with enough arguments to handle all
+// the policies:
+//
+template <class A1 = default_policy,
+ class A2 = default_policy,
+ class A3 = default_policy,
+ class A4 = default_policy,
+ class A5 = default_policy,
+ class A6 = default_policy,
+ class A7 = default_policy,
+ class A8 = default_policy,
+ class A9 = default_policy,
+ class A10 = default_policy,
+ class A11 = default_policy,
+ class A12 = default_policy,
+ class A13 = default_policy>
+struct policy
+{
+private:
+ //
+ // Validate all our arguments:
+ //
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A1>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A2>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A3>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A4>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A5>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A6>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A7>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A8>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A9>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A10>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A11>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A12>::value);
+ BOOST_STATIC_ASSERT(::boost::math::policies::detail::is_valid_policy<A13>::value);
+ //
+ // Typelist of the arguments:
+ //
+ typedef mpl::list<A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13> arg_list;
+
+public:
+ typedef typename detail::find_arg<arg_list, is_domain_error<mpl::_1>, domain_error<> >::type domain_error_type;
+ typedef typename detail::find_arg<arg_list, is_pole_error<mpl::_1>, pole_error<> >::type pole_error_type;
+ typedef typename detail::find_arg<arg_list, is_overflow_error<mpl::_1>, overflow_error<> >::type overflow_error_type;
+ typedef typename detail::find_arg<arg_list, is_underflow_error<mpl::_1>, underflow_error<> >::type underflow_error_type;
+ typedef typename detail::find_arg<arg_list, is_denorm_error<mpl::_1>, denorm_error<> >::type denorm_error_type;
+ typedef typename detail::find_arg<arg_list, is_evaluation_error<mpl::_1>, evaluation_error<> >::type evaluation_error_type;
+ typedef typename detail::find_arg<arg_list, is_rounding_error<mpl::_1>, rounding_error<> >::type rounding_error_type;
+ typedef typename detail::find_arg<arg_list, is_indeterminate_result_error<mpl::_1>, indeterminate_result_error<> >::type indeterminate_result_error_type;
+private:
+ //
+ // Now work out the precision:
+ //
+ typedef typename detail::find_arg<arg_list, is_digits10<mpl::_1>, digits10<> >::type digits10_type;
+ typedef typename detail::find_arg<arg_list, is_digits2<mpl::_1>, digits2<> >::type bits_precision_type;
+public:
+ typedef typename detail::precision<digits10_type, bits_precision_type>::type precision_type;
+ //
+ // Internal promotion:
+ //
+ typedef typename detail::find_arg<arg_list, is_promote_float<mpl::_1>, promote_float<> >::type promote_float_type;
+ typedef typename detail::find_arg<arg_list, is_promote_double<mpl::_1>, promote_double<> >::type promote_double_type;
+ //
+ // Discrete quantiles:
+ //
+ typedef typename detail::find_arg<arg_list, is_discrete_quantile<mpl::_1>, discrete_quantile<> >::type discrete_quantile_type;
+ //
+ // Mathematically undefined properties:
+ //
+ typedef typename detail::find_arg<arg_list, is_assert_undefined<mpl::_1>, assert_undefined<> >::type assert_undefined_type;
+ //
+ // Max iterations:
+ //
+ typedef typename detail::find_arg<arg_list, is_max_series_iterations<mpl::_1>, max_series_iterations<> >::type max_series_iterations_type;
+ typedef typename detail::find_arg<arg_list, is_max_root_iterations<mpl::_1>, max_root_iterations<> >::type max_root_iterations_type;
+};
+//
+// These full specializations are defined to reduce the amount of
+// template instantiations that have to take place when using the default
+// policies, they have quite a large impact on compile times:
+//
+template <>
+struct policy<default_policy, default_policy, default_policy, default_policy, default_policy, default_policy, default_policy, default_policy, default_policy, default_policy, default_policy>
+{
+public:
+ typedef domain_error<> domain_error_type;
+ typedef pole_error<> pole_error_type;
+ typedef overflow_error<> overflow_error_type;
+ typedef underflow_error<> underflow_error_type;
+ typedef denorm_error<> denorm_error_type;
+ typedef evaluation_error<> evaluation_error_type;
+ typedef rounding_error<> rounding_error_type;
+ typedef indeterminate_result_error<> indeterminate_result_error_type;
+#if BOOST_MATH_DIGITS10_POLICY == 0
+ typedef digits2<> precision_type;
+#else
+ typedef detail::precision<digits10<>, digits2<> >::type precision_type;
+#endif
+ typedef promote_float<> promote_float_type;
+ typedef promote_double<> promote_double_type;
+ typedef discrete_quantile<> discrete_quantile_type;
+ typedef assert_undefined<> assert_undefined_type;
+ typedef max_series_iterations<> max_series_iterations_type;
+ typedef max_root_iterations<> max_root_iterations_type;
+};
+
+template <>
+struct policy<detail::forwarding_arg1, detail::forwarding_arg2, default_policy, default_policy, default_policy, default_policy, default_policy, default_policy, default_policy, default_policy, default_policy>
+{
+public:
+ typedef domain_error<> domain_error_type;
+ typedef pole_error<> pole_error_type;
+ typedef overflow_error<> overflow_error_type;
+ typedef underflow_error<> underflow_error_type;
+ typedef denorm_error<> denorm_error_type;
+ typedef evaluation_error<> evaluation_error_type;
+ typedef rounding_error<> rounding_error_type;
+ typedef indeterminate_result_error<> indeterminate_result_error_type;
+#if BOOST_MATH_DIGITS10_POLICY == 0
+ typedef digits2<> precision_type;
+#else
+ typedef detail::precision<digits10<>, digits2<> >::type precision_type;
+#endif
+ typedef promote_float<false> promote_float_type;
+ typedef promote_double<false> promote_double_type;
+ typedef discrete_quantile<> discrete_quantile_type;
+ typedef assert_undefined<> assert_undefined_type;
+ typedef max_series_iterations<> max_series_iterations_type;
+ typedef max_root_iterations<> max_root_iterations_type;
+};
+
+template <class Policy,
+ class A1 = default_policy,
+ class A2 = default_policy,
+ class A3 = default_policy,
+ class A4 = default_policy,
+ class A5 = default_policy,
+ class A6 = default_policy,
+ class A7 = default_policy,
+ class A8 = default_policy,
+ class A9 = default_policy,
+ class A10 = default_policy,
+ class A11 = default_policy,
+ class A12 = default_policy,
+ class A13 = default_policy>
+struct normalise
+{
+private:
+ typedef mpl::list<A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13> arg_list;
+ typedef typename detail::find_arg<arg_list, is_domain_error<mpl::_1>, typename Policy::domain_error_type >::type domain_error_type;
+ typedef typename detail::find_arg<arg_list, is_pole_error<mpl::_1>, typename Policy::pole_error_type >::type pole_error_type;
+ typedef typename detail::find_arg<arg_list, is_overflow_error<mpl::_1>, typename Policy::overflow_error_type >::type overflow_error_type;
+ typedef typename detail::find_arg<arg_list, is_underflow_error<mpl::_1>, typename Policy::underflow_error_type >::type underflow_error_type;
+ typedef typename detail::find_arg<arg_list, is_denorm_error<mpl::_1>, typename Policy::denorm_error_type >::type denorm_error_type;
+ typedef typename detail::find_arg<arg_list, is_evaluation_error<mpl::_1>, typename Policy::evaluation_error_type >::type evaluation_error_type;
+ typedef typename detail::find_arg<arg_list, is_rounding_error<mpl::_1>, typename Policy::rounding_error_type >::type rounding_error_type;
+ typedef typename detail::find_arg<arg_list, is_indeterminate_result_error<mpl::_1>, typename Policy::indeterminate_result_error_type >::type indeterminate_result_error_type;
+ //
+ // Now work out the precision:
+ //
+ typedef typename detail::find_arg<arg_list, is_digits10<mpl::_1>, digits10<> >::type digits10_type;
+ typedef typename detail::find_arg<arg_list, is_digits2<mpl::_1>, typename Policy::precision_type >::type bits_precision_type;
+ typedef typename detail::precision<digits10_type, bits_precision_type>::type precision_type;
+ //
+ // Internal promotion:
+ //
+ typedef typename detail::find_arg<arg_list, is_promote_float<mpl::_1>, typename Policy::promote_float_type >::type promote_float_type;
+ typedef typename detail::find_arg<arg_list, is_promote_double<mpl::_1>, typename Policy::promote_double_type >::type promote_double_type;
+ //
+ // Discrete quantiles:
+ //
+ typedef typename detail::find_arg<arg_list, is_discrete_quantile<mpl::_1>, typename Policy::discrete_quantile_type >::type discrete_quantile_type;
+ //
+ // Mathematically undefined properties:
+ //
+ typedef typename detail::find_arg<arg_list, is_assert_undefined<mpl::_1>, typename Policy::assert_undefined_type >::type assert_undefined_type;
+ //
+ // Max iterations:
+ //
+ typedef typename detail::find_arg<arg_list, is_max_series_iterations<mpl::_1>, typename Policy::max_series_iterations_type>::type max_series_iterations_type;
+ typedef typename detail::find_arg<arg_list, is_max_root_iterations<mpl::_1>, typename Policy::max_root_iterations_type>::type max_root_iterations_type;
+ //
+ // Define a typelist of the policies:
+ //
+ typedef mpl::vector<
+ domain_error_type,
+ pole_error_type,
+ overflow_error_type,
+ underflow_error_type,
+ denorm_error_type,
+ evaluation_error_type,
+ rounding_error_type,
+ indeterminate_result_error_type,
+ precision_type,
+ promote_float_type,
+ promote_double_type,
+ discrete_quantile_type,
+ assert_undefined_type,
+ max_series_iterations_type,
+ max_root_iterations_type> result_list;
+ //
+ // Remove all the policies that are the same as the default:
+ //
+ typedef typename mpl::remove_if<result_list, detail::is_default_policy<mpl::_> >::type reduced_list;
+ //
+ // Pad out the list with defaults:
+ //
+ typedef typename detail::append_N<reduced_list, default_policy, (14 - ::boost::mpl::size<reduced_list>::value)>::type result_type;
+public:
+ typedef policy<
+ typename mpl::at<result_type, mpl::int_<0> >::type,
+ typename mpl::at<result_type, mpl::int_<1> >::type,
+ typename mpl::at<result_type, mpl::int_<2> >::type,
+ typename mpl::at<result_type, mpl::int_<3> >::type,
+ typename mpl::at<result_type, mpl::int_<4> >::type,
+ typename mpl::at<result_type, mpl::int_<5> >::type,
+ typename mpl::at<result_type, mpl::int_<6> >::type,
+ typename mpl::at<result_type, mpl::int_<7> >::type,
+ typename mpl::at<result_type, mpl::int_<8> >::type,
+ typename mpl::at<result_type, mpl::int_<9> >::type,
+ typename mpl::at<result_type, mpl::int_<10> >::type,
+ typename mpl::at<result_type, mpl::int_<11> >::type,
+ typename mpl::at<result_type, mpl::int_<12> >::type > type;
+};
+//
+// Full specialisation to speed up compilation of the common case:
+//
+template <>
+struct normalise<policy<>,
+ promote_float<false>,
+ promote_double<false>,
+ discrete_quantile<>,
+ assert_undefined<>,
+ default_policy,
+ default_policy,
+ default_policy,
+ default_policy,
+ default_policy,
+ default_policy,
+ default_policy>
+{
+ typedef policy<detail::forwarding_arg1, detail::forwarding_arg2> type;
+};
+
+template <>
+struct normalise<policy<detail::forwarding_arg1, detail::forwarding_arg2>,
+ promote_float<false>,
+ promote_double<false>,
+ discrete_quantile<>,
+ assert_undefined<>,
+ default_policy,
+ default_policy,
+ default_policy,
+ default_policy,
+ default_policy,
+ default_policy,
+ default_policy>
+{
+ typedef policy<detail::forwarding_arg1, detail::forwarding_arg2> type;
+};
+
+inline policy<> make_policy()
+{ return policy<>(); }
+
+template <class A1>
+inline typename normalise<policy<>, A1>::type make_policy(const A1&)
+{
+ typedef typename normalise<policy<>, A1>::type result_type;
+ return result_type();
+}
+
+template <class A1, class A2>
+inline typename normalise<policy<>, A1, A2>::type make_policy(const A1&, const A2&)
+{
+ typedef typename normalise<policy<>, A1, A2>::type result_type;
+ return result_type();
+}
+
+template <class A1, class A2, class A3>
+inline typename normalise<policy<>, A1, A2, A3>::type make_policy(const A1&, const A2&, const A3&)
+{
+ typedef typename normalise<policy<>, A1, A2, A3>::type result_type;
+ return result_type();
+}
+
+template <class A1, class A2, class A3, class A4>
+inline typename normalise<policy<>, A1, A2, A3, A4>::type make_policy(const A1&, const A2&, const A3&, const A4&)
+{
+ typedef typename normalise<policy<>, A1, A2, A3, A4>::type result_type;
+ return result_type();
+}
+
+template <class A1, class A2, class A3, class A4, class A5>
+inline typename normalise<policy<>, A1, A2, A3, A4, A5>::type make_policy(const A1&, const A2&, const A3&, const A4&, const A5&)
+{
+ typedef typename normalise<policy<>, A1, A2, A3, A4, A5>::type result_type;
+ return result_type();
+}
+
+template <class A1, class A2, class A3, class A4, class A5, class A6>
+inline typename normalise<policy<>, A1, A2, A3, A4, A5, A6>::type make_policy(const A1&, const A2&, const A3&, const A4&, const A5&, const A6&)
+{
+ typedef typename normalise<policy<>, A1, A2, A3, A4, A5, A6>::type result_type;
+ return result_type();
+}
+
+template <class A1, class A2, class A3, class A4, class A5, class A6, class A7>
+inline typename normalise<policy<>, A1, A2, A3, A4, A5, A6, A7>::type make_policy(const A1&, const A2&, const A3&, const A4&, const A5&, const A6&, const A7&)
+{
+ typedef typename normalise<policy<>, A1, A2, A3, A4, A5, A6, A7>::type result_type;
+ return result_type();
+}
+
+template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
+inline typename normalise<policy<>, A1, A2, A3, A4, A5, A6, A7, A8>::type make_policy(const A1&, const A2&, const A3&, const A4&, const A5&, const A6&, const A7&, const A8&)
+{
+ typedef typename normalise<policy<>, A1, A2, A3, A4, A5, A6, A7, A8>::type result_type;
+ return result_type();
+}
+
+template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
+inline typename normalise<policy<>, A1, A2, A3, A4, A5, A6, A7, A8, A9>::type make_policy(const A1&, const A2&, const A3&, const A4&, const A5&, const A6&, const A7&, const A8&, const A9&)
+{
+ typedef typename normalise<policy<>, A1, A2, A3, A4, A5, A6, A7, A8, A9>::type result_type;
+ return result_type();
+}
+
+template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10>
+inline typename normalise<policy<>, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10>::type make_policy(const A1&, const A2&, const A3&, const A4&, const A5&, const A6&, const A7&, const A8&, const A9&, const A10&)
+{
+ typedef typename normalise<policy<>, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10>::type result_type;
+ return result_type();
+}
+
+template <class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9, class A10, class A11>
+inline typename normalise<policy<>, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11>::type make_policy(const A1&, const A2&, const A3&, const A4&, const A5&, const A6&, const A7&, const A8&, const A9&, const A10&, const A11&)
+{
+ typedef typename normalise<policy<>, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11>::type result_type;
+ return result_type();
+}
+
+//
+// Traits class to handle internal promotion:
+//
+template <class Real, class Policy>
+struct evaluation
+{
+ typedef Real type;
+};
+
+template <class Policy>
+struct evaluation<float, Policy>
+{
+ typedef typename mpl::if_<typename Policy::promote_float_type, double, float>::type type;
+};
+
+template <class Policy>
+struct evaluation<double, Policy>
+{
+ typedef typename mpl::if_<typename Policy::promote_double_type, long double, double>::type type;
+};
+
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+
+template <class Real>
+struct basic_digits : public mpl::int_<0>{ };
+template <>
+struct basic_digits<float> : public mpl::int_<FLT_MANT_DIG>{ };
+template <>
+struct basic_digits<double> : public mpl::int_<DBL_MANT_DIG>{ };
+template <>
+struct basic_digits<long double> : public mpl::int_<LDBL_MANT_DIG>{ };
+
+template <class Real, class Policy>
+struct precision
+{
+ BOOST_STATIC_ASSERT( ::std::numeric_limits<Real>::radix == 2);
+ typedef typename Policy::precision_type precision_type;
+ typedef basic_digits<Real> digits_t;
+ typedef typename mpl::if_<
+ mpl::equal_to<digits_t, mpl::int_<0> >,
+ // Possibly unknown precision:
+ precision_type,
+ typename mpl::if_<
+ mpl::or_<mpl::less_equal<digits_t, precision_type>, mpl::less_equal<precision_type, mpl::int_<0> > >,
+ // Default case, full precision for RealType:
+ digits2< ::std::numeric_limits<Real>::digits>,
+ // User customised precision:
+ precision_type
+ >::type
+ >::type type;
+};
+
+template <class Policy>
+struct precision<float, Policy>
+{
+ typedef digits2<FLT_MANT_DIG> type;
+};
+template <class Policy>
+struct precision<double, Policy>
+{
+ typedef digits2<DBL_MANT_DIG> type;
+};
+template <class Policy>
+struct precision<long double, Policy>
+{
+ typedef digits2<LDBL_MANT_DIG> type;
+};
+
+#else
+
+template <class Real, class Policy>
+struct precision
+{
+ BOOST_STATIC_ASSERT((::std::numeric_limits<Real>::radix == 2) || ((::std::numeric_limits<Real>::is_specialized == 0) || (::std::numeric_limits<Real>::digits == 0)));
+#ifndef __BORLANDC__
+ typedef typename Policy::precision_type precision_type;
+ typedef typename mpl::if_c<
+ ((::std::numeric_limits<Real>::is_specialized == 0) || (::std::numeric_limits<Real>::digits == 0)),
+ // Possibly unknown precision:
+ precision_type,
+ typename mpl::if_c<
+ ((::std::numeric_limits<Real>::digits <= precision_type::value)
+ || (Policy::precision_type::value <= 0)),
+ // Default case, full precision for RealType:
+ digits2< ::std::numeric_limits<Real>::digits>,
+ // User customised precision:
+ precision_type
+ >::type
+ >::type type;
+#else
+ typedef typename Policy::precision_type precision_type;
+ typedef mpl::int_< ::std::numeric_limits<Real>::digits> digits_t;
+ typedef mpl::bool_< ::std::numeric_limits<Real>::is_specialized> spec_t;
+ typedef typename mpl::if_<
+ mpl::or_<mpl::equal_to<spec_t, mpl::false_>, mpl::equal_to<digits_t, mpl::int_<0> > >,
+ // Possibly unknown precision:
+ precision_type,
+ typename mpl::if_<
+ mpl::or_<mpl::less_equal<digits_t, precision_type>, mpl::less_equal<precision_type, mpl::int_<0> > >,
+ // Default case, full precision for RealType:
+ digits2< ::std::numeric_limits<Real>::digits>,
+ // User customised precision:
+ precision_type
+ >::type
+ >::type type;
+#endif
+};
+
+#endif
+
+namespace detail{
+
+template <class T, class Policy>
+inline int digits_imp(mpl::true_ const&)
+{
+#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
+#else
+ BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
+#endif
+ typedef typename boost::math::policies::precision<T, Policy>::type p_t;
+ return p_t::value;
+}
+
+template <class T, class Policy>
+inline int digits_imp(mpl::false_ const&)
+{
+ return tools::digits<T>();
+}
+
+} // namespace detail
+
+template <class T, class Policy>
+inline int digits(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))
+{
+ typedef mpl::bool_< std::numeric_limits<T>::is_specialized > tag_type;
+ return detail::digits_imp<T, Policy>(tag_type());
+}
+
+template <class Policy>
+inline unsigned long get_max_series_iterations()
+{
+ typedef typename Policy::max_series_iterations_type iter_type;
+ return iter_type::value;
+}
+
+template <class Policy>
+inline unsigned long get_max_root_iterations()
+{
+ typedef typename Policy::max_root_iterations_type iter_type;
+ return iter_type::value;
+}
+
+namespace detail{
+
+template <class T, class Digits, class Small, class Default>
+struct series_factor_calc
+{
+ static T get()
+ {
+ return ldexp(T(1.0), 1 - Digits::value);
+ }
+};
+
+template <class T, class Digits>
+struct series_factor_calc<T, Digits, mpl::true_, mpl::true_>
+{
+ static T get()
+ {
+ return boost::math::tools::epsilon<T>();
+ }
+};
+template <class T, class Digits>
+struct series_factor_calc<T, Digits, mpl::true_, mpl::false_>
+{
+ static T get()
+ {
+ static const boost::uintmax_t v = static_cast<boost::uintmax_t>(1u) << (Digits::value - 1);
+ return 1 / static_cast<T>(v);
+ }
+};
+template <class T, class Digits>
+struct series_factor_calc<T, Digits, mpl::false_, mpl::true_>
+{
+ static T get()
+ {
+ return boost::math::tools::epsilon<T>();
+ }
+};
+
+template <class T, class Policy>
+inline T get_epsilon_imp(mpl::true_ const&)
+{
+#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
+ BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::radix == 2);
+#else
+ BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
+ BOOST_ASSERT(::std::numeric_limits<T>::radix == 2);
+#endif
+ typedef typename boost::math::policies::precision<T, Policy>::type p_t;
+ typedef mpl::bool_<p_t::value <= std::numeric_limits<boost::uintmax_t>::digits> is_small_int;
+ typedef mpl::bool_<p_t::value >= std::numeric_limits<T>::digits> is_default_value;
+ return series_factor_calc<T, p_t, is_small_int, is_default_value>::get();
+}
+
+template <class T, class Policy>
+inline T get_epsilon_imp(mpl::false_ const&)
+{
+ return tools::epsilon<T>();
+}
+
+} // namespace detail
+
+template <class T, class Policy>
+inline T get_epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))
+{
+ typedef mpl::bool_< (std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::radix == 2)) > tag_type;
+ return detail::get_epsilon_imp<T, Policy>(tag_type());
+}
+
+namespace detail{
+
+template <class A1,
+ class A2,
+ class A3,
+ class A4,
+ class A5,
+ class A6,
+ class A7,
+ class A8,
+ class A9,
+ class A10,
+ class A11>
+char test_is_policy(const policy<A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11>*);
+double test_is_policy(...);
+
+template <class P>
+struct is_policy_imp
+{
+ BOOST_STATIC_CONSTANT(bool, value = (sizeof(::boost::math::policies::detail::test_is_policy(static_cast<P*>(0))) == 1));
+};
+
+}
+
+template <class P>
+struct is_policy : public mpl::bool_< ::boost::math::policies::detail::is_policy_imp<P>::value> {};
+
+//
+// Helper traits class for distribution error handling:
+//
+template <class Policy>
+struct constructor_error_check
+{
+ typedef typename Policy::domain_error_type domain_error_type;
+ typedef typename mpl::if_c<
+ (domain_error_type::value == throw_on_error) || (domain_error_type::value == user_error),
+ mpl::true_,
+ mpl::false_>::type type;
+};
+
+template <class Policy>
+struct method_error_check
+{
+ typedef typename Policy::domain_error_type domain_error_type;
+ typedef typename mpl::if_c<
+ (domain_error_type::value == throw_on_error) && (domain_error_type::value != user_error),
+ mpl::false_,
+ mpl::true_>::type type;
+};
+
+}}} // namespaces
+
+#endif // BOOST_MATH_POLICY_HPP
+
+
+
diff --git a/3rdParty/Boost/src/boost/math/special_functions/detail/fp_traits.hpp b/3rdParty/Boost/src/boost/math/special_functions/detail/fp_traits.hpp
new file mode 100644
index 0000000..50c034d
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/special_functions/detail/fp_traits.hpp
@@ -0,0 +1,570 @@
+// fp_traits.hpp
+
+#ifndef BOOST_MATH_FP_TRAITS_HPP
+#define BOOST_MATH_FP_TRAITS_HPP
+
+// Copyright (c) 2006 Johan Rade
+
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+/*
+To support old compilers, care has been taken to avoid partial template
+specialization and meta function forwarding.
+With these techniques, the code could be simplified.
+*/
+
+#if defined(__vms) && defined(__DECCXX) && !__IEEE_FLOAT
+// The VAX floating point formats are used (for float and double)
+# define BOOST_FPCLASSIFY_VAX_FORMAT
+#endif
+
+#include <cstring>
+
+#include <boost/assert.hpp>
+#include <boost/cstdint.hpp>
+#include <boost/detail/endian.hpp>
+#include <boost/static_assert.hpp>
+#include <boost/type_traits/is_floating_point.hpp>
+
+#ifdef BOOST_NO_STDC_NAMESPACE
+ namespace std{ using ::memcpy; }
+#endif
+
+#ifndef FP_NORMAL
+
+#define FP_ZERO 0
+#define FP_NORMAL 1
+#define FP_INFINITE 2
+#define FP_NAN 3
+#define FP_SUBNORMAL 4
+
+#else
+
+#define BOOST_HAS_FPCLASSIFY
+
+#ifndef fpclassify
+# if (defined(__GLIBCPP__) || defined(__GLIBCXX__)) \
+ && defined(_GLIBCXX_USE_C99_MATH) \
+ && !(defined(_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC) \
+ && (_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC != 0))
+# ifdef _STLP_VENDOR_CSTD
+# if _STLPORT_VERSION >= 0x520
+# define BOOST_FPCLASSIFY_PREFIX ::__std_alias::
+# else
+# define BOOST_FPCLASSIFY_PREFIX ::_STLP_VENDOR_CSTD::
+# endif
+# else
+# define BOOST_FPCLASSIFY_PREFIX ::std::
+# endif
+# else
+# undef BOOST_HAS_FPCLASSIFY
+# define BOOST_FPCLASSIFY_PREFIX
+# endif
+#elif (defined(__HP_aCC) && !defined(__hppa))
+// aCC 6 appears to do "#define fpclassify fpclassify" which messes us up a bit!
+# define BOOST_FPCLASSIFY_PREFIX ::
+#else
+# define BOOST_FPCLASSIFY_PREFIX
+#endif
+
+#ifdef __MINGW32__
+# undef BOOST_HAS_FPCLASSIFY
+#endif
+
+#endif
+
+
+//------------------------------------------------------------------------------
+
+namespace boost {
+namespace math {
+namespace detail {
+
+//------------------------------------------------------------------------------
+
+/*
+The following classes are used to tag the different methods that are used
+for floating point classification
+*/
+
+struct native_tag {};
+template <bool has_limits>
+struct generic_tag {};
+struct ieee_tag {};
+struct ieee_copy_all_bits_tag : public ieee_tag {};
+struct ieee_copy_leading_bits_tag : public ieee_tag {};
+
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+//
+// These helper functions are used only when numeric_limits<>
+// members are not compile time constants:
+//
+inline bool is_generic_tag_false(const generic_tag<false>*)
+{
+ return true;
+}
+inline bool is_generic_tag_false(const void*)
+{
+ return false;
+}
+#endif
+
+//------------------------------------------------------------------------------
+
+/*
+Most processors support three different floating point precisions:
+single precision (32 bits), double precision (64 bits)
+and extended double precision (80 - 128 bits, depending on the processor)
+
+Note that the C++ type long double can be implemented
+both as double precision and extended double precision.
+*/
+
+struct unknown_precision{};
+struct single_precision {};
+struct double_precision {};
+struct extended_double_precision {};
+
+// native_tag version --------------------------------------------------------------
+
+template<class T> struct fp_traits_native
+{
+ typedef native_tag method;
+};
+
+// generic_tag version -------------------------------------------------------------
+
+template<class T, class U> struct fp_traits_non_native
+{
+#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ typedef generic_tag<std::numeric_limits<T>::is_specialized> method;
+#else
+ typedef generic_tag<false> method;
+#endif
+};
+
+// ieee_tag versions ---------------------------------------------------------------
+
+/*
+These specializations of fp_traits_non_native contain information needed
+to "parse" the binary representation of a floating point number.
+
+Typedef members:
+
+ bits -- the target type when copying the leading bytes of a floating
+ point number. It is a typedef for uint32_t or uint64_t.
+
+ method -- tells us whether all bytes are copied or not.
+ It is a typedef for ieee_copy_all_bits_tag or ieee_copy_leading_bits_tag.
+
+Static data members:
+
+ sign, exponent, flag, significand -- bit masks that give the meaning of the
+ bits in the leading bytes.
+
+Static function members:
+
+ get_bits(), set_bits() -- provide access to the leading bytes.
+
+*/
+
+// ieee_tag version, float (32 bits) -----------------------------------------------
+
+#ifndef BOOST_FPCLASSIFY_VAX_FORMAT
+
+template<> struct fp_traits_non_native<float, single_precision>
+{
+ typedef ieee_copy_all_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7f800000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00000000);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x007fffff);
+
+ typedef uint32_t bits;
+ static void get_bits(float x, uint32_t& a) { std::memcpy(&a, &x, 4); }
+ static void set_bits(float& x, uint32_t a) { std::memcpy(&x, &a, 4); }
+};
+
+// ieee_tag version, double (64 bits) ----------------------------------------------
+
+#if defined(BOOST_NO_INT64_T) || defined(BOOST_NO_INCLASS_MEMBER_INITIALIZATION) \
+ || defined(__BORLANDC__) || defined(__CODEGEAR__)
+
+template<> struct fp_traits_non_native<double, double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7ff00000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x000fffff);
+
+ typedef uint32_t bits;
+
+ static void get_bits(double x, uint32_t& a)
+ {
+ std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
+ }
+
+ static void set_bits(double& x, uint32_t a)
+ {
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
+ }
+
+private:
+
+#if defined(BOOST_BIG_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 0);
+#elif defined(BOOST_LITTLE_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 4);
+#else
+ BOOST_STATIC_ASSERT(false);
+#endif
+};
+
+//..............................................................................
+
+#else
+
+template<> struct fp_traits_non_native<double, double_precision>
+{
+ typedef ieee_copy_all_bits_tag method;
+
+ static const uint64_t sign = ((uint64_t)0x80000000u) << 32;
+ static const uint64_t exponent = ((uint64_t)0x7ff00000) << 32;
+ static const uint64_t flag = 0;
+ static const uint64_t significand
+ = (((uint64_t)0x000fffff) << 32) + ((uint64_t)0xffffffffu);
+
+ typedef uint64_t bits;
+ static void get_bits(double x, uint64_t& a) { std::memcpy(&a, &x, 8); }
+ static void set_bits(double& x, uint64_t a) { std::memcpy(&x, &a, 8); }
+};
+
+#endif
+
+#endif // #ifndef BOOST_FPCLASSIFY_VAX_FORMAT
+
+// long double (64 bits) -------------------------------------------------------
+
+#if defined(BOOST_NO_INT64_T) || defined(BOOST_NO_INCLASS_MEMBER_INITIALIZATION)\
+ || defined(__BORLANDC__) || defined(__CODEGEAR__)
+
+template<> struct fp_traits_non_native<long double, double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7ff00000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x000fffff);
+
+ typedef uint32_t bits;
+
+ static void get_bits(long double x, uint32_t& a)
+ {
+ std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
+ }
+
+ static void set_bits(long double& x, uint32_t a)
+ {
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
+ }
+
+private:
+
+#if defined(BOOST_BIG_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 0);
+#elif defined(BOOST_LITTLE_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 4);
+#else
+ BOOST_STATIC_ASSERT(false);
+#endif
+};
+
+//..............................................................................
+
+#else
+
+template<> struct fp_traits_non_native<long double, double_precision>
+{
+ typedef ieee_copy_all_bits_tag method;
+
+ static const uint64_t sign = (uint64_t)0x80000000u << 32;
+ static const uint64_t exponent = (uint64_t)0x7ff00000 << 32;
+ static const uint64_t flag = 0;
+ static const uint64_t significand
+ = ((uint64_t)0x000fffff << 32) + (uint64_t)0xffffffffu;
+
+ typedef uint64_t bits;
+ static void get_bits(long double x, uint64_t& a) { std::memcpy(&a, &x, 8); }
+ static void set_bits(long double& x, uint64_t a) { std::memcpy(&x, &a, 8); }
+};
+
+#endif
+
+
+// long double (>64 bits), x86 and x64 -----------------------------------------
+
+#if defined(__i386) || defined(__i386__) || defined(_M_IX86) \
+ || defined(__amd64) || defined(__amd64__) || defined(_M_AMD64) \
+ || defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)
+
+// Intel extended double precision format (80 bits)
+
+template<>
+struct fp_traits_non_native<long double, extended_double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7fff0000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00008000);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x00007fff);
+
+ typedef uint32_t bits;
+
+ static void get_bits(long double x, uint32_t& a)
+ {
+ std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + 6, 4);
+ }
+
+ static void set_bits(long double& x, uint32_t a)
+ {
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + 6, &a, 4);
+ }
+};
+
+
+// long double (>64 bits), Itanium ---------------------------------------------
+
+#elif defined(__ia64) || defined(__ia64__) || defined(_M_IA64)
+
+// The floating point format is unknown at compile time
+// No template specialization is provided.
+// The generic_tag definition is used.
+
+// The Itanium supports both
+// the Intel extended double precision format (80 bits) and
+// the IEEE extended double precision format with 15 exponent bits (128 bits).
+
+
+// long double (>64 bits), PowerPC ---------------------------------------------
+
+#elif defined(__powerpc) || defined(__powerpc__) || defined(__POWERPC__) \
+ || defined(__ppc) || defined(__ppc__) || defined(__PPC__)
+
+// PowerPC extended double precision format (128 bits)
+
+template<>
+struct fp_traits_non_native<long double, extended_double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7ff00000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00000000);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x000fffff);
+
+ typedef uint32_t bits;
+
+ static void get_bits(long double x, uint32_t& a)
+ {
+ std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
+ }
+
+ static void set_bits(long double& x, uint32_t a)
+ {
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
+ }
+
+private:
+
+#if defined(BOOST_BIG_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 0);
+#elif defined(BOOST_LITTLE_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 12);
+#else
+ BOOST_STATIC_ASSERT(false);
+#endif
+};
+
+
+// long double (>64 bits), Motorola 68K ----------------------------------------
+
+#elif defined(__m68k) || defined(__m68k__) \
+ || defined(__mc68000) || defined(__mc68000__) \
+
+// Motorola extended double precision format (96 bits)
+
+// It is the same format as the Intel extended double precision format,
+// except that 1) it is big-endian, 2) the 3rd and 4th byte are padding, and
+// 3) the flag bit is not set for infinity
+
+template<>
+struct fp_traits_non_native<long double, extended_double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7fff0000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00008000);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x00007fff);
+
+ // copy 1st, 2nd, 5th and 6th byte. 3rd and 4th byte are padding.
+
+ typedef uint32_t bits;
+
+ static void get_bits(long double x, uint32_t& a)
+ {
+ std::memcpy(&a, &x, 2);
+ std::memcpy(reinterpret_cast<unsigned char*>(&a) + 2,
+ reinterpret_cast<const unsigned char*>(&x) + 4, 2);
+ }
+
+ static void set_bits(long double& x, uint32_t a)
+ {
+ std::memcpy(&x, &a, 2);
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + 4,
+ reinterpret_cast<const unsigned char*>(&a) + 2, 2);
+ }
+};
+
+
+// long double (>64 bits), All other processors --------------------------------
+
+#else
+
+// IEEE extended double precision format with 15 exponent bits (128 bits)
+
+template<>
+struct fp_traits_non_native<long double, extended_double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7fff0000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00000000);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x0000ffff);
+
+ typedef uint32_t bits;
+
+ static void get_bits(long double x, uint32_t& a)
+ {
+ std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
+ }
+
+ static void set_bits(long double& x, uint32_t a)
+ {
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
+ }
+
+private:
+
+#if defined(BOOST_BIG_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 0);
+#elif defined(BOOST_LITTLE_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 12);
+#else
+ BOOST_STATIC_ASSERT(false);
+#endif
+};
+
+#endif
+
+//------------------------------------------------------------------------------
+
+// size_to_precision is a type switch for converting a C++ floating point type
+// to the corresponding precision type.
+
+template<int n, bool fp> struct size_to_precision
+{
+ typedef unknown_precision type;
+};
+
+template<> struct size_to_precision<4, true>
+{
+ typedef single_precision type;
+};
+
+template<> struct size_to_precision<8, true>
+{
+ typedef double_precision type;
+};
+
+template<> struct size_to_precision<10, true>
+{
+ typedef extended_double_precision type;
+};
+
+template<> struct size_to_precision<12, true>
+{
+ typedef extended_double_precision type;
+};
+
+template<> struct size_to_precision<16, true>
+{
+ typedef extended_double_precision type;
+};
+
+//------------------------------------------------------------------------------
+//
+// Figure out whether to use native classification functions based on
+// whether T is a built in floating point type or not:
+//
+template <class T>
+struct select_native
+{
+ typedef BOOST_DEDUCED_TYPENAME size_to_precision<sizeof(T), ::boost::is_floating_point<T>::value>::type precision;
+ typedef fp_traits_non_native<T, precision> type;
+};
+template<>
+struct select_native<float>
+{
+ typedef fp_traits_native<float> type;
+};
+template<>
+struct select_native<double>
+{
+ typedef fp_traits_native<double> type;
+};
+template<>
+struct select_native<long double>
+{
+ typedef fp_traits_native<long double> type;
+};
+
+//------------------------------------------------------------------------------
+
+// fp_traits is a type switch that selects the right fp_traits_non_native
+
+#if (defined(BOOST_MATH_USE_C99) && !(defined(__GNUC__) && (__GNUC__ < 4))) \
+ && !defined(__hpux) \
+ && !defined(__DECCXX)\
+ && !defined(__osf__) \
+ && !defined(__SGI_STL_PORT) && !defined(_STLPORT_VERSION)\
+ && !defined(BOOST_MATH_DISABLE_STD_FPCLASSIFY)
+# define BOOST_MATH_USE_STD_FPCLASSIFY
+#endif
+
+template<class T> struct fp_traits
+{
+ typedef BOOST_DEDUCED_TYPENAME size_to_precision<sizeof(T), ::boost::is_floating_point<T>::value>::type precision;
+#if defined(BOOST_MATH_USE_STD_FPCLASSIFY) && !defined(BOOST_MATH_DISABLE_STD_FPCLASSIFY)
+ typedef typename select_native<T>::type type;
+#else
+ typedef fp_traits_non_native<T, precision> type;
+#endif
+ typedef fp_traits_non_native<T, precision> sign_change_type;
+};
+
+//------------------------------------------------------------------------------
+
+} // namespace detail
+} // namespace math
+} // namespace boost
+
+#endif
diff --git a/3rdParty/Boost/src/boost/math/special_functions/detail/round_fwd.hpp b/3rdParty/Boost/src/boost/math/special_functions/detail/round_fwd.hpp
new file mode 100644
index 0000000..952259a
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/special_functions/detail/round_fwd.hpp
@@ -0,0 +1,80 @@
+// Copyright John Maddock 2008.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_SPECIAL_ROUND_FWD_HPP
+#define BOOST_MATH_SPECIAL_ROUND_FWD_HPP
+
+#include <boost/config.hpp>
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+namespace boost
+{
+ namespace math
+ {
+
+ template <class T, class Policy>
+ T trunc(const T& v, const Policy& pol);
+ template <class T>
+ T trunc(const T& v);
+ template <class T, class Policy>
+ int itrunc(const T& v, const Policy& pol);
+ template <class T>
+ int itrunc(const T& v);
+ template <class T, class Policy>
+ long ltrunc(const T& v, const Policy& pol);
+ template <class T>
+ long ltrunc(const T& v);
+#ifdef BOOST_HAS_LONG_LONG
+ template <class T, class Policy>
+ boost::long_long_type lltrunc(const T& v, const Policy& pol);
+ template <class T>
+ boost::long_long_type lltrunc(const T& v);
+#endif
+ template <class T, class Policy>
+ T round(const T& v, const Policy& pol);
+ template <class T>
+ T round(const T& v);
+ template <class T, class Policy>
+ int iround(const T& v, const Policy& pol);
+ template <class T>
+ int iround(const T& v);
+ template <class T, class Policy>
+ long lround(const T& v, const Policy& pol);
+ template <class T>
+ long lround(const T& v);
+#ifdef BOOST_HAS_LONG_LONG
+ template <class T, class Policy>
+ boost::long_long_type llround(const T& v, const Policy& pol);
+ template <class T>
+ boost::long_long_type llround(const T& v);
+#endif
+ template <class T, class Policy>
+ T modf(const T& v, T* ipart, const Policy& pol);
+ template <class T>
+ T modf(const T& v, T* ipart);
+ template <class T, class Policy>
+ T modf(const T& v, int* ipart, const Policy& pol);
+ template <class T>
+ T modf(const T& v, int* ipart);
+ template <class T, class Policy>
+ T modf(const T& v, long* ipart, const Policy& pol);
+ template <class T>
+ T modf(const T& v, long* ipart);
+#ifdef BOOST_HAS_LONG_LONG
+ template <class T, class Policy>
+ T modf(const T& v, boost::long_long_type* ipart, const Policy& pol);
+ template <class T>
+ T modf(const T& v, boost::long_long_type* ipart);
+#endif
+
+ }
+}
+#endif // BOOST_MATH_SPECIAL_ROUND_FWD_HPP
+
diff --git a/3rdParty/Boost/src/boost/math/special_functions/fpclassify.hpp b/3rdParty/Boost/src/boost/math/special_functions/fpclassify.hpp
new file mode 100644
index 0000000..6f92d18
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/special_functions/fpclassify.hpp
@@ -0,0 +1,537 @@
+// Copyright John Maddock 2005-2008.
+// Copyright (c) 2006-2008 Johan Rade
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_FPCLASSIFY_HPP
+#define BOOST_MATH_FPCLASSIFY_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+#include <math.h>
+#include <boost/config/no_tr1/cmath.hpp>
+#include <boost/limits.hpp>
+#include <boost/math/tools/real_cast.hpp>
+#include <boost/type_traits/is_floating_point.hpp>
+#include <boost/math/special_functions/math_fwd.hpp>
+#include <boost/math/special_functions/detail/fp_traits.hpp>
+/*!
+ \file fpclassify.hpp
+ \brief Classify floating-point value as normal, subnormal, zero, infinite, or NaN.
+ \version 1.0
+ \author John Maddock
+ */
+
+/*
+
+1. If the platform is C99 compliant, then the native floating point
+classification functions are used. However, note that we must only
+define the functions which call std::fpclassify etc if that function
+really does exist: otherwise a compiler may reject the code even though
+the template is never instantiated.
+
+2. If the platform is not C99 compliant, and the binary format for
+a floating point type (float, double or long double) can be determined
+at compile time, then the following algorithm is used:
+
+ If all exponent bits, the flag bit (if there is one),
+ and all significand bits are 0, then the number is zero.
+
+ If all exponent bits and the flag bit (if there is one) are 0,
+ and at least one significand bit is 1, then the number is subnormal.
+
+ If all exponent bits are 1 and all significand bits are 0,
+ then the number is infinity.
+
+ If all exponent bits are 1 and at least one significand bit is 1,
+ then the number is a not-a-number.
+
+ Otherwise the number is normal.
+
+ This algorithm works for the IEEE 754 representation,
+ and also for several non IEEE 754 formats.
+
+ Most formats have the structure
+ sign bit + exponent bits + significand bits.
+
+ A few have the structure
+ sign bit + exponent bits + flag bit + significand bits.
+ The flag bit is 0 for zero and subnormal numbers,
+ and 1 for normal numbers and NaN.
+ It is 0 (Motorola 68K) or 1 (Intel) for infinity.
+
+ To get the bits, the four or eight most significant bytes are copied
+ into an uint32_t or uint64_t and bit masks are applied.
+ This covers all the exponent bits and the flag bit (if there is one),
+ but not always all the significand bits.
+ Some of the functions below have two implementations,
+ depending on whether all the significand bits are copied or not.
+
+3. If the platform is not C99 compliant, and the binary format for
+a floating point type (float, double or long double) can not be determined
+at compile time, then comparison with std::numeric_limits values
+is used.
+
+*/
+
+#if defined(_MSC_VER) || defined(__BORLANDC__)
+#include <float.h>
+#endif
+
+#ifdef BOOST_NO_STDC_NAMESPACE
+ namespace std{ using ::abs; using ::fabs; }
+#endif
+
+namespace boost{
+
+//
+// This must not be located in any namespace under boost::math
+// otherwise we can get into an infinite loop if isnan is
+// a #define for "isnan" !
+//
+namespace math_detail{
+
+template <class T>
+inline bool is_nan_helper(T t, const boost::true_type&)
+{
+#ifdef isnan
+ return isnan(t);
+#elif defined(BOOST_MATH_DISABLE_STD_FPCLASSIFY) || !defined(BOOST_HAS_FPCLASSIFY)
+ return false;
+#else // BOOST_HAS_FPCLASSIFY
+ return (BOOST_FPCLASSIFY_PREFIX fpclassify(t) == (int)FP_NAN);
+#endif
+}
+
+template <class T>
+inline bool is_nan_helper(T, const boost::false_type&)
+{
+ return false;
+}
+
+}
+
+namespace math{
+
+namespace detail{
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+template <class T>
+inline int fpclassify_imp BOOST_NO_MACRO_EXPAND(T t, const native_tag&)
+{
+ return (std::fpclassify)(t);
+}
+#endif
+
+template <class T>
+inline int fpclassify_imp BOOST_NO_MACRO_EXPAND(T t, const generic_tag<true>&)
+{
+ BOOST_MATH_INSTRUMENT_VARIABLE(t);
+
+ // whenever possible check for Nan's first:
+#if defined(BOOST_HAS_FPCLASSIFY) && !defined(BOOST_MATH_DISABLE_STD_FPCLASSIFY)
+ if(::boost::math_detail::is_nan_helper(t, ::boost::is_floating_point<T>()))
+ return FP_NAN;
+#elif defined(isnan)
+ if(boost::math_detail::is_nan_helper(t, ::boost::is_floating_point<T>()))
+ return FP_NAN;
+#elif defined(_MSC_VER) || defined(__BORLANDC__)
+ if(::_isnan(boost::math::tools::real_cast<double>(t)))
+ return FP_NAN;
+#endif
+ // std::fabs broken on a few systems especially for long long!!!!
+ T at = (t < T(0)) ? -t : t;
+
+ // Use a process of exclusion to figure out
+ // what kind of type we have, this relies on
+ // IEEE conforming reals that will treat
+ // Nan's as unordered. Some compilers
+ // don't do this once optimisations are
+ // turned on, hence the check for nan's above.
+ if(at <= (std::numeric_limits<T>::max)())
+ {
+ if(at >= (std::numeric_limits<T>::min)())
+ return FP_NORMAL;
+ return (at != 0) ? FP_SUBNORMAL : FP_ZERO;
+ }
+ else if(at > (std::numeric_limits<T>::max)())
+ return FP_INFINITE;
+ return FP_NAN;
+}
+
+template <class T>
+inline int fpclassify_imp BOOST_NO_MACRO_EXPAND(T t, const generic_tag<false>&)
+{
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized)
+ return fpclassify_imp(t, generic_tag<true>());
+#endif
+ //
+ // An unknown type with no numeric_limits support,
+ // so what are we supposed to do we do here?
+ //
+ BOOST_MATH_INSTRUMENT_VARIABLE(t);
+
+ return t == 0 ? FP_ZERO : FP_NORMAL;
+}
+
+template<class T>
+int fpclassify_imp BOOST_NO_MACRO_EXPAND(T x, ieee_copy_all_bits_tag)
+{
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_MATH_INSTRUMENT_VARIABLE(x);
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ BOOST_MATH_INSTRUMENT_VARIABLE(a);
+ a &= traits::exponent | traits::flag | traits::significand;
+ BOOST_MATH_INSTRUMENT_VARIABLE((traits::exponent | traits::flag | traits::significand));
+ BOOST_MATH_INSTRUMENT_VARIABLE(a);
+
+ if(a <= traits::significand) {
+ if(a == 0)
+ return FP_ZERO;
+ else
+ return FP_SUBNORMAL;
+ }
+
+ if(a < traits::exponent) return FP_NORMAL;
+
+ a &= traits::significand;
+ if(a == 0) return FP_INFINITE;
+
+ return FP_NAN;
+}
+
+template<class T>
+int fpclassify_imp BOOST_NO_MACRO_EXPAND(T x, ieee_copy_leading_bits_tag)
+{
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_MATH_INSTRUMENT_VARIABLE(x);
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent | traits::flag | traits::significand;
+
+ if(a <= traits::significand) {
+ if(x == 0)
+ return FP_ZERO;
+ else
+ return FP_SUBNORMAL;
+ }
+
+ if(a < traits::exponent) return FP_NORMAL;
+
+ a &= traits::significand;
+ traits::set_bits(x,a);
+ if(x == 0) return FP_INFINITE;
+
+ return FP_NAN;
+}
+
+#if defined(BOOST_MATH_USE_STD_FPCLASSIFY) && defined(BOOST_MATH_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY)
+template <>
+inline int fpclassify_imp<long double> BOOST_NO_MACRO_EXPAND(long double t, const native_tag&)
+{
+ return boost::math::detail::fpclassify_imp(t, generic_tag<true>());
+}
+#endif
+
+} // namespace detail
+
+template <class T>
+inline int fpclassify BOOST_NO_MACRO_EXPAND(T t)
+{
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename tools::promote_args<T>::type value_type;
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized && detail::is_generic_tag_false(static_cast<method*>(0)))
+ return detail::fpclassify_imp(static_cast<value_type>(t), detail::generic_tag<true>());
+ return detail::fpclassify_imp(static_cast<value_type>(t), method());
+#else
+ return detail::fpclassify_imp(static_cast<value_type>(t), method());
+#endif
+}
+
+namespace detail {
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+ template<class T>
+ inline bool isfinite_impl(T x, native_tag const&)
+ {
+ return (std::isfinite)(x);
+ }
+#endif
+
+ template<class T>
+ inline bool isfinite_impl(T x, generic_tag<true> const&)
+ {
+ return x >= -(std::numeric_limits<T>::max)()
+ && x <= (std::numeric_limits<T>::max)();
+ }
+
+ template<class T>
+ inline bool isfinite_impl(T x, generic_tag<false> const&)
+ {
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized)
+ return isfinite_impl(x, generic_tag<true>());
+#endif
+ (void)x; // warning supression.
+ return true;
+ }
+
+ template<class T>
+ inline bool isfinite_impl(T x, ieee_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME detail::fp_traits<T>::type traits;
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent;
+ return a != traits::exponent;
+ }
+
+#if defined(BOOST_MATH_USE_STD_FPCLASSIFY) && defined(BOOST_MATH_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY)
+template <>
+inline bool isfinite_impl<long double> BOOST_NO_MACRO_EXPAND(long double t, const native_tag&)
+{
+ return boost::math::detail::isfinite_impl(t, generic_tag<true>());
+}
+#endif
+
+}
+
+template<class T>
+inline bool (isfinite)(T x)
+{ //!< \brief return true if floating-point type t is finite.
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+ typedef typename tools::promote_args<T>::type value_type;
+ return detail::isfinite_impl(static_cast<value_type>(x), method());
+}
+
+//------------------------------------------------------------------------------
+
+namespace detail {
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+ template<class T>
+ inline bool isnormal_impl(T x, native_tag const&)
+ {
+ return (std::isnormal)(x);
+ }
+#endif
+
+ template<class T>
+ inline bool isnormal_impl(T x, generic_tag<true> const&)
+ {
+ if(x < 0) x = -x;
+ return x >= (std::numeric_limits<T>::min)()
+ && x <= (std::numeric_limits<T>::max)();
+ }
+
+ template<class T>
+ inline bool isnormal_impl(T x, generic_tag<false> const&)
+ {
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized)
+ return isnormal_impl(x, generic_tag<true>());
+#endif
+ return !(x == 0);
+ }
+
+ template<class T>
+ inline bool isnormal_impl(T x, ieee_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME detail::fp_traits<T>::type traits;
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent | traits::flag;
+ return (a != 0) && (a < traits::exponent);
+ }
+
+#if defined(BOOST_MATH_USE_STD_FPCLASSIFY) && defined(BOOST_MATH_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY)
+template <>
+inline bool isnormal_impl<long double> BOOST_NO_MACRO_EXPAND(long double t, const native_tag&)
+{
+ return boost::math::detail::isnormal_impl(t, generic_tag<true>());
+}
+#endif
+
+}
+
+template<class T>
+inline bool (isnormal)(T x)
+{
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+ typedef typename tools::promote_args<T>::type value_type;
+ return detail::isnormal_impl(static_cast<value_type>(x), method());
+}
+
+//------------------------------------------------------------------------------
+
+namespace detail {
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+ template<class T>
+ inline bool isinf_impl(T x, native_tag const&)
+ {
+ return (std::isinf)(x);
+ }
+#endif
+
+ template<class T>
+ inline bool isinf_impl(T x, generic_tag<true> const&)
+ {
+ (void)x; // in case the compiler thinks that x is unused because std::numeric_limits<T>::has_infinity is false
+ return std::numeric_limits<T>::has_infinity
+ && ( x == std::numeric_limits<T>::infinity()
+ || x == -std::numeric_limits<T>::infinity());
+ }
+
+ template<class T>
+ inline bool isinf_impl(T x, generic_tag<false> const&)
+ {
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized)
+ return isinf_impl(x, generic_tag<true>());
+#endif
+ (void)x; // warning supression.
+ return false;
+ }
+
+ template<class T>
+ inline bool isinf_impl(T x, ieee_copy_all_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent | traits::significand;
+ return a == traits::exponent;
+ }
+
+ template<class T>
+ inline bool isinf_impl(T x, ieee_copy_leading_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent | traits::significand;
+ if(a != traits::exponent)
+ return false;
+
+ traits::set_bits(x,0);
+ return x == 0;
+ }
+
+#if defined(BOOST_MATH_USE_STD_FPCLASSIFY) && defined(BOOST_MATH_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY)
+template <>
+inline bool isinf_impl<long double> BOOST_NO_MACRO_EXPAND(long double t, const native_tag&)
+{
+ return boost::math::detail::isinf_impl(t, generic_tag<true>());
+}
+#endif
+
+} // namespace detail
+
+template<class T>
+inline bool (isinf)(T x)
+{
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+ typedef typename tools::promote_args<T>::type value_type;
+ return detail::isinf_impl(static_cast<value_type>(x), method());
+}
+
+//------------------------------------------------------------------------------
+
+namespace detail {
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+ template<class T>
+ inline bool isnan_impl(T x, native_tag const&)
+ {
+ return (std::isnan)(x);
+ }
+#endif
+
+ template<class T>
+ inline bool isnan_impl(T x, generic_tag<true> const&)
+ {
+ return std::numeric_limits<T>::has_infinity
+ ? !(x <= std::numeric_limits<T>::infinity())
+ : x != x;
+ }
+
+ template<class T>
+ inline bool isnan_impl(T x, generic_tag<false> const&)
+ {
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized)
+ return isnan_impl(x, generic_tag<true>());
+#endif
+ (void)x; // warning supression
+ return false;
+ }
+
+ template<class T>
+ inline bool isnan_impl(T x, ieee_copy_all_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent | traits::significand;
+ return a > traits::exponent;
+ }
+
+ template<class T>
+ inline bool isnan_impl(T x, ieee_copy_leading_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+
+ a &= traits::exponent | traits::significand;
+ if(a < traits::exponent)
+ return false;
+
+ a &= traits::significand;
+ traits::set_bits(x,a);
+ return x != 0;
+ }
+
+} // namespace detail
+
+template<class T> bool (isnan)(T x)
+{ //!< \brief return true if floating-point type t is NaN (Not A Number).
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+ return detail::isnan_impl(x, method());
+}
+
+#ifdef isnan
+template <> inline bool isnan BOOST_NO_MACRO_EXPAND<float>(float t){ return ::boost::math_detail::is_nan_helper(t, boost::true_type()); }
+template <> inline bool isnan BOOST_NO_MACRO_EXPAND<double>(double t){ return ::boost::math_detail::is_nan_helper(t, boost::true_type()); }
+template <> inline bool isnan BOOST_NO_MACRO_EXPAND<long double>(long double t){ return ::boost::math_detail::is_nan_helper(t, boost::true_type()); }
+#endif
+
+} // namespace math
+} // namespace boost
+
+#endif // BOOST_MATH_FPCLASSIFY_HPP
+
diff --git a/3rdParty/Boost/src/boost/math/special_functions/math_fwd.hpp b/3rdParty/Boost/src/boost/math/special_functions/math_fwd.hpp
new file mode 100644
index 0000000..6669e3f
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/special_functions/math_fwd.hpp
@@ -0,0 +1,1296 @@
+// math_fwd.hpp
+
+// TODO revise completely for new distribution classes.
+
+// Copyright Paul A. Bristow 2006.
+// Copyright John Maddock 2006.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// Omnibus list of forward declarations of math special functions.
+
+// IT = Integer type.
+// RT = Real type (built-in floating-point types, float, double, long double) & User Defined Types
+// AT = Integer or Real type
+
+#ifndef BOOST_MATH_SPECIAL_MATH_FWD_HPP
+#define BOOST_MATH_SPECIAL_MATH_FWD_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+#include <boost/math/special_functions/detail/round_fwd.hpp>
+#include <boost/math/tools/promotion.hpp> // for argument promotion.
+#include <boost/math/policies/policy.hpp>
+#include <boost/mpl/comparison.hpp>
+#include <boost/config/no_tr1/complex.hpp>
+
+#define BOOST_NO_MACRO_EXPAND /**/
+
+namespace boost
+{
+ namespace math
+ { // Math functions (in roughly alphabetic order).
+
+ // Beta functions.
+ template <class RT1, class RT2>
+ typename tools::promote_args<RT1, RT2>::type
+ beta(RT1 a, RT2 b); // Beta function (2 arguments).
+
+ template <class RT1, class RT2, class A>
+ typename tools::promote_args<RT1, RT2, A>::type
+ beta(RT1 a, RT2 b, A x); // Beta function (3 arguments).
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ beta(RT1 a, RT2 b, RT3 x, const Policy& pol); // Beta function (3 arguments).
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ betac(RT1 a, RT2 b, RT3 x);
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ betac(RT1 a, RT2 b, RT3 x, const Policy& pol);
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta(RT1 a, RT2 b, RT3 x); // Incomplete beta function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta(RT1 a, RT2 b, RT3 x, const Policy& pol); // Incomplete beta function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac(RT1 a, RT2 b, RT3 x); // Incomplete beta complement function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac(RT1 a, RT2 b, RT3 x, const Policy& pol); // Incomplete beta complement function.
+
+ template <class T1, class T2, class T3, class T4>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ibeta_inv(T1 a, T2 b, T3 p, T4* py);
+
+ template <class T1, class T2, class T3, class T4, class Policy>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ibeta_inv(T1 a, T2 b, T3 p, T4* py, const Policy& pol);
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_inv(RT1 a, RT2 b, RT3 p); // Incomplete beta inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_inv(RT1 a, RT2 b, RT3 p, const Policy&); // Incomplete beta inverse function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_inva(RT1 a, RT2 b, RT3 p); // Incomplete beta inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_inva(RT1 a, RT2 b, RT3 p, const Policy&); // Incomplete beta inverse function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_invb(RT1 a, RT2 b, RT3 p); // Incomplete beta inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_invb(RT1 a, RT2 b, RT3 p, const Policy&); // Incomplete beta inverse function.
+
+ template <class T1, class T2, class T3, class T4>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ibetac_inv(T1 a, T2 b, T3 q, T4* py);
+
+ template <class T1, class T2, class T3, class T4, class Policy>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ibetac_inv(T1 a, T2 b, T3 q, T4* py, const Policy& pol);
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_inv(RT1 a, RT2 b, RT3 q); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_inv(RT1 a, RT2 b, RT3 q, const Policy&); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_inva(RT1 a, RT2 b, RT3 q); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_inva(RT1 a, RT2 b, RT3 q, const Policy&); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_invb(RT1 a, RT2 b, RT3 q); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_invb(RT1 a, RT2 b, RT3 q, const Policy&); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_derivative(RT1 a, RT2 b, RT3 x); // derivative of incomplete beta
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_derivative(RT1 a, RT2 b, RT3 x, const Policy& pol); // derivative of incomplete beta
+
+ // erf & erfc error functions.
+ template <class RT> // Error function.
+ typename tools::promote_args<RT>::type erf(RT z);
+ template <class RT, class Policy> // Error function.
+ typename tools::promote_args<RT>::type erf(RT z, const Policy&);
+
+ template <class RT>// Error function complement.
+ typename tools::promote_args<RT>::type erfc(RT z);
+ template <class RT, class Policy>// Error function complement.
+ typename tools::promote_args<RT>::type erfc(RT z, const Policy&);
+
+ template <class RT>// Error function inverse.
+ typename tools::promote_args<RT>::type erf_inv(RT z);
+ template <class RT, class Policy>// Error function inverse.
+ typename tools::promote_args<RT>::type erf_inv(RT z, const Policy& pol);
+
+ template <class RT>// Error function complement inverse.
+ typename tools::promote_args<RT>::type erfc_inv(RT z);
+ template <class RT, class Policy>// Error function complement inverse.
+ typename tools::promote_args<RT>::type erfc_inv(RT z, const Policy& pol);
+
+ // Polynomials:
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1);
+
+ template <class T>
+ typename tools::promote_args<T>::type
+ legendre_p(int l, T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type
+ legendre_p(int l, T x, const Policy& pol);
+
+ template <class T>
+ typename tools::promote_args<T>::type
+ legendre_q(unsigned l, T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type
+ legendre_q(unsigned l, T x, const Policy& pol);
+
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1);
+
+ template <class T>
+ typename tools::promote_args<T>::type
+ legendre_p(int l, int m, T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type
+ legendre_p(int l, int m, T x, const Policy& pol);
+
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1);
+
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ laguerre_next(unsigned n, unsigned l, T1 x, T2 Pl, T3 Plm1);
+
+ template <class T>
+ typename tools::promote_args<T>::type
+ laguerre(unsigned n, T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type
+ laguerre(unsigned n, unsigned m, T x, const Policy& pol);
+
+ template <class T1, class T2>
+ struct laguerre_result
+ {
+ typedef typename mpl::if_<
+ policies::is_policy<T2>,
+ typename tools::promote_args<T1>::type,
+ typename tools::promote_args<T2>::type
+ >::type type;
+ };
+
+ template <class T1, class T2>
+ typename laguerre_result<T1, T2>::type
+ laguerre(unsigned n, T1 m, T2 x);
+
+ template <class T>
+ typename tools::promote_args<T>::type
+ hermite(unsigned n, T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type
+ hermite(unsigned n, T x, const Policy& pol);
+
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ hermite_next(unsigned n, T1 x, T2 Hn, T3 Hnm1);
+
+ template <class T1, class T2>
+ std::complex<typename tools::promote_args<T1, T2>::type>
+ spherical_harmonic(unsigned n, int m, T1 theta, T2 phi);
+
+ template <class T1, class T2, class Policy>
+ std::complex<typename tools::promote_args<T1, T2>::type>
+ spherical_harmonic(unsigned n, int m, T1 theta, T2 phi, const Policy& pol);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type
+ spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type
+ spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi, const Policy& pol);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type
+ spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type
+ spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi, const Policy& pol);
+
+ // Elliptic integrals:
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ ellint_rf(T1 x, T2 y, T3 z);
+
+ template <class T1, class T2, class T3, class Policy>
+ typename tools::promote_args<T1, T2, T3>::type
+ ellint_rf(T1 x, T2 y, T3 z, const Policy& pol);
+
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ ellint_rd(T1 x, T2 y, T3 z);
+
+ template <class T1, class T2, class T3, class Policy>
+ typename tools::promote_args<T1, T2, T3>::type
+ ellint_rd(T1 x, T2 y, T3 z, const Policy& pol);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type
+ ellint_rc(T1 x, T2 y);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type
+ ellint_rc(T1 x, T2 y, const Policy& pol);
+
+ template <class T1, class T2, class T3, class T4>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ellint_rj(T1 x, T2 y, T3 z, T4 p);
+
+ template <class T1, class T2, class T3, class T4, class Policy>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ellint_rj(T1 x, T2 y, T3 z, T4 p, const Policy& pol);
+
+ template <typename T>
+ typename tools::promote_args<T>::type ellint_2(T k);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi, const Policy& pol);
+
+ template <typename T>
+ typename tools::promote_args<T>::type ellint_1(T k);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol);
+
+ namespace detail{
+
+ template <class T, class U, class V>
+ struct ellint_3_result
+ {
+ typedef typename mpl::if_<
+ policies::is_policy<V>,
+ typename tools::promote_args<T, U>::type,
+ typename tools::promote_args<T, U, V>::type
+ >::type type;
+ };
+
+ } // namespace detail
+
+
+ template <class T1, class T2, class T3>
+ typename detail::ellint_3_result<T1, T2, T3>::type ellint_3(T1 k, T2 v, T3 phi);
+
+ template <class T1, class T2, class T3, class Policy>
+ typename tools::promote_args<T1, T2, T3>::type ellint_3(T1 k, T2 v, T3 phi, const Policy& pol);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type ellint_3(T1 k, T2 v);
+
+ // Factorial functions.
+ // Note: not for integral types, at present.
+ template <class RT>
+ struct max_factorial;
+ template <class RT>
+ RT factorial(unsigned int);
+ template <class RT, class Policy>
+ RT factorial(unsigned int, const Policy& pol);
+ template <class RT>
+ RT unchecked_factorial(unsigned int BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(RT));
+ template <class RT>
+ RT double_factorial(unsigned i);
+ template <class RT, class Policy>
+ RT double_factorial(unsigned i, const Policy& pol);
+
+ template <class RT>
+ typename tools::promote_args<RT>::type falling_factorial(RT x, unsigned n);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type falling_factorial(RT x, unsigned n, const Policy& pol);
+
+ template <class RT>
+ typename tools::promote_args<RT>::type rising_factorial(RT x, int n);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type rising_factorial(RT x, int n, const Policy& pol);
+
+ // Gamma functions.
+ template <class RT>
+ typename tools::promote_args<RT>::type tgamma(RT z);
+
+ template <class RT>
+ typename tools::promote_args<RT>::type tgamma1pm1(RT z);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type tgamma1pm1(RT z, const Policy& pol);
+
+ template <class RT1, class RT2>
+ typename tools::promote_args<RT1, RT2>::type tgamma(RT1 a, RT2 z);
+
+ template <class RT1, class RT2, class Policy>
+ typename tools::promote_args<RT1, RT2>::type tgamma(RT1 a, RT2 z, const Policy& pol);
+
+ template <class RT>
+ typename tools::promote_args<RT>::type lgamma(RT z, int* sign);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type lgamma(RT z, int* sign, const Policy& pol);
+
+ template <class RT>
+ typename tools::promote_args<RT>::type lgamma(RT x);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type lgamma(RT x, const Policy& pol);
+
+ template <class RT1, class RT2>
+ typename tools::promote_args<RT1, RT2>::type tgamma_lower(RT1 a, RT2 z);
+
+ template <class RT1, class RT2, class Policy>
+ typename tools::promote_args<RT1, RT2>::type tgamma_lower(RT1 a, RT2 z, const Policy&);
+
+ template <class RT1, class RT2>
+ typename tools::promote_args<RT1, RT2>::type gamma_q(RT1 a, RT2 z);
+
+ template <class RT1, class RT2, class Policy>
+ typename tools::promote_args<RT1, RT2>::type gamma_q(RT1 a, RT2 z, const Policy&);
+
+ template <class RT1, class RT2>
+ typename tools::promote_args<RT1, RT2>::type gamma_p(RT1 a, RT2 z);
+
+ template <class RT1, class RT2, class Policy>
+ typename tools::promote_args<RT1, RT2>::type gamma_p(RT1 a, RT2 z, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type tgamma_delta_ratio(T1 z, T2 delta);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type tgamma_delta_ratio(T1 z, T2 delta, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type tgamma_ratio(T1 a, T2 b);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type tgamma_ratio(T1 a, T2 b, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type gamma_p_derivative(T1 a, T2 x);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type gamma_p_derivative(T1 a, T2 x, const Policy&);
+
+ // gamma inverse.
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type gamma_p_inv(T1 a, T2 p);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type gamma_p_inva(T1 a, T2 p, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type gamma_p_inva(T1 a, T2 p);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type gamma_p_inv(T1 a, T2 p, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type gamma_q_inv(T1 a, T2 q);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type gamma_q_inv(T1 a, T2 q, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type gamma_q_inva(T1 a, T2 q);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type gamma_q_inva(T1 a, T2 q, const Policy&);
+
+ // digamma:
+ template <class T>
+ typename tools::promote_args<T>::type digamma(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type digamma(T x, const Policy&);
+
+ // Hypotenuse function sqrt(x ^ 2 + y ^ 2).
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type
+ hypot(T1 x, T2 y);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type
+ hypot(T1 x, T2 y, const Policy&);
+
+ // cbrt - cube root.
+ template <class RT>
+ typename tools::promote_args<RT>::type cbrt(RT z);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type cbrt(RT z, const Policy&);
+
+ // log1p is log(x + 1)
+ template <class T>
+ typename tools::promote_args<T>::type log1p(T);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type log1p(T, const Policy&);
+
+ // log1pmx is log(x + 1) - x
+ template <class T>
+ typename tools::promote_args<T>::type log1pmx(T);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type log1pmx(T, const Policy&);
+
+ // Exp (x) minus 1 functions.
+ template <class T>
+ typename tools::promote_args<T>::type expm1(T);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type expm1(T, const Policy&);
+
+ // Power - 1
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type
+ powm1(const T1 a, const T2 z);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type
+ powm1(const T1 a, const T2 z, const Policy&);
+
+ // sqrt(1+x) - 1
+ template <class T>
+ typename tools::promote_args<T>::type sqrt1pm1(const T& val);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type sqrt1pm1(const T& val, const Policy&);
+
+ // sinus cardinals:
+ template <class T>
+ typename tools::promote_args<T>::type sinc_pi(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type sinc_pi(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type sinhc_pi(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type sinhc_pi(T x, const Policy&);
+
+ // inverse hyperbolics:
+ template<typename T>
+ typename tools::promote_args<T>::type asinh(T x);
+
+ template<typename T, class Policy>
+ typename tools::promote_args<T>::type asinh(T x, const Policy&);
+
+ template<typename T>
+ typename tools::promote_args<T>::type acosh(T x);
+
+ template<typename T, class Policy>
+ typename tools::promote_args<T>::type acosh(T x, const Policy&);
+
+ template<typename T>
+ typename tools::promote_args<T>::type atanh(T x);
+
+ template<typename T, class Policy>
+ typename tools::promote_args<T>::type atanh(T x, const Policy&);
+
+ namespace detail{
+
+ typedef mpl::int_<0> bessel_no_int_tag; // No integer optimisation possible.
+ typedef mpl::int_<1> bessel_maybe_int_tag; // Maybe integer optimisation.
+ typedef mpl::int_<2> bessel_int_tag; // Definite integer optimistaion.
+
+ template <class T1, class T2, class Policy>
+ struct bessel_traits
+ {
+ typedef typename tools::promote_args<
+ T1, T2
+ >::type result_type;
+
+ typedef typename policies::precision<result_type, Policy>::type precision_type;
+
+ typedef typename mpl::if_<
+ mpl::or_<
+ mpl::less_equal<precision_type, mpl::int_<0> >,
+ mpl::greater<precision_type, mpl::int_<64> > >,
+ bessel_no_int_tag,
+ typename mpl::if_<
+ is_integral<T1>,
+ bessel_int_tag,
+ bessel_maybe_int_tag
+ >::type
+ >::type optimisation_tag;
+ };
+ } // detail
+
+ // Bessel functions:
+ template <class T1, class T2, class Policy>
+ typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_bessel_j(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_bessel_j(T1 v, T2 x);
+
+ template <class T, class Policy>
+ typename detail::bessel_traits<T, T, Policy>::result_type sph_bessel(unsigned v, T x, const Policy& pol);
+
+ template <class T>
+ typename detail::bessel_traits<T, T, policies::policy<> >::result_type sph_bessel(unsigned v, T x);
+
+ template <class T1, class T2, class Policy>
+ typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_bessel_i(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_bessel_i(T1 v, T2 x);
+
+ template <class T1, class T2, class Policy>
+ typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_bessel_k(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_bessel_k(T1 v, T2 x);
+
+ template <class T1, class T2, class Policy>
+ typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_neumann(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_neumann(T1 v, T2 x);
+
+ template <class T, class Policy>
+ typename detail::bessel_traits<T, T, Policy>::result_type sph_neumann(unsigned v, T x, const Policy& pol);
+
+ template <class T>
+ typename detail::bessel_traits<T, T, policies::policy<> >::result_type sph_neumann(unsigned v, T x);
+
+ template <class T1, class T2, class Policy>
+ std::complex<typename detail::bessel_traits<T1, T2, Policy>::result_type> cyl_hankel_1(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ std::complex<typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type> cyl_hankel_1(T1 v, T2 x);
+
+ template <class T1, class T2, class Policy>
+ std::complex<typename detail::bessel_traits<T1, T2, Policy>::result_type> cyl_hankel_2(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ std::complex<typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type> cyl_hankel_2(T1 v, T2 x);
+
+ template <class T1, class T2, class Policy>
+ std::complex<typename detail::bessel_traits<T1, T2, Policy>::result_type> sph_hankel_1(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ std::complex<typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type> sph_hankel_1(T1 v, T2 x);
+
+ template <class T1, class T2, class Policy>
+ std::complex<typename detail::bessel_traits<T1, T2, Policy>::result_type> sph_hankel_2(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ std::complex<typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type> sph_hankel_2(T1 v, T2 x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type airy_ai(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type airy_ai(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type airy_bi(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type airy_bi(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type airy_ai_prime(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type airy_ai_prime(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type airy_bi_prime(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type airy_bi_prime(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type sin_pi(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type sin_pi(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type cos_pi(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type cos_pi(T x);
+
+ template <class T>
+ int fpclassify BOOST_NO_MACRO_EXPAND(T t);
+
+ template <class T>
+ bool isfinite BOOST_NO_MACRO_EXPAND(T z);
+
+ template <class T>
+ bool isinf BOOST_NO_MACRO_EXPAND(T t);
+
+ template <class T>
+ bool isnan BOOST_NO_MACRO_EXPAND(T t);
+
+ template <class T>
+ bool isnormal BOOST_NO_MACRO_EXPAND(T t);
+
+ template<class T>
+ int signbit BOOST_NO_MACRO_EXPAND(T x);
+
+ template <class T>
+ int sign BOOST_NO_MACRO_EXPAND(const T& z);
+
+ template <class T>
+ T copysign BOOST_NO_MACRO_EXPAND(const T& x, const T& y);
+
+ template <class T>
+ T changesign BOOST_NO_MACRO_EXPAND(const T& z);
+
+ // Exponential integrals:
+ namespace detail{
+
+ template <class T, class U>
+ struct expint_result
+ {
+ typedef typename mpl::if_<
+ policies::is_policy<U>,
+ typename tools::promote_args<T>::type,
+ typename tools::promote_args<U>::type
+ >::type type;
+ };
+
+ } // namespace detail
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type expint(unsigned n, T z, const Policy&);
+
+ template <class T, class U>
+ typename detail::expint_result<T, U>::type expint(T const z, U const u);
+
+ template <class T>
+ typename tools::promote_args<T>::type expint(T z);
+
+ // Zeta:
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type zeta(T s, const Policy&);
+
+ // Owen's T function:
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type owens_t(T1 h, T2 a, const Policy& pol);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type owens_t(T1 h, T2 a);
+
+ // Jacobi Functions:
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type jacobi_elliptic(T k, T theta, T* pcn, T* pdn, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type jacobi_elliptic(T k, T theta, T* pcn = 0, T* pdn = 0);
+
+ template <class U, class T, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_sn(U k, T theta, const Policy& pol);
+
+ template <class U, class T>
+ typename tools::promote_args<T, U>::type jacobi_sn(U k, T theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_cn(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_cn(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_dn(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_dn(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_cd(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_cd(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_dc(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_dc(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_ns(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_ns(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_sd(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_sd(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_ds(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_ds(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_nc(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_nc(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_nd(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_nd(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_sc(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_sc(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_cs(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_cs(T k, U theta);
+
+
+ template <class T>
+ typename tools::promote_args<T>::type zeta(T s);
+
+ // pow:
+ template <int N, typename T, class Policy>
+ typename tools::promote_args<T>::type pow(T base, const Policy& policy);
+
+ template <int N, typename T>
+ typename tools::promote_args<T>::type pow(T base);
+
+ // next:
+ template <class T, class Policy>
+ T nextafter(const T&, const T&, const Policy&);
+ template <class T>
+ T nextafter(const T&, const T&);
+ template <class T, class Policy>
+ T float_next(const T&, const Policy&);
+ template <class T>
+ T float_next(const T&);
+ template <class T, class Policy>
+ T float_prior(const T&, const Policy&);
+ template <class T>
+ T float_prior(const T&);
+ template <class T, class Policy>
+ T float_distance(const T&, const T&, const Policy&);
+ template <class T>
+ T float_distance(const T&, const T&);
+
+ } // namespace math
+} // namespace boost
+
+#ifdef BOOST_HAS_LONG_LONG
+#define BOOST_MATH_DETAIL_LL_FUNC(Policy)\
+ \
+ template <class T>\
+ inline T modf(const T& v, boost::long_long_type* ipart){ using boost::math::modf; return modf(v, ipart, Policy()); }\
+ \
+ template <class T>\
+ inline boost::long_long_type lltrunc(const T& v){ using boost::math::lltrunc; return lltrunc(v, Policy()); }\
+ \
+ template <class T>\
+ inline boost::long_long_type llround(const T& v){ using boost::math::llround; return llround(v, Policy()); }\
+
+#else
+#define BOOST_MATH_DETAIL_LL_FUNC(Policy)
+#endif
+
+#define BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(Policy)\
+ \
+ BOOST_MATH_DETAIL_LL_FUNC(Policy)\
+ \
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type \
+ beta(RT1 a, RT2 b) { return ::boost::math::beta(a, b, Policy()); }\
+\
+ template <class RT1, class RT2, class A>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, A>::type \
+ beta(RT1 a, RT2 b, A x){ return ::boost::math::beta(a, b, x, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ betac(RT1 a, RT2 b, RT3 x) { return ::boost::math::betac(a, b, x, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibeta(RT1 a, RT2 b, RT3 x){ return ::boost::math::ibeta(a, b, x, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibetac(RT1 a, RT2 b, RT3 x){ return ::boost::math::ibetac(a, b, x, Policy()); }\
+\
+ template <class T1, class T2, class T3, class T4>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3, T4>::type \
+ ibeta_inv(T1 a, T2 b, T3 p, T4* py){ return ::boost::math::ibeta_inv(a, b, p, py, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibeta_inv(RT1 a, RT2 b, RT3 p){ return ::boost::math::ibeta_inv(a, b, p, Policy()); }\
+\
+ template <class T1, class T2, class T3, class T4>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3, T4>::type \
+ ibetac_inv(T1 a, T2 b, T3 q, T4* py){ return ::boost::math::ibetac_inv(a, b, q, py, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibeta_inva(RT1 a, RT2 b, RT3 p){ return ::boost::math::ibeta_inva(a, b, p, Policy()); }\
+\
+ template <class T1, class T2, class T3>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3>::type \
+ ibetac_inva(T1 a, T2 b, T3 q){ return ::boost::math::ibetac_inva(a, b, q, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibeta_invb(RT1 a, RT2 b, RT3 p){ return ::boost::math::ibeta_invb(a, b, p, Policy()); }\
+\
+ template <class T1, class T2, class T3>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3>::type \
+ ibetac_invb(T1 a, T2 b, T3 q){ return ::boost::math::ibetac_invb(a, b, q, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibetac_inv(RT1 a, RT2 b, RT3 q){ return ::boost::math::ibetac_inv(a, b, q, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibeta_derivative(RT1 a, RT2 b, RT3 x){ return ::boost::math::ibeta_derivative(a, b, x, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type erf(RT z) { return ::boost::math::erf(z, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type erfc(RT z){ return ::boost::math::erfc(z, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type erf_inv(RT z) { return ::boost::math::erf_inv(z, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type erfc_inv(RT z){ return ::boost::math::erfc_inv(z, Policy()); }\
+\
+ using boost::math::legendre_next;\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type \
+ legendre_p(int l, T x){ return ::boost::math::legendre_p(l, x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type \
+ legendre_q(unsigned l, T x){ return ::boost::math::legendre_q(l, x, Policy()); }\
+\
+ using ::boost::math::legendre_next;\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type \
+ legendre_p(int l, int m, T x){ return ::boost::math::legendre_p(l, m, x, Policy()); }\
+\
+ using ::boost::math::laguerre_next;\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type \
+ laguerre(unsigned n, T x){ return ::boost::math::laguerre(n, x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::laguerre_result<T1, T2>::type \
+ laguerre(unsigned n, T1 m, T2 x) { return ::boost::math::laguerre(n, m, x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type \
+ hermite(unsigned n, T x){ return ::boost::math::hermite(n, x, Policy()); }\
+\
+ using boost::math::hermite_next;\
+\
+ template <class T1, class T2>\
+ inline std::complex<typename boost::math::tools::promote_args<T1, T2>::type> \
+ spherical_harmonic(unsigned n, int m, T1 theta, T2 phi){ return boost::math::spherical_harmonic(n, m, theta, phi, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi){ return ::boost::math::spherical_harmonic_r(n, m, theta, phi, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi){ return boost::math::spherical_harmonic_i(n, m, theta, phi, Policy()); }\
+\
+ template <class T1, class T2, class Policy>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi, const Policy& pol);\
+\
+ template <class T1, class T2, class T3>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3>::type \
+ ellint_rf(T1 x, T2 y, T3 z){ return ::boost::math::ellint_rf(x, y, z, Policy()); }\
+\
+ template <class T1, class T2, class T3>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3>::type \
+ ellint_rd(T1 x, T2 y, T3 z){ return ::boost::math::ellint_rd(x, y, z, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ ellint_rc(T1 x, T2 y){ return ::boost::math::ellint_rc(x, y, Policy()); }\
+\
+ template <class T1, class T2, class T3, class T4>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3, T4>::type \
+ ellint_rj(T1 x, T2 y, T3 z, T4 p){ return boost::math::ellint_rj(x, y, z, p, Policy()); }\
+\
+ template <typename T>\
+ inline typename boost::math::tools::promote_args<T>::type ellint_2(T k){ return boost::math::ellint_2(k, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi){ return boost::math::ellint_2(k, phi, Policy()); }\
+\
+ template <typename T>\
+ inline typename boost::math::tools::promote_args<T>::type ellint_1(T k){ return boost::math::ellint_1(k, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi){ return boost::math::ellint_1(k, phi, Policy()); }\
+\
+ template <class T1, class T2, class T3>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3>::type ellint_3(T1 k, T2 v, T3 phi){ return boost::math::ellint_3(k, v, phi, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type ellint_3(T1 k, T2 v){ return boost::math::ellint_3(k, v, Policy()); }\
+\
+ using boost::math::max_factorial;\
+ template <class RT>\
+ inline RT factorial(unsigned int i) { return boost::math::factorial<RT>(i, Policy()); }\
+ using boost::math::unchecked_factorial;\
+ template <class RT>\
+ inline RT double_factorial(unsigned i){ return boost::math::double_factorial<RT>(i, Policy()); }\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type falling_factorial(RT x, unsigned n){ return boost::math::falling_factorial(x, n, Policy()); }\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type rising_factorial(RT x, unsigned n){ return boost::math::rising_factorial(x, n, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type tgamma(RT z){ return boost::math::tgamma(z, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type tgamma1pm1(RT z){ return boost::math::tgamma1pm1(z, Policy()); }\
+\
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type tgamma(RT1 a, RT2 z){ return boost::math::tgamma(a, z, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type lgamma(RT z, int* sign){ return boost::math::lgamma(z, sign, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type lgamma(RT x){ return boost::math::lgamma(x, Policy()); }\
+\
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type tgamma_lower(RT1 a, RT2 z){ return boost::math::tgamma_lower(a, z, Policy()); }\
+\
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type gamma_q(RT1 a, RT2 z){ return boost::math::gamma_q(a, z, Policy()); }\
+\
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type gamma_p(RT1 a, RT2 z){ return boost::math::gamma_p(a, z, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type tgamma_delta_ratio(T1 z, T2 delta){ return boost::math::tgamma_delta_ratio(z, delta, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type tgamma_ratio(T1 a, T2 b) { return boost::math::tgamma_ratio(a, b, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type gamma_p_derivative(T1 a, T2 x){ return boost::math::gamma_p_derivative(a, x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type gamma_p_inv(T1 a, T2 p){ return boost::math::gamma_p_inv(a, p, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type gamma_p_inva(T1 a, T2 p){ return boost::math::gamma_p_inva(a, p, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type gamma_q_inv(T1 a, T2 q){ return boost::math::gamma_q_inv(a, q, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type gamma_q_inva(T1 a, T2 q){ return boost::math::gamma_q_inva(a, q, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type digamma(T x){ return boost::math::digamma(x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ hypot(T1 x, T2 y){ return boost::math::hypot(x, y, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type cbrt(RT z){ return boost::math::cbrt(z, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type log1p(T x){ return boost::math::log1p(x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type log1pmx(T x){ return boost::math::log1pmx(x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type expm1(T x){ return boost::math::expm1(x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ powm1(const T1 a, const T2 z){ return boost::math::powm1(a, z, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type sqrt1pm1(const T& val){ return boost::math::sqrt1pm1(val, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type sinc_pi(T x){ return boost::math::sinc_pi(x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type sinhc_pi(T x){ return boost::math::sinhc_pi(x, Policy()); }\
+\
+ template<typename T>\
+ inline typename boost::math::tools::promote_args<T>::type asinh(const T x){ return boost::math::asinh(x, Policy()); }\
+\
+ template<typename T>\
+ inline typename boost::math::tools::promote_args<T>::type acosh(const T x){ return boost::math::acosh(x, Policy()); }\
+\
+ template<typename T>\
+ inline typename boost::math::tools::promote_args<T>::type atanh(const T x){ return boost::math::atanh(x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type cyl_bessel_j(T1 v, T2 x)\
+ { return boost::math::cyl_bessel_j(v, x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::detail::bessel_traits<T, T, Policy >::result_type sph_bessel(unsigned v, T x)\
+ { return boost::math::sph_bessel(v, x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type \
+ cyl_bessel_i(T1 v, T2 x) { return boost::math::cyl_bessel_i(v, x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type \
+ cyl_bessel_k(T1 v, T2 x) { return boost::math::cyl_bessel_k(v, x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type \
+ cyl_neumann(T1 v, T2 x){ return boost::math::cyl_neumann(v, x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::detail::bessel_traits<T, T, Policy >::result_type \
+ sph_neumann(unsigned v, T x){ return boost::math::sph_neumann(v, x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type sin_pi(T x){ return boost::math::sin_pi(x); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type cos_pi(T x){ return boost::math::cos_pi(x); }\
+\
+ using boost::math::fpclassify;\
+ using boost::math::isfinite;\
+ using boost::math::isinf;\
+ using boost::math::isnan;\
+ using boost::math::isnormal;\
+ using boost::math::signbit;\
+ using boost::math::sign;\
+ using boost::math::copysign;\
+ using boost::math::changesign;\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T,U>::type expint(T const& z, U const& u)\
+ { return boost::math::expint(z, u, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type expint(T z){ return boost::math::expint(z, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type zeta(T s){ return boost::math::zeta(s, Policy()); }\
+ \
+ template <class T>\
+ inline T round(const T& v){ using boost::math::round; return round(v, Policy()); }\
+ \
+ template <class T>\
+ inline int iround(const T& v){ using boost::math::iround; return iround(v, Policy()); }\
+ \
+ template <class T>\
+ inline long lround(const T& v){ using boost::math::lround; return lround(v, Policy()); }\
+ \
+ template <class T>\
+ inline T trunc(const T& v){ using boost::math::trunc; return trunc(v, Policy()); }\
+ \
+ template <class T>\
+ inline int itrunc(const T& v){ using boost::math::itrunc; return itrunc(v, Policy()); }\
+ \
+ template <class T>\
+ inline long ltrunc(const T& v){ using boost::math::ltrunc; return ltrunc(v, Policy()); }\
+ \
+ template <class T>\
+ inline T modf(const T& v, T* ipart){ using boost::math::modf; return modf(v, ipart, Policy()); }\
+ \
+ template <class T>\
+ inline T modf(const T& v, int* ipart){ using boost::math::modf; return modf(v, ipart, Policy()); }\
+ \
+ template <class T>\
+ inline T modf(const T& v, long* ipart){ using boost::math::modf; return modf(v, ipart, Policy()); }\
+ \
+ template <int N, class T>\
+ inline typename boost::math::tools::promote_args<T>::type pow(T v){ return boost::math::pow<N>(v, Policy()); }\
+ \
+ template <class T> T nextafter(const T& a, const T& b){ return boost::math::nextafter(a, b, Policy()); }\
+ template <class T> T float_next(const T& a){ return boost::math::float_next(a, Policy()); }\
+ template <class T> T float_prior(const T& a){ return boost::math::float_prior(a, Policy()); }\
+ template <class T> T float_distance(const T& a, const T& b){ return boost::math::float_distance(a, b, Policy()); }\
+ \
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type owens_t(RT1 a, RT2 z){ return boost::math::owens_t(a, z, Policy()); }\
+ \
+ template <class T1, class T2>\
+ inline std::complex<typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type> cyl_hankel_1(T1 v, T2 x)\
+ { return boost::math::cyl_hankel_1(v, x, Policy()); }\
+ \
+ template <class T1, class T2>\
+ inline std::complex<typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type> cyl_hankel_2(T1 v, T2 x)\
+ { return boost::math::cyl_hankel_2(v, x, Policy()); }\
+ \
+ template <class T1, class T2>\
+ inline std::complex<typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type> sph_hankel_1(T1 v, T2 x)\
+ { return boost::math::sph_hankel_1(v, x, Policy()); }\
+ \
+ template <class T1, class T2>\
+ inline std::complex<typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type> sph_hankel_2(T1 v, T2 x)\
+ { return boost::math::sph_hankel_2(v, x, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type jacobi_elliptic(T k, T theta, T* pcn, T* pdn)\
+ { return boost::math::jacobi_elliptic(k, theta, pcn, pdn, Policy()); }\
+ \
+ template <class U, class T>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_sn(U k, T theta)\
+ { return boost::math::jacobi_sn(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_cn(T k, U theta)\
+ { return boost::math::jacobi_cn(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_dn(T k, U theta)\
+ { return boost::math::jacobi_dn(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_cd(T k, U theta)\
+ { return boost::math::jacobi_cd(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_dc(T k, U theta)\
+ { return boost::math::jacobi_dc(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_ns(T k, U theta)\
+ { return boost::math::jacobi_ns(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_sd(T k, U theta)\
+ { return boost::math::jacobi_sd(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_ds(T k, U theta)\
+ { return boost::math::jacobi_ds(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_nc(T k, U theta)\
+ { return boost::math::jacobi_nc(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_nd(T k, U theta)\
+ { return boost::math::jacobi_nd(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_sc(T k, U theta)\
+ { return boost::math::jacobi_sc(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_cs(T k, U theta)\
+ { return boost::math::jacobi_cs(k, theta, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type airy_ai(T x)\
+ { return boost::math::airy_ai(x, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type airy_bi(T x)\
+ { return boost::math::airy_bi(x, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type airy_ai_prime(T x)\
+ { return boost::math::airy_ai_prime(x, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type airy_bi_prime(T x)\
+ { return boost::math::airy_bi_prime(x, Policy()); }\
+ \
+
+
+
+
+
+#endif // BOOST_MATH_SPECIAL_MATH_FWD_HPP
+
+
diff --git a/3rdParty/Boost/src/boost/math/special_functions/sign.hpp b/3rdParty/Boost/src/boost/math/special_functions/sign.hpp
new file mode 100644
index 0000000..6de88b2
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/special_functions/sign.hpp
@@ -0,0 +1,145 @@
+// (C) Copyright John Maddock 2006.
+// (C) Copyright Johan Rade 2006.
+// (C) Copyright Paul A. Bristow 2011 (added changesign).
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_TOOLS_SIGN_HPP
+#define BOOST_MATH_TOOLS_SIGN_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+#include <boost/math/tools/config.hpp>
+#include <boost/math/special_functions/math_fwd.hpp>
+#include <boost/math/special_functions/detail/fp_traits.hpp>
+
+namespace boost{ namespace math{
+
+namespace detail {
+
+ // signbit
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+ template<class T>
+ inline int signbit_impl(T x, native_tag const&)
+ {
+ return (std::signbit)(x);
+ }
+#endif
+
+ template<class T>
+ inline int signbit_impl(T x, generic_tag<true> const&)
+ {
+ return x < 0;
+ }
+
+ template<class T>
+ inline int signbit_impl(T x, generic_tag<false> const&)
+ {
+ return x < 0;
+ }
+
+ template<class T>
+ inline int signbit_impl(T x, ieee_copy_all_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ return a & traits::sign ? 1 : 0;
+ }
+
+ template<class T>
+ inline int signbit_impl(T x, ieee_copy_leading_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+
+ return a & traits::sign ? 1 : 0;
+ }
+
+ // Changesign
+
+ template<class T>
+ inline T (changesign_impl)(T x, generic_tag<true> const&)
+ {
+ return -x;
+ }
+
+ template<class T>
+ inline T (changesign_impl)(T x, generic_tag<false> const&)
+ {
+ return -x;
+ }
+
+
+ template<class T>
+ inline T changesign_impl(T x, ieee_copy_all_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::sign_change_type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a ^= traits::sign;
+ traits::set_bits(x,a);
+ return x;
+ }
+
+ template<class T>
+ inline T (changesign_impl)(T x, ieee_copy_leading_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::sign_change_type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a ^= traits::sign;
+ traits::set_bits(x,a);
+ return x;
+ }
+
+
+} // namespace detail
+
+template<class T> int (signbit)(T x)
+{
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+ return detail::signbit_impl(x, method());
+}
+
+template <class T>
+inline int sign BOOST_NO_MACRO_EXPAND(const T& z)
+{
+ return (z == 0) ? 0 : (boost::math::signbit)(z) ? -1 : 1;
+}
+
+template<class T> T (changesign)(const T& x)
+{ //!< \brief return unchanged binary pattern of x, except for change of sign bit.
+ typedef typename detail::fp_traits<T>::sign_change_type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+
+ return detail::changesign_impl(x, method());
+}
+
+template <class T>
+inline T copysign BOOST_NO_MACRO_EXPAND(const T& x, const T& y)
+{
+ BOOST_MATH_STD_USING
+ return (boost::math::signbit)(x) != (boost::math::signbit)(y) ? (boost::math::changesign)(x) : x;
+}
+
+} // namespace math
+} // namespace boost
+
+
+#endif // BOOST_MATH_TOOLS_SIGN_HPP
+
+
diff --git a/3rdParty/Boost/src/boost/math/tools/config.hpp b/3rdParty/Boost/src/boost/math/tools/config.hpp
new file mode 100644
index 0000000..b1fcd13
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/tools/config.hpp
@@ -0,0 +1,330 @@
+// Copyright (c) 2006-7 John Maddock
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_TOOLS_CONFIG_HPP
+#define BOOST_MATH_TOOLS_CONFIG_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+#include <boost/config.hpp>
+#include <boost/cstdint.hpp> // for boost::uintmax_t
+#include <boost/detail/workaround.hpp>
+#include <algorithm> // for min and max
+#include <boost/config/no_tr1/cmath.hpp>
+#include <climits>
+#include <cfloat>
+#if (defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__))
+# include <math.h>
+#endif
+
+#include <boost/math/tools/user.hpp>
+#include <boost/math/special_functions/detail/round_fwd.hpp>
+
+#if (defined(__CYGWIN__) || defined(__FreeBSD__) || defined(__NetBSD__) \
+ || (defined(__hppa) && !defined(__OpenBSD__)) || (defined(__NO_LONG_DOUBLE_MATH) && (DBL_MANT_DIG != LDBL_MANT_DIG))) \
+ && !defined(BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS)
+# define BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#endif
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+//
+// Borland post 5.8.2 uses Dinkumware's std C lib which
+// doesn't have true long double precision. Earlier
+// versions are problematic too:
+//
+# define BOOST_MATH_NO_REAL_CONCEPT_TESTS
+# define BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+# define BOOST_MATH_CONTROL_FP _control87(MCW_EM,MCW_EM)
+# include <float.h>
+#endif
+#ifdef __IBMCPP__
+//
+// For reasons I don't unserstand, the tests with IMB's compiler all
+// pass at long double precision, but fail with real_concept, those tests
+// are disabled for now. (JM 2012).
+# define BOOST_MATH_NO_REAL_CONCEPT_TESTS
+#endif
+#if (defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__)) && ((LDBL_MANT_DIG == 106) || (__LDBL_MANT_DIG__ == 106)) && !defined(BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS)
+//
+// Darwin's rather strange "double double" is rather hard to
+// support, it should be possible given enough effort though...
+//
+# define BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#endif
+#if defined(unix) && defined(__INTEL_COMPILER) && (__INTEL_COMPILER <= 1000) && !defined(BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS)
+//
+// Intel compiler prior to version 10 has sporadic problems
+// calling the long double overloads of the std lib math functions:
+// calling ::powl is OK, but std::pow(long double, long double)
+// may segfault depending upon the value of the arguments passed
+// and the specific Linux distribution.
+//
+// We'll be conservative and disable long double support for this compiler.
+//
+// Comment out this #define and try building the tests to determine whether
+// your Intel compiler version has this issue or not.
+//
+# define BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#endif
+#if defined(unix) && defined(__INTEL_COMPILER)
+//
+// Intel compiler has sporadic issues compiling std::fpclassify depending on
+// the exact OS version used. Use our own code for this as we know it works
+// well on Intel processors:
+//
+#define BOOST_MATH_DISABLE_STD_FPCLASSIFY
+#endif
+
+#if defined(BOOST_MSVC) && !defined(_WIN32_WCE)
+ // Better safe than sorry, our tests don't support hardware exceptions:
+# define BOOST_MATH_CONTROL_FP _control87(MCW_EM,MCW_EM)
+#endif
+
+#ifdef __IBMCPP__
+# define BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS
+#endif
+
+#if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901))
+# define BOOST_MATH_USE_C99
+#endif
+
+#if (defined(__hpux) && !defined(__hppa))
+# define BOOST_MATH_USE_C99
+#endif
+
+#if defined(__GNUC__) && defined(_GLIBCXX_USE_C99)
+# define BOOST_MATH_USE_C99
+#endif
+
+#if defined(__CYGWIN__) || defined(__HP_aCC) || defined(BOOST_INTEL) \
+ || defined(BOOST_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY) \
+ || (defined(__GNUC__) && !defined(BOOST_MATH_USE_C99))
+# define BOOST_MATH_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY
+#endif
+
+#if defined(BOOST_NO_EXPLICIT_FUNCTION_TEMPLATE_ARGUMENTS) || BOOST_WORKAROUND(__SUNPRO_CC, <= 0x590)
+
+# include "boost/type.hpp"
+# include "boost/non_type.hpp"
+
+# define BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(t) boost::type<t>* = 0
+# define BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(t) boost::type<t>*
+# define BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE(t, v) boost::non_type<t, v>* = 0
+# define BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE_SPEC(t, v) boost::non_type<t, v>*
+
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(t) \
+ , BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(t)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(t) \
+ , BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(t)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(t, v) \
+ , BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE(t, v)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_NON_TYPE_SPEC(t, v) \
+ , BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE_SPEC(t, v)
+
+#else
+
+// no workaround needed: expand to nothing
+
+# define BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(t)
+# define BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(t)
+# define BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE(t, v)
+# define BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE_SPEC(t, v)
+
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(t)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(t)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(t, v)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_NON_TYPE_SPEC(t, v)
+
+
+#endif // defined BOOST_NO_EXPLICIT_FUNCTION_TEMPLATE_ARGUMENTS
+
+#if (defined(__SUNPRO_CC) || defined(__hppa) || defined(__GNUC__)) && !defined(BOOST_MATH_SMALL_CONSTANT)
+// Sun's compiler emits a hard error if a constant underflows,
+// as does aCC on PA-RISC, while gcc issues a large number of warnings:
+# define BOOST_MATH_SMALL_CONSTANT(x) 0
+#else
+# define BOOST_MATH_SMALL_CONSTANT(x) x
+#endif
+
+
+#if BOOST_WORKAROUND(BOOST_MSVC, < 1400)
+//
+// Define if constants too large for a float cause "bad"
+// values to be stored in the data, rather than infinity
+// or a suitably large value.
+//
+# define BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
+#endif
+//
+// Tune performance options for specific compilers:
+//
+#ifdef BOOST_MSVC
+# define BOOST_MATH_POLY_METHOD 2
+#elif defined(BOOST_INTEL)
+# define BOOST_MATH_POLY_METHOD 2
+# define BOOST_MATH_RATIONAL_METHOD 2
+#elif defined(__GNUC__)
+# define BOOST_MATH_POLY_METHOD 3
+# define BOOST_MATH_RATIONAL_METHOD 3
+# define BOOST_MATH_INT_TABLE_TYPE(RT, IT) RT
+# define BOOST_MATH_INT_VALUE_SUFFIX(RV, SUF) RV##.0L
+#endif
+
+#if defined(BOOST_NO_LONG_LONG) && !defined(BOOST_MATH_INT_TABLE_TYPE)
+# define BOOST_MATH_INT_TABLE_TYPE(RT, IT) RT
+# define BOOST_MATH_INT_VALUE_SUFFIX(RV, SUF) RV##.0L
+#endif
+
+//
+// The maximum order of polynomial that will be evaluated
+// via an unrolled specialisation:
+//
+#ifndef BOOST_MATH_MAX_POLY_ORDER
+# define BOOST_MATH_MAX_POLY_ORDER 17
+#endif
+//
+// Set the method used to evaluate polynomials and rationals:
+//
+#ifndef BOOST_MATH_POLY_METHOD
+# define BOOST_MATH_POLY_METHOD 1
+#endif
+#ifndef BOOST_MATH_RATIONAL_METHOD
+# define BOOST_MATH_RATIONAL_METHOD 0
+#endif
+//
+// decide whether to store constants as integers or reals:
+//
+#ifndef BOOST_MATH_INT_TABLE_TYPE
+# define BOOST_MATH_INT_TABLE_TYPE(RT, IT) IT
+#endif
+#ifndef BOOST_MATH_INT_VALUE_SUFFIX
+# define BOOST_MATH_INT_VALUE_SUFFIX(RV, SUF) RV##SUF
+#endif
+
+//
+// Helper macro for controlling the FP behaviour:
+//
+#ifndef BOOST_MATH_CONTROL_FP
+# define BOOST_MATH_CONTROL_FP
+#endif
+//
+// Helper macro for using statements:
+//
+#define BOOST_MATH_STD_USING \
+ using std::abs;\
+ using std::acos;\
+ using std::cos;\
+ using std::fmod;\
+ using std::modf;\
+ using std::tan;\
+ using std::asin;\
+ using std::cosh;\
+ using std::frexp;\
+ using std::pow;\
+ using std::tanh;\
+ using std::atan;\
+ using std::exp;\
+ using std::ldexp;\
+ using std::sin;\
+ using std::atan2;\
+ using std::fabs;\
+ using std::log;\
+ using std::sinh;\
+ using std::ceil;\
+ using std::floor;\
+ using std::log10;\
+ using std::sqrt;\
+ using boost::math::round;\
+ using boost::math::iround;\
+ using boost::math::lround;\
+ using boost::math::trunc;\
+ using boost::math::itrunc;\
+ using boost::math::ltrunc;\
+ using boost::math::modf;
+
+
+namespace boost{ namespace math{
+namespace tools
+{
+
+template <class T>
+inline T max BOOST_PREVENT_MACRO_SUBSTITUTION(T a, T b, T c)
+{
+ return (std::max)((std::max)(a, b), c);
+}
+
+template <class T>
+inline T max BOOST_PREVENT_MACRO_SUBSTITUTION(T a, T b, T c, T d)
+{
+ return (std::max)((std::max)(a, b), (std::max)(c, d));
+}
+
+} // namespace tools
+
+template <class T>
+void suppress_unused_variable_warning(const T&)
+{
+}
+
+}} // namespace boost namespace math
+
+#if ((defined(__linux__) && !defined(__UCLIBC__)) || defined(__QNX__) || defined(__IBMCPP__)) && !defined(BOOST_NO_FENV_H)
+
+ #include <boost/detail/fenv.hpp>
+
+# ifdef FE_ALL_EXCEPT
+
+namespace boost{ namespace math{
+ namespace detail
+ {
+ struct fpu_guard
+ {
+ fpu_guard()
+ {
+ fegetexceptflag(&m_flags, FE_ALL_EXCEPT);
+ feclearexcept(FE_ALL_EXCEPT);
+ }
+ ~fpu_guard()
+ {
+ fesetexceptflag(&m_flags, FE_ALL_EXCEPT);
+ }
+ private:
+ fexcept_t m_flags;
+ };
+
+ } // namespace detail
+ }} // namespaces
+
+# define BOOST_FPU_EXCEPTION_GUARD boost::math::detail::fpu_guard local_guard_object;
+# define BOOST_MATH_INSTRUMENT_FPU do{ fexcept_t cpu_flags; fegetexceptflag(&cpu_flags, FE_ALL_EXCEPT); BOOST_MATH_INSTRUMENT_VARIABLE(cpu_flags); } while(0);
+
+# else
+
+# define BOOST_FPU_EXCEPTION_GUARD
+# define BOOST_MATH_INSTRUMENT_FPU
+
+# endif
+
+#else // All other platforms.
+# define BOOST_FPU_EXCEPTION_GUARD
+# define BOOST_MATH_INSTRUMENT_FPU
+#endif
+
+#ifdef BOOST_MATH_INSTRUMENT
+#define BOOST_MATH_INSTRUMENT_CODE(x) \
+ std::cout << std::setprecision(35) << __FILE__ << ":" << __LINE__ << " " << x << std::endl;
+#define BOOST_MATH_INSTRUMENT_VARIABLE(name) BOOST_MATH_INSTRUMENT_CODE(BOOST_STRINGIZE(name) << " = " << name)
+#else
+#define BOOST_MATH_INSTRUMENT_CODE(x)
+#define BOOST_MATH_INSTRUMENT_VARIABLE(name)
+#endif
+
+#endif // BOOST_MATH_TOOLS_CONFIG_HPP
+
+
+
+
+
diff --git a/3rdParty/Boost/src/boost/math/tools/promotion.hpp b/3rdParty/Boost/src/boost/math/tools/promotion.hpp
new file mode 100644
index 0000000..728aaf1
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/tools/promotion.hpp
@@ -0,0 +1,150 @@
+// boost\math\tools\promotion.hpp
+
+// Copyright John Maddock 2006.
+// Copyright Paul A. Bristow 2006.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// Promote arguments functions to allow math functions to have arguments
+// provided as integer OR real (floating-point, built-in or UDT)
+// (called ArithmeticType in functions that use promotion)
+// that help to reduce the risk of creating multiple instantiations.
+// Allows creation of an inline wrapper that forwards to a foo(RT, RT) function,
+// so you never get to instantiate any mixed foo(RT, IT) functions.
+
+#ifndef BOOST_MATH_PROMOTION_HPP
+#define BOOST_MATH_PROMOTION_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+// Boost type traits:
+#include <boost/math/tools/config.hpp>
+#include <boost/type_traits/is_floating_point.hpp> // for boost::is_floating_point;
+#include <boost/type_traits/is_integral.hpp> // for boost::is_integral
+#include <boost/type_traits/is_convertible.hpp> // for boost::is_convertible
+#include <boost/type_traits/is_same.hpp>// for boost::is_same
+#include <boost/type_traits/remove_cv.hpp>// for boost::remove_cv
+// Boost Template meta programming:
+#include <boost/mpl/if.hpp> // for boost::mpl::if_c.
+#include <boost/mpl/and.hpp> // for boost::mpl::if_c.
+#include <boost/mpl/or.hpp> // for boost::mpl::if_c.
+#include <boost/mpl/not.hpp> // for boost::mpl::if_c.
+
+#ifdef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#include <boost/static_assert.hpp>
+#endif
+
+namespace boost
+{
+ namespace math
+ {
+ namespace tools
+ {
+ // If either T1 or T2 is an integer type,
+ // pretend it was a double (for the purposes of further analysis).
+ // Then pick the wider of the two floating-point types
+ // as the actual signature to forward to.
+ // For example:
+ // foo(int, short) -> double foo(double, double);
+ // foo(int, float) -> double foo(double, double);
+ // Note: NOT float foo(float, float)
+ // foo(int, double) -> foo(double, double);
+ // foo(double, float) -> double foo(double, double);
+ // foo(double, float) -> double foo(double, double);
+ // foo(any-int-or-float-type, long double) -> foo(long double, long double);
+ // but ONLY float foo(float, float) is unchanged.
+ // So the only way to get an entirely float version is to call foo(1.F, 2.F),
+ // But since most (all?) the math functions convert to double internally,
+ // probably there would not be the hoped-for gain by using float here.
+
+ // This follows the C-compatible conversion rules of pow, etc
+ // where pow(int, float) is converted to pow(double, double).
+
+ template <class T>
+ struct promote_arg
+ { // If T is integral type, then promote to double.
+ typedef typename mpl::if_<is_integral<T>, double, T>::type type;
+ };
+ // These full specialisations reduce mpl::if_ usage and speed up
+ // compilation:
+ template <> struct promote_arg<float> { typedef float type; };
+ template <> struct promote_arg<double>{ typedef double type; };
+ template <> struct promote_arg<long double> { typedef long double type; };
+ template <> struct promote_arg<int> { typedef double type; };
+
+ template <class T1, class T2>
+ struct promote_args_2
+ { // Promote, if necessary, & pick the wider of the two floating-point types.
+ // for both parameter types, if integral promote to double.
+ typedef typename promote_arg<T1>::type T1P; // T1 perhaps promoted.
+ typedef typename promote_arg<T2>::type T2P; // T2 perhaps promoted.
+
+ typedef typename mpl::if_<
+ typename mpl::and_<is_floating_point<T1P>, is_floating_point<T2P> >::type, // both T1P and T2P are floating-point?
+ typename mpl::if_< typename mpl::or_<is_same<long double, T1P>, is_same<long double, T2P> >::type, // either long double?
+ long double, // then result type is long double.
+ typename mpl::if_< typename mpl::or_<is_same<double, T1P>, is_same<double, T2P> >::type, // either double?
+ double, // result type is double.
+ float // else result type is float.
+ >::type
+ >::type,
+ // else one or the other is a user-defined type:
+ typename mpl::if_< typename mpl::and_<mpl::not_<is_floating_point<T2P> >, ::boost::is_convertible<T1P, T2P> >, T2P, T1P>::type>::type type;
+ }; // promote_arg2
+ // These full specialisations reduce mpl::if_ usage and speed up
+ // compilation:
+ template <> struct promote_args_2<float, float> { typedef float type; };
+ template <> struct promote_args_2<double, double>{ typedef double type; };
+ template <> struct promote_args_2<long double, long double> { typedef long double type; };
+ template <> struct promote_args_2<int, int> { typedef double type; };
+ template <> struct promote_args_2<int, float> { typedef double type; };
+ template <> struct promote_args_2<float, int> { typedef double type; };
+ template <> struct promote_args_2<int, double> { typedef double type; };
+ template <> struct promote_args_2<double, int> { typedef double type; };
+ template <> struct promote_args_2<int, long double> { typedef long double type; };
+ template <> struct promote_args_2<long double, int> { typedef long double type; };
+ template <> struct promote_args_2<float, double> { typedef double type; };
+ template <> struct promote_args_2<double, float> { typedef double type; };
+ template <> struct promote_args_2<float, long double> { typedef long double type; };
+ template <> struct promote_args_2<long double, float> { typedef long double type; };
+ template <> struct promote_args_2<double, long double> { typedef long double type; };
+ template <> struct promote_args_2<long double, double> { typedef long double type; };
+
+ template <class T1, class T2=float, class T3=float, class T4=float, class T5=float, class T6=float>
+ struct promote_args
+ {
+ typedef typename promote_args_2<
+ typename remove_cv<T1>::type,
+ typename promote_args_2<
+ typename remove_cv<T2>::type,
+ typename promote_args_2<
+ typename remove_cv<T3>::type,
+ typename promote_args_2<
+ typename remove_cv<T4>::type,
+ typename promote_args_2<
+ typename remove_cv<T5>::type, typename remove_cv<T6>::type
+ >::type
+ >::type
+ >::type
+ >::type
+ >::type type;
+
+#ifdef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+ //
+ // Guard against use of long double if it's not supported:
+ //
+ BOOST_STATIC_ASSERT((0 == ::boost::is_same<type, long double>::value));
+#endif
+ };
+
+ } // namespace tools
+ } // namespace math
+} // namespace boost
+
+#endif // BOOST_MATH_PROMOTION_HPP
+
diff --git a/3rdParty/Boost/src/boost/math/tools/real_cast.hpp b/3rdParty/Boost/src/boost/math/tools/real_cast.hpp
new file mode 100644
index 0000000..9b854e3
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/tools/real_cast.hpp
@@ -0,0 +1,29 @@
+// Copyright John Maddock 2006.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_TOOLS_REAL_CAST_HPP
+#define BOOST_MATH_TOOLS_REAL_CAST_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+namespace boost{ namespace math
+{
+ namespace tools
+ {
+ template <class To, class T>
+ inline To real_cast(T t)
+ {
+ return static_cast<To>(t);
+ }
+ } // namespace tools
+} // namespace math
+} // namespace boost
+
+#endif // BOOST_MATH_TOOLS_REAL_CAST_HPP
+
+
+
diff --git a/3rdParty/Boost/src/boost/math/tools/user.hpp b/3rdParty/Boost/src/boost/math/tools/user.hpp
new file mode 100644
index 0000000..c1bdaf7
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/tools/user.hpp
@@ -0,0 +1,97 @@
+// Copyright John Maddock 2007.
+// Copyright Paul A. Bristow 2007.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_TOOLS_USER_HPP
+#define BOOST_MATH_TOOLS_USER_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+// This file can be modified by the user to change the default policies.
+// See "Changing the Policy Defaults" in documentation.
+
+// define this if the platform has no long double functions,
+// or if the long double versions have only double precision:
+//
+// #define BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+//
+// Performance tuning options:
+//
+// #define BOOST_MATH_POLY_METHOD 3
+// #define BOOST_MATH_RATIONAL_METHOD 3
+//
+// The maximum order of polynomial that will be evaluated
+// via an unrolled specialisation:
+//
+// #define BOOST_MATH_MAX_POLY_ORDER 17
+//
+// decide whether to store constants as integers or reals:
+//
+// #define BOOST_MATH_INT_TABLE_TYPE(RT, IT) IT
+
+//
+// Default policies follow:
+//
+// Domain errors:
+//
+// #define BOOST_MATH_DOMAIN_ERROR_POLICY throw_on_error
+//
+// Pole errors:
+//
+// #define BOOST_MATH_POLE_ERROR_POLICY throw_on_error
+//
+// Overflow Errors:
+//
+// #define BOOST_MATH_OVERFLOW_ERROR_POLICY throw_on_error
+//
+// Internal Evaluation Errors:
+//
+// #define BOOST_MATH_EVALUATION_ERROR_POLICY throw_on_error
+//
+// Underfow:
+//
+// #define BOOST_MATH_UNDERFLOW_ERROR_POLICY ignore_error
+//
+// Denorms:
+//
+// #define BOOST_MATH_DENORM_ERROR_POLICY ignore_error
+//
+// Max digits to use for internal calculations:
+//
+// #define BOOST_MATH_DIGITS10_POLICY 0
+//
+// Promote floats to doubles internally?
+//
+// #define BOOST_MATH_PROMOTE_FLOAT_POLICY true
+//
+// Promote doubles to long double internally:
+//
+// #define BOOST_MATH_PROMOTE_DOUBLE_POLICY true
+//
+// What do discrete quantiles return?
+//
+// #define BOOST_MATH_DISCRETE_QUANTILE_POLICY integer_round_outwards
+//
+// If a function is mathematically undefined
+// (for example the Cauchy distribution has no mean),
+// then do we stop the code from compiling?
+//
+// #define BOOST_MATH_ASSERT_UNDEFINED_POLICY true
+//
+// Maximum series iterstions permitted:
+//
+// #define BOOST_MATH_MAX_SERIES_ITERATION_POLICY 1000000
+//
+// Maximum root finding steps permitted:
+//
+// define BOOST_MATH_MAX_ROOT_ITERATION_POLICY 200
+
+#endif // BOOST_MATH_TOOLS_USER_HPP
+
+