summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '3rdParty/Boost/src/boost/spirit/home/phoenix/detail/type_deduction.hpp')
-rw-r--r--3rdParty/Boost/src/boost/spirit/home/phoenix/detail/type_deduction.hpp497
1 files changed, 497 insertions, 0 deletions
diff --git a/3rdParty/Boost/src/boost/spirit/home/phoenix/detail/type_deduction.hpp b/3rdParty/Boost/src/boost/spirit/home/phoenix/detail/type_deduction.hpp
new file mode 100644
index 0000000..b99ea1e
--- /dev/null
+++ b/3rdParty/Boost/src/boost/spirit/home/phoenix/detail/type_deduction.hpp
@@ -0,0 +1,497 @@
+/*=============================================================================
+ Copyright (c) 2001-2007 Joel de Guzman
+
+ Distributed under the Boost Software License, Version 1.0. (See accompanying
+ file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+==============================================================================*/
+#ifndef PHOENIX_DETAIL_TYPE_DEDUCTION_HPP
+#define PHOENIX_DETAIL_TYPE_DEDUCTION_HPP
+
+/*=============================================================================
+
+ Return Type Deduction
+ [JDG Sept. 15, 2003]
+
+ Before C++ adopts the typeof, there is currently no way to deduce the
+ result type of an expression such as x + y. This deficiency is a major
+ problem with template metaprogramming; for example, when writing
+ forwarding functions that attempt to capture the essence of an
+ expression inside a function. Consider the std::plus<T>:
+
+ template <typename T>
+ struct plus : public binary_function<T, T, T>
+ {
+ T operator()(T const& x, T const& y) const
+ {
+ return x + y;
+ }
+ };
+
+ What's wrong with this? Well, this functor does not accurately capture
+ the behavior of the plus operator. 1) It does not handle the case where
+ x and y are of different types (e.g. x is short and y is int). 2) It
+ assumes that the arguments and return type are the same (i.e. when
+ adding a short and an int, the return type ought to be an int). Due to
+ these shortcomings, std::plus<T>(x, y) is a poor substitute for x + y.
+
+ The case where x is short and y is int does not really expose the
+ problem. We can simply use std::plus<int> and be happy that the
+ operands x and y will simply be converted to an int. The problem
+ becomes evident when an operand is a user defined type such as bigint.
+ Here, the conversion to bigint is simply not acceptable. Even if the
+ unnecessary conversion is tolerable, in generic code, it is not always
+ possible to choose the right T type that can accomodate both x and y
+ operands.
+
+ To truly model the plus operator, what we need is a polymorphic functor
+ that can take arbitrary x and y operands. Here's a rough schematic:
+
+ struct plus
+ {
+ template <typename X, typename Y>
+ unspecified-type
+ operator()(X const& x, Y const& y) const
+ {
+ return x + y;
+ }
+ };
+
+ Now, we can handle the case where X and Y are arbitrary types. We've
+ solved the first problem. To solve the second problem, we need some
+ form of return type deduction mechanism. If we had the typeof, it would
+ be something like:
+
+ template <typename X, typename Y>
+ typeof(X() + Y())
+ operator()(X const& x, Y const& y) const
+ {
+ return x + y;
+ }
+
+ Without the typeof facility, it is only possible to wrap an expression
+ such as x + y in a function or functor if we are given a hint that
+ tells us what the actual result type of such an expression is. Such a
+ hint can be in the form of a metaprogram, that, given the types of the
+ arguments, will return the result type. Example:
+
+ template <typename X, typename Y>
+ struct result_of_plus
+ {
+ typedef unspecified-type type;
+ };
+
+ Given a result_of_plus metaprogram, we can complete our polymorphic
+ plus functor:
+
+ struct plus
+ {
+ template <typename X, typename Y>
+ typename result_of_plus<X, Y>::type
+ operator()(X const& x, Y const& y) const
+ {
+ return x + y;
+ }
+ };
+
+ The process is not automatic. We have to specialize the metaprogram for
+ specific argument types. Examples:
+
+ template <>
+ struct result_of_plus<short, int>
+ {
+ typedef int type;
+ };
+
+ template <typename T>
+ struct result_of_plus<std::complex<T>, std::complex<T> >
+ {
+ typedef std::complex<T> type;
+ };
+
+ To make it easier for the user, specializations are provided for common
+ types such as primitive c++ types (e.g. int, char, double, etc.), and
+ standard types (e.g. std::complex, iostream, std containers and
+ iterators).
+
+ To further improve the ease of use, for user defined classes, we can
+ supply a few more basic specializations through metaprogramming using
+ heuristics based on canonical operator rules (Such heuristics can be
+ found in the LL and Phoenix, for example). For example, it is rather
+ common that the result of x += y is X& or the result of x || y is a
+ bool. The client is out of luck if her classes do not follow the
+ canonical rules. She'll then have to supply her own specialization.
+
+ The type deduction mechanism demostrated below approaches the problem
+ not through specialization and heuristics, but through a limited form
+ of typeof mechanism. The code does not use heuristics, hence, no
+ guessing games. The code takes advantage of the fact that, in general,
+ the result type of an expression is related to one its arguments' type.
+ For example, x + y, where x has type int and y has type double, has the
+ result type double (the second operand type). Another example, x[y]
+ where x is a vector<T> and y is a std::size_t, has the result type
+ vector<T>::reference (the vector<T>'s reference type type).
+
+ The limited form of type deduction presented can detect common
+ relations if the result of a binary or unary operation, given arguments
+ x and y with types X and Y (respectively), is X, Y, X&, Y&, X*, Y*, X
+ const*, Y const*, bool, int, unsigned, double, container and iterator
+ elements (e.g the T, where X is: T[N], T*, vector<T>, map<T>,
+ vector<T>::iterator). More arguments/return type relationships can be
+ established if needed.
+
+ A set of overloaded test(T) functions capture these argument related
+ types. Each test(T) function returns a distinct type that can be used
+ to determine the exact type of an expression.
+
+ Consider:
+
+ template <typename X, typename Y>
+ x_value_type
+ test(X const&);
+
+ template <typename X, typename Y>
+ y_value_type
+ test(Y const&);
+
+ Given an expression x + y, where x is int and y is double, the call to:
+
+ test<int, double>(x + y)
+
+ will return a y_value_type.
+
+ Now, if we rig x_value_type and y_value_type such that both have unique
+ sizes, we can use sizeof(test<X, Y>(x + y)) to determine if the result
+ type is either X or Y.
+
+ For example, if:
+
+ sizeof(test<X, Y>(x + y)) == sizeof(y_value_type)
+
+ then, we know for sure that the result of x + y has type Y.
+
+ The same basic scheme can be used to detect more argument-dependent
+ return types where the sizeof the test(T) return type is used to index
+ through a boost::mpl vector which holds each of the corresponding
+ result types.
+
+==============================================================================*/
+#include <boost/mpl/vector/vector20.hpp>
+#include <boost/mpl/at.hpp>
+#include <boost/mpl/not.hpp>
+#include <boost/mpl/or.hpp>
+#include <boost/mpl/and.hpp>
+#include <boost/mpl/identity.hpp>
+#include <boost/type_traits/remove_reference.hpp>
+#include <boost/type_traits/add_reference.hpp>
+#include <boost/type_traits/remove_cv.hpp>
+#include <boost/type_traits/is_const.hpp>
+#include <boost/type_traits/is_reference.hpp>
+#include <boost/type_traits/is_same.hpp>
+#include <boost/type_traits/is_array.hpp>
+#include <boost/type_traits/is_pointer.hpp>
+#include <boost/utility/enable_if.hpp>
+#include <boost/static_assert.hpp>
+#include <boost/preprocessor/cat.hpp>
+#include <boost/spirit/home/phoenix/detail/local_reference.hpp>
+
+namespace boost
+{
+ struct error_cant_deduce_type {};
+}
+
+namespace boost { namespace type_deduction_detail
+{
+ typedef char(&bool_value_type)[1];
+ typedef char(&int_value_type)[2];
+ typedef char(&uint_value_type)[3];
+ typedef char(&double_value_type)[4];
+
+ typedef char(&bool_reference_type)[5];
+ typedef char(&int_reference_type)[6];
+ typedef char(&uint_reference_type)[7];
+ typedef char(&double_reference_type)[8];
+
+ typedef char(&x_value_type)[9];
+ typedef char(&x_reference_type)[10];
+ typedef char(&x_const_pointer_type)[11];
+ typedef char(&x_pointer_type)[12];
+
+ typedef char(&y_value_type)[13];
+ typedef char(&y_reference_type)[14];
+ typedef char(&y_const_pointer_type)[15];
+ typedef char(&y_pointer_type)[16];
+
+ typedef char(&container_reference_type)[17];
+ typedef char(&container_const_reference_type)[18];
+ typedef char(&container_mapped_type)[19];
+
+ typedef char(&cant_deduce_type)[20];
+
+ template <typename T, typename Plain = typename remove_cv<T>::type>
+ struct is_basic
+ : mpl::or_<
+ is_same<Plain, bool>
+ , is_same<Plain, int>
+ , is_same<Plain, unsigned>
+ , is_same<Plain, double>
+ > {};
+
+ template <typename C>
+ struct reference_type
+ {
+ typedef typename C::reference type;
+ };
+
+ template <typename T>
+ struct reference_type<T const>
+ : reference_type<T> {};
+
+ template <typename T, std::size_t N>
+ struct reference_type<T[N]>
+ {
+ typedef T& type;
+ };
+
+ template <typename T>
+ struct reference_type<T*>
+ {
+ typedef T& type;
+ };
+
+ template <typename T>
+ struct reference_type<T* const>
+ {
+ typedef T const& type;
+ };
+
+ template <typename C>
+ struct const_reference_type
+ {
+ typedef typename C::const_reference type;
+ };
+
+ template <typename C>
+ struct mapped_type
+ {
+ typedef typename C::mapped_type type;
+ };
+
+ struct asymmetric;
+
+ template <typename X, typename Y>
+ cant_deduce_type
+ test(...); // The black hole !!!
+
+ template <typename X, typename Y>
+ bool_value_type
+ test(bool const&);
+
+ template <typename X, typename Y>
+ int_value_type
+ test(int const&);
+
+ template <typename X, typename Y>
+ uint_value_type
+ test(unsigned const&);
+
+ template <typename X, typename Y>
+ double_value_type
+ test(double const&);
+
+ template <typename X, typename Y>
+ bool_reference_type
+ test(bool&);
+
+ template <typename X, typename Y>
+ int_reference_type
+ test(int&);
+
+ template <typename X, typename Y>
+ uint_reference_type
+ test(unsigned&);
+
+ template <typename X, typename Y>
+ double_reference_type
+ test(double&);
+
+ template <typename X, typename Y>
+ typename disable_if<
+ mpl::or_<is_basic<X>, is_const<X> >
+ , x_value_type
+ >::type
+ test(X const&);
+
+ template <typename X, typename Y>
+ typename disable_if<
+ is_basic<X>
+ , x_reference_type
+ >::type
+ test(X&);
+
+ template <typename X, typename Y>
+ typename disable_if<
+ mpl::or_<
+ is_basic<X>
+ , is_const<X>
+ >
+ , x_const_pointer_type
+ >::type
+ test(X const*);
+
+ template <typename X, typename Y>
+ x_pointer_type
+ test(X*);
+
+ template <typename X, typename Y>
+ typename disable_if<
+ mpl::or_<
+ is_basic<Y>
+ , is_same<Y, asymmetric>
+ , is_const<Y>
+ , is_same<X, Y>
+ >
+ , y_value_type
+ >::type
+ test(Y const&);
+
+ template <typename X, typename Y>
+ typename disable_if<
+ mpl::or_<
+ is_basic<Y>
+ , is_same<Y, asymmetric>
+ , is_same<X, Y>
+ >
+ , y_reference_type
+ >::type
+ test(Y&);
+
+ template <typename X, typename Y>
+ typename disable_if<
+ mpl::or_<
+ is_same<Y, asymmetric>
+ , is_const<Y>
+ , is_same<X, Y>
+ >
+ , y_const_pointer_type
+ >::type
+ test(Y const*);
+
+ template <typename X, typename Y>
+ typename disable_if<
+ mpl::or_<
+ is_same<Y, asymmetric>
+ , is_same<X, Y>
+ >
+ , y_pointer_type
+ >::type
+ test(Y*);
+
+ template <typename X, typename Y>
+ typename disable_if<
+ mpl::or_<
+ is_basic<typename X::value_type>
+ , is_same<typename add_reference<X>::type, typename X::reference>
+ >
+ , container_reference_type
+ >::type
+ test(typename X::reference);
+
+ template <typename X, typename Y, typename Z>
+ typename enable_if<
+ mpl::and_<
+ mpl::or_<is_array<X>, is_pointer<X> >
+ , mpl::not_<is_basic<Z> >
+ , mpl::not_<is_same<X, Z> >
+ >
+ , container_reference_type
+ >::type
+ test(Z&);
+
+ template <typename X, typename Y>
+ typename disable_if<
+ mpl::or_<
+ is_basic<typename X::value_type>
+ , is_same<typename add_reference<X>::type, typename X::const_reference>
+ >
+ , container_const_reference_type
+ >::type
+ test(typename X::const_reference);
+
+ template <typename X, typename Y>
+ typename disable_if<
+ is_basic<typename X::mapped_type>
+ , container_mapped_type
+ >::type
+ test(typename X::mapped_type);
+
+ template <typename X, typename Y>
+ struct base_result_of
+ {
+ typedef typename phoenix::detail::unwrap_local_reference<X>::type x_type_;
+ typedef typename phoenix::detail::unwrap_local_reference<Y>::type y_type_;
+ typedef typename remove_reference<x_type_>::type x_type;
+ typedef typename remove_reference<y_type_>::type y_type;
+
+ typedef mpl::vector20<
+ mpl::identity<bool>
+ , mpl::identity<int>
+ , mpl::identity<unsigned>
+ , mpl::identity<double>
+ , mpl::identity<bool&>
+ , mpl::identity<int&>
+ , mpl::identity<unsigned&>
+ , mpl::identity<double&>
+ , mpl::identity<x_type>
+ , mpl::identity<x_type&>
+ , mpl::identity<x_type const*>
+ , mpl::identity<x_type*>
+ , mpl::identity<y_type>
+ , mpl::identity<y_type&>
+ , mpl::identity<y_type const*>
+ , mpl::identity<y_type*>
+ , reference_type<x_type>
+ , const_reference_type<x_type>
+ , mapped_type<x_type>
+ , mpl::identity<error_cant_deduce_type>
+ >
+ types;
+ };
+
+}} // namespace boost::type_deduction_detail
+
+#define BOOST_RESULT_OF_COMMON(expr, name, Y, SYMMETRY) \
+ struct name \
+ { \
+ typedef type_deduction_detail::base_result_of<X, Y> base_type; \
+ static typename base_type::x_type x; \
+ static typename base_type::y_type y; \
+ \
+ BOOST_STATIC_CONSTANT(int, \
+ size = sizeof( \
+ type_deduction_detail::test< \
+ typename base_type::x_type \
+ , SYMMETRY \
+ >(expr) \
+ )); \
+ \
+ BOOST_STATIC_CONSTANT(int, index = (size / sizeof(char)) - 1); \
+ \
+ typedef typename mpl::at_c< \
+ typename base_type::types, index>::type id; \
+ typedef typename id::type type; \
+ };
+
+#define BOOST_UNARY_RESULT_OF(expr, name) \
+ template <typename X> \
+ BOOST_RESULT_OF_COMMON(expr, name, \
+ type_deduction_detail::asymmetric, type_deduction_detail::asymmetric)
+
+#define BOOST_BINARY_RESULT_OF(expr, name) \
+ template <typename X, typename Y> \
+ BOOST_RESULT_OF_COMMON(expr, name, Y, typename base_type::y_type)
+
+#define BOOST_ASYMMETRIC_BINARY_RESULT_OF(expr, name) \
+ template <typename X, typename Y> \
+ BOOST_RESULT_OF_COMMON(expr, name, Y, type_deduction_detail::asymmetric)
+
+#endif