/* The following code declares class array, * an STL container (as wrapper) for arrays of constant size. * * See * http://www.boost.org/libs/array/ * for documentation. * * The original author site is at: http://www.josuttis.com/ * * (C) Copyright Nicolai M. Josuttis 2001. * * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * 29 Jan 2004 - c_array() added, BOOST_NO_PRIVATE_IN_AGGREGATE removed (Nico Josuttis) * 23 Aug 2002 - fix for Non-MSVC compilers combined with MSVC libraries. * 05 Aug 2001 - minor update (Nico Josuttis) * 20 Jan 2001 - STLport fix (Beman Dawes) * 29 Sep 2000 - Initial Revision (Nico Josuttis) * * Jan 29, 2004 */ #ifndef BOOST_ARRAY_HPP #define BOOST_ARRAY_HPP #include <cstddef> #include <stdexcept> #include <boost/assert.hpp> // Handles broken standard libraries better than <iterator> #include <boost/detail/iterator.hpp> #include <boost/throw_exception.hpp> #include <algorithm> // FIXES for broken compilers #include <boost/config.hpp> namespace boost { template<class T, std::size_t N> class array { public: T elems[N]; // fixed-size array of elements of type T public: // type definitions typedef T value_type; typedef T* iterator; typedef const T* const_iterator; typedef T& reference; typedef const T& const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; // iterator support iterator begin() { return elems; } const_iterator begin() const { return elems; } iterator end() { return elems+N; } const_iterator end() const { return elems+N; } // reverse iterator support #if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR) && !defined(BOOST_NO_STD_ITERATOR_TRAITS) typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; #elif defined(_MSC_VER) && (_MSC_VER == 1300) && defined(BOOST_DINKUMWARE_STDLIB) && (BOOST_DINKUMWARE_STDLIB == 310) // workaround for broken reverse_iterator in VC7 typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, iterator, reference, iterator, reference> > reverse_iterator; typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, const_iterator, const_reference, iterator, reference> > const_reverse_iterator; #else // workaround for broken reverse_iterator implementations typedef std::reverse_iterator<iterator,T> reverse_iterator; typedef std::reverse_iterator<const_iterator,T> const_reverse_iterator; #endif reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // operator[] reference operator[](size_type i) { BOOST_ASSERT( i < N && "out of range" ); return elems[i]; } const_reference operator[](size_type i) const { BOOST_ASSERT( i < N && "out of range" ); return elems[i]; } // at() with range check reference at(size_type i) { rangecheck(i); return elems[i]; } const_reference at(size_type i) const { rangecheck(i); return elems[i]; } // front() and back() reference front() { return elems[0]; } const_reference front() const { return elems[0]; } reference back() { return elems[N-1]; } const_reference back() const { return elems[N-1]; } // size is constant static size_type size() { return N; } static bool empty() { return false; } static size_type max_size() { return N; } enum { static_size = N }; // swap (note: linear complexity) void swap (array<T,N>& y) { std::swap_ranges(begin(),end(),y.begin()); } // direct access to data (read-only) const T* data() const { return elems; } T* data() { return elems; } // use array as C array (direct read/write access to data) T* c_array() { return elems; } // assignment with type conversion template <typename T2> array<T,N>& operator= (const array<T2,N>& rhs) { std::copy(rhs.begin(),rhs.end(), begin()); return *this; } // assign one value to all elements void assign (const T& value) { std::fill_n(begin(),size(),value); } // check range (may be private because it is static) static void rangecheck (size_type i) { if (i >= size()) { throw std::out_of_range("array<>: index out of range"); } } }; #if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) template< class T > class array< T, 0 > { public: // type definitions typedef T value_type; typedef T* iterator; typedef const T* const_iterator; typedef T& reference; typedef const T& const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; // iterator support iterator begin() { return iterator( reinterpret_cast< T * >( this ) ); } const_iterator begin() const { return const_iterator( reinterpret_cast< const T * >( this ) ); } iterator end() { return begin(); } const_iterator end() const { return begin(); } // reverse iterator support #if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR) && !defined(BOOST_NO_STD_ITERATOR_TRAITS) typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; #elif defined(_MSC_VER) && (_MSC_VER == 1300) && defined(BOOST_DINKUMWARE_STDLIB) && (BOOST_DINKUMWARE_STDLIB == 310) // workaround for broken reverse_iterator in VC7 typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, iterator, reference, iterator, reference> > reverse_iterator; typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, const_iterator, const_reference, iterator, reference> > const_reverse_iterator; #else // workaround for broken reverse_iterator implementations typedef std::reverse_iterator<iterator,T> reverse_iterator; typedef std::reverse_iterator<const_iterator,T> const_reverse_iterator; #endif reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // operator[] reference operator[](size_type i) { return failed_rangecheck(); } const_reference operator[](size_type i) const { return failed_rangecheck(); } // at() with range check reference at(size_type i) { return failed_rangecheck(); } const_reference at(size_type i) const { return failed_rangecheck(); } // front() and back() reference front() { return failed_rangecheck(); } const_reference front() const { return failed_rangecheck(); } reference back() { return failed_rangecheck(); } const_reference back() const { return failed_rangecheck(); } // size is constant static size_type size() { return 0; } static bool empty() { return true; } static size_type max_size() { return 0; } enum { static_size = 0 }; void swap (array<T,0>& y) { } // direct access to data (read-only) const T* data() const { return 0; } T* data() { return 0; } // use array as C array (direct read/write access to data) T* c_array() { return 0; } // assignment with type conversion template <typename T2> array<T,0>& operator= (const array<T2,0>& ) { return *this; } // assign one value to all elements void assign (const T& ) { } // check range (may be private because it is static) static reference failed_rangecheck () { std::out_of_range e("attempt to access element of an empty array"); boost::throw_exception(e); // // We need to return something here to keep // some compilers happy: however we will never // actually get here.... // static T placeholder; return placeholder; } }; #endif // comparisons template<class T, std::size_t N> bool operator== (const array<T,N>& x, const array<T,N>& y) { return std::equal(x.begin(), x.end(), y.begin()); } template<class T, std::size_t N> bool operator< (const array<T,N>& x, const array<T,N>& y) { return std::lexicographical_compare(x.begin(),x.end(),y.begin(),y.end()); } template<class T, std::size_t N> bool operator!= (const array<T,N>& x, const array<T,N>& y) { return !(x==y); } template<class T, std::size_t N> bool operator> (const array<T,N>& x, const array<T,N>& y) { return y<x; } template<class T, std::size_t N> bool operator<= (const array<T,N>& x, const array<T,N>& y) { return !(y<x); } template<class T, std::size_t N> bool operator>= (const array<T,N>& x, const array<T,N>& y) { return !(x<y); } // global swap() template<class T, std::size_t N> inline void swap (array<T,N>& x, array<T,N>& y) { x.swap(y); } } /* namespace boost */ #endif /*BOOST_ARRAY_HPP*/