summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.h')
-rw-r--r--3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.h367
1 files changed, 367 insertions, 0 deletions
diff --git a/3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.h b/3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.h
new file mode 100644
index 0000000..12b8d3a
--- /dev/null
+++ b/3rdParty/Breakpad/src/common/dwarf/dwarf2diehandler.h
@@ -0,0 +1,367 @@
+// -*- mode: c++ -*-
+
+// Copyright (c) 2010 Google Inc. All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
+
+// dwarf2reader::CompilationUnit is a simple and direct parser for
+// DWARF data, but its handler interface is not convenient to use. In
+// particular:
+//
+// - CompilationUnit calls Dwarf2Handler's member functions to report
+// every attribute's value, regardless of what sort of DIE it is.
+// As a result, the ProcessAttributeX functions end up looking like
+// this:
+//
+// switch (parent_die_tag) {
+// case DW_TAG_x:
+// switch (attribute_name) {
+// case DW_AT_y:
+// handle attribute y of DIE type x
+// ...
+// } break;
+// ...
+// }
+//
+// In C++ it's much nicer to use virtual function dispatch to find
+// the right code for a given case than to switch on the DIE tag
+// like this.
+//
+// - Processing different kinds of DIEs requires different sets of
+// data: lexical block DIEs have start and end addresses, but struct
+// type DIEs don't. It would be nice to be able to have separate
+// handler classes for separate kinds of DIEs, each with the members
+// appropriate to its role, instead of having one handler class that
+// needs to hold data for every DIE type.
+//
+// - There should be a separate instance of the appropriate handler
+// class for each DIE, instead of a single object with tables
+// tracking all the dies in the compilation unit.
+//
+// - It's not convenient to take some action after all a DIE's
+// attributes have been seen, but before visiting any of its
+// children. The only indication you have that a DIE's attribute
+// list is complete is that you get either a StartDIE or an EndDIE
+// call.
+//
+// - It's not convenient to make use of the tree structure of the
+// DIEs. Skipping all the children of a given die requires
+// maintaining state and returning false from StartDIE until we get
+// an EndDIE call with the appropriate offset.
+//
+// This interface tries to take care of all that. (You're shocked, I'm sure.)
+//
+// Using the classes here, you provide an initial handler for the root
+// DIE of the compilation unit. Each handler receives its DIE's
+// attributes, and provides fresh handler objects for children of
+// interest, if any. The three classes are:
+//
+// - DIEHandler: the base class for your DIE-type-specific handler
+// classes.
+//
+// - RootDIEHandler: derived from DIEHandler, the base class for your
+// root DIE handler class.
+//
+// - DIEDispatcher: derived from Dwarf2Handler, an instance of this
+// invokes your DIE-type-specific handler objects.
+//
+// In detail:
+//
+// - Define handler classes specialized for the DIE types you're
+// interested in. These handler classes must inherit from
+// DIEHandler. Thus:
+//
+// class My_DW_TAG_X_Handler: public DIEHandler { ... };
+// class My_DW_TAG_Y_Handler: public DIEHandler { ... };
+//
+// DIEHandler subclasses needn't correspond exactly to single DIE
+// types, as shown here; the point is that you can have several
+// different classes appropriate to different kinds of DIEs.
+//
+// - In particular, define a handler class for the compilation
+// unit's root DIE, that inherits from RootDIEHandler:
+//
+// class My_DW_TAG_compile_unit_Handler: public RootDIEHandler { ... };
+//
+// RootDIEHandler inherits from DIEHandler, adding a few additional
+// member functions for examining the compilation unit as a whole,
+// and other quirks of rootness.
+//
+// - Then, create a DIEDispatcher instance, passing it an instance of
+// your root DIE handler class, and use that DIEDispatcher as the
+// dwarf2reader::CompilationUnit's handler:
+//
+// My_DW_TAG_compile_unit_Handler root_die_handler(...);
+// DIEDispatcher die_dispatcher(&root_die_handler);
+// CompilationUnit reader(sections, offset, bytereader, &die_dispatcher);
+//
+// Here, 'die_dispatcher' acts as a shim between 'reader' and the
+// various DIE-specific handlers you have defined.
+//
+// - When you call reader.Start(), die_dispatcher behaves as follows,
+// starting with your root die handler and the compilation unit's
+// root DIE:
+//
+// - It calls the handler's ProcessAttributeX member functions for
+// each of the DIE's attributes.
+//
+// - It calls the handler's EndAttributes member function. This
+// should return true if any of the DIE's children should be
+// visited, in which case:
+//
+// - For each of the DIE's children, die_dispatcher calls the
+// DIE's handler's FindChildHandler member function. If that
+// returns a pointer to a DIEHandler instance, then
+// die_dispatcher uses that handler to process the child, using
+// this procedure recursively. Alternatively, if
+// FindChildHandler returns NULL, die_dispatcher ignores that
+// child and its descendants.
+//
+// - When die_dispatcher has finished processing all the DIE's
+// children, it invokes the handler's Finish() member function,
+// and destroys the handler. (As a special case, it doesn't
+// destroy the root DIE handler.)
+//
+// This allows the code for handling a particular kind of DIE to be
+// gathered together in a single class, makes it easy to skip all the
+// children or individual children of a particular DIE, and provides
+// appropriate parental context for each die.
+
+#ifndef COMMON_DWARF_DWARF2DIEHANDLER_H__
+#define COMMON_DWARF_DWARF2DIEHANDLER_H__
+
+#include <stack>
+#include <string>
+
+#include "common/dwarf/types.h"
+#include "common/dwarf/dwarf2enums.h"
+#include "common/dwarf/dwarf2reader.h"
+#include "common/using_std_string.h"
+
+namespace dwarf2reader {
+
+// A base class for handlers for specific DIE types. The series of
+// calls made on a DIE handler is as follows:
+//
+// - for each attribute of the DIE:
+// - ProcessAttributeX()
+// - EndAttributes()
+// - if that returned true, then for each child:
+// - FindChildHandler()
+// - if that returns a non-NULL pointer to a new handler:
+// - recurse, with the new handler and the child die
+// - Finish()
+// - destruction
+class DIEHandler {
+ public:
+ DIEHandler() { }
+ virtual ~DIEHandler() { }
+
+ // When we visit a DIE, we first use these member functions to
+ // report the DIE's attributes and their values. These have the
+ // same restrictions as the corresponding member functions of
+ // dwarf2reader::Dwarf2Handler.
+ //
+ // Since DWARF does not specify in what order attributes must
+ // appear, avoid making decisions in these functions that would be
+ // affected by the presence of other attributes. The EndAttributes
+ // function is a more appropriate place for such work, as all the
+ // DIE's attributes have been seen at that point.
+ //
+ // The default definitions ignore the values they are passed.
+ virtual void ProcessAttributeUnsigned(enum DwarfAttribute attr,
+ enum DwarfForm form,
+ uint64 data) { }
+ virtual void ProcessAttributeSigned(enum DwarfAttribute attr,
+ enum DwarfForm form,
+ int64 data) { }
+ virtual void ProcessAttributeReference(enum DwarfAttribute attr,
+ enum DwarfForm form,
+ uint64 data) { }
+ virtual void ProcessAttributeBuffer(enum DwarfAttribute attr,
+ enum DwarfForm form,
+ const char* data,
+ uint64 len) { }
+ virtual void ProcessAttributeString(enum DwarfAttribute attr,
+ enum DwarfForm form,
+ const string& data) { }
+ virtual void ProcessAttributeSignature(enum DwarfAttribute attr,
+ enum DwarfForm form,
+ uint64 signture) { }
+
+ // Once we have reported all the DIE's attributes' values, we call
+ // this member function. If it returns false, we skip all the DIE's
+ // children. If it returns true, we call FindChildHandler on each
+ // child. If that returns a handler object, we use that to visit
+ // the child; otherwise, we skip the child.
+ //
+ // This is a good place to make decisions that depend on more than
+ // one attribute. DWARF does not specify in what order attributes
+ // must appear, so only when the EndAttributes function is called
+ // does the handler have a complete picture of the DIE's attributes.
+ //
+ // The default definition elects to ignore the DIE's children.
+ // You'll need to override this if you override FindChildHandler,
+ // but at least the default behavior isn't to pass the children to
+ // FindChildHandler, which then ignores them all.
+ virtual bool EndAttributes() { return false; }
+
+ // If EndAttributes returns true to indicate that some of the DIE's
+ // children might be of interest, then we apply this function to
+ // each of the DIE's children. If it returns a handler object, then
+ // we use that to visit the child DIE. If it returns NULL, we skip
+ // that child DIE (and all its descendants).
+ //
+ // OFFSET is the offset of the child; TAG indicates what kind of DIE
+ // it is; and ATTRS is the list of attributes the DIE will have, and
+ // their forms (their values are not provided).
+ //
+ // The default definition skips all children.
+ virtual DIEHandler *FindChildHandler(uint64 offset, enum DwarfTag tag,
+ const AttributeList &attrs) {
+ return NULL;
+ }
+
+ // When we are done processing a DIE, we call this member function.
+ // This happens after the EndAttributes call, all FindChildHandler
+ // calls (if any), and all operations on the children themselves (if
+ // any). We call Finish on every handler --- even if EndAttributes
+ // returns false.
+ virtual void Finish() { };
+};
+
+// A subclass of DIEHandler, with additional kludges for handling the
+// compilation unit's root die.
+class RootDIEHandler: public DIEHandler {
+ public:
+ RootDIEHandler() { }
+ virtual ~RootDIEHandler() { }
+
+ // We pass the values reported via Dwarf2Handler::StartCompilationUnit
+ // to this member function, and skip the entire compilation unit if it
+ // returns false. So the root DIE handler is actually also
+ // responsible for handling the compilation unit metadata.
+ // The default definition always visits the compilation unit.
+ virtual bool StartCompilationUnit(uint64 offset, uint8 address_size,
+ uint8 offset_size, uint64 cu_length,
+ uint8 dwarf_version) { return true; }
+
+ // For the root DIE handler only, we pass the offset, tag and
+ // attributes of the compilation unit's root DIE. This is the only
+ // way the root DIE handler can find the root DIE's tag. If this
+ // function returns true, we will visit the root DIE using the usual
+ // DIEHandler methods; otherwise, we skip the entire compilation
+ // unit.
+ //
+ // The default definition elects to visit the root DIE.
+ virtual bool StartRootDIE(uint64 offset, enum DwarfTag tag,
+ const AttributeList& attrs) { return true; }
+};
+
+class DIEDispatcher: public Dwarf2Handler {
+ public:
+ // Create a Dwarf2Handler which uses ROOT_HANDLER as the handler for
+ // the compilation unit's root die, as described for the DIEHandler
+ // class.
+ DIEDispatcher(RootDIEHandler *root_handler) : root_handler_(root_handler) { }
+ // Destroying a DIEDispatcher destroys all active handler objects
+ // except the root handler.
+ ~DIEDispatcher();
+ bool StartCompilationUnit(uint64 offset, uint8 address_size,
+ uint8 offset_size, uint64 cu_length,
+ uint8 dwarf_version);
+ bool StartDIE(uint64 offset, enum DwarfTag tag,
+ const AttributeList &attrs);
+ void ProcessAttributeUnsigned(uint64 offset,
+ enum DwarfAttribute attr,
+ enum DwarfForm form,
+ uint64 data);
+ void ProcessAttributeSigned(uint64 offset,
+ enum DwarfAttribute attr,
+ enum DwarfForm form,
+ int64 data);
+ void ProcessAttributeReference(uint64 offset,
+ enum DwarfAttribute attr,
+ enum DwarfForm form,
+ uint64 data);
+ void ProcessAttributeBuffer(uint64 offset,
+ enum DwarfAttribute attr,
+ enum DwarfForm form,
+ const char* data,
+ uint64 len);
+ void ProcessAttributeString(uint64 offset,
+ enum DwarfAttribute attr,
+ enum DwarfForm form,
+ const string &data);
+ void ProcessAttributeSignature(uint64 offset,
+ enum DwarfAttribute attr,
+ enum DwarfForm form,
+ uint64 signature);
+ void EndDIE(uint64 offset);
+
+ private:
+
+ // The type of a handler stack entry. This includes some fields
+ // which don't really need to be on the stack --- they could just be
+ // single data members of DIEDispatcher --- but putting them here
+ // makes it easier to see that the code is correct.
+ struct HandlerStack {
+ // The offset of the DIE for this handler stack entry.
+ uint64 offset_;
+
+ // The handler object interested in this DIE's attributes and
+ // children. If NULL, we're not interested in either.
+ DIEHandler *handler_;
+
+ // Have we reported the end of this DIE's attributes to the handler?
+ bool reported_attributes_end_;
+ };
+
+ // Stack of DIE attribute handlers. At StartDIE(D), the top of the
+ // stack is the handler of D's parent, whom we may ask for a handler
+ // for D itself. At EndDIE(D), the top of the stack is D's handler.
+ // Special cases:
+ //
+ // - Before we've seen the compilation unit's root DIE, the stack is
+ // empty; we'll call root_handler_'s special member functions, and
+ // perhaps push root_handler_ on the stack to look at the root's
+ // immediate children.
+ //
+ // - When we decide to ignore a subtree, we only push an entry on
+ // the stack for the root of the tree being ignored, rather than
+ // pushing lots of stack entries with handler_ set to NULL.
+ std::stack<HandlerStack> die_handlers_;
+
+ // The root handler. We don't push it on die_handlers_ until we
+ // actually get the StartDIE call for the root.
+ RootDIEHandler *root_handler_;
+};
+
+} // namespace dwarf2reader
+#endif // COMMON_DWARF_DWARF2DIEHANDLER_H__