// // kqueue_reactor.hpp // ~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com) // Copyright (c) 2005 Stefan Arentz (stefan at soze dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP #define BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #include #if defined(BOOST_ASIO_HAS_KQUEUE) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Older versions of Mac OS X may not define EV_OOBAND. #if !defined(EV_OOBAND) # define EV_OOBAND EV_FLAG1 #endif // !defined(EV_OOBAND) namespace boost { namespace asio { namespace detail { template class kqueue_reactor : public boost::asio::detail::service_base > { public: // Per-descriptor data. struct per_descriptor_data { bool allow_speculative_read; bool allow_speculative_write; }; // Constructor. kqueue_reactor(boost::asio::io_service& io_service) : boost::asio::detail::service_base< kqueue_reactor >(io_service), mutex_(), kqueue_fd_(do_kqueue_create()), wait_in_progress_(false), interrupter_(), read_op_queue_(), write_op_queue_(), except_op_queue_(), pending_cancellations_(), stop_thread_(false), thread_(0), shutdown_(false), need_kqueue_wait_(true) { // Start the reactor's internal thread only if needed. if (Own_Thread) { boost::asio::detail::signal_blocker sb; thread_ = new boost::asio::detail::thread( bind_handler(&kqueue_reactor::call_run_thread, this)); } // Add the interrupter's descriptor to the kqueue. struct kevent event; EV_SET(&event, interrupter_.read_descriptor(), EVFILT_READ, EV_ADD, 0, 0, 0); ::kevent(kqueue_fd_, &event, 1, 0, 0, 0); } // Destructor. ~kqueue_reactor() { shutdown_service(); close(kqueue_fd_); } // Destroy all user-defined handler objects owned by the service. void shutdown_service() { boost::asio::detail::mutex::scoped_lock lock(mutex_); shutdown_ = true; stop_thread_ = true; lock.unlock(); if (thread_) { interrupter_.interrupt(); thread_->join(); delete thread_; thread_ = 0; } read_op_queue_.destroy_operations(); write_op_queue_.destroy_operations(); except_op_queue_.destroy_operations(); for (std::size_t i = 0; i < timer_queues_.size(); ++i) timer_queues_[i]->destroy_timers(); timer_queues_.clear(); } // Initialise the task, but only if the reactor is not in its own thread. void init_task() { if (!Own_Thread) { typedef task_io_service > task_io_service_type; use_service(this->get_io_service()).init_task(); } } // Register a socket with the reactor. Returns 0 on success, system error // code on failure. int register_descriptor(socket_type, per_descriptor_data& descriptor_data) { descriptor_data.allow_speculative_read = true; descriptor_data.allow_speculative_write = true; return 0; } // Start a new read operation. The handler object will be invoked when the // given descriptor is ready to be read, or an error has occurred. template void start_read_op(socket_type descriptor, per_descriptor_data& descriptor_data, Handler handler, bool allow_speculative_read = true) { if (allow_speculative_read && descriptor_data.allow_speculative_read) { boost::system::error_code ec; std::size_t bytes_transferred = 0; if (handler.perform(ec, bytes_transferred)) { handler.complete(ec, bytes_transferred); return; } // We only get one shot at a speculative read in this function. allow_speculative_read = false; } boost::asio::detail::mutex::scoped_lock lock(mutex_); if (shutdown_) return; if (!allow_speculative_read) need_kqueue_wait_ = true; else if (!read_op_queue_.has_operation(descriptor)) { // Speculative reads are ok as there are no queued read operations. descriptor_data.allow_speculative_read = true; boost::system::error_code ec; std::size_t bytes_transferred = 0; if (handler.perform(ec, bytes_transferred)) { handler.complete(ec, bytes_transferred); return; } } // Speculative reads are not ok as there will be queued read operations. descriptor_data.allow_speculative_read = false; if (read_op_queue_.enqueue_operation(descriptor, handler)) { struct kevent event; EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { boost::system::error_code ec(errno, boost::asio::error::get_system_category()); read_op_queue_.perform_all_operations(descriptor, ec); } } } // Start a new write operation. The handler object will be invoked when the // given descriptor is ready to be written, or an error has occurred. template void start_write_op(socket_type descriptor, per_descriptor_data& descriptor_data, Handler handler, bool allow_speculative_write = true) { if (allow_speculative_write && descriptor_data.allow_speculative_write) { boost::system::error_code ec; std::size_t bytes_transferred = 0; if (handler.perform(ec, bytes_transferred)) { handler.complete(ec, bytes_transferred); return; } // We only get one shot at a speculative write in this function. allow_speculative_write = false; } boost::asio::detail::mutex::scoped_lock lock(mutex_); if (shutdown_) return; if (!allow_speculative_write) need_kqueue_wait_ = true; else if (!write_op_queue_.has_operation(descriptor)) { // Speculative writes are ok as there are no queued write operations. descriptor_data.allow_speculative_write = true; boost::system::error_code ec; std::size_t bytes_transferred = 0; if (handler.perform(ec, bytes_transferred)) { handler.complete(ec, bytes_transferred); return; } } // Speculative writes are not ok as there will be queued write operations. descriptor_data.allow_speculative_write = false; if (write_op_queue_.enqueue_operation(descriptor, handler)) { struct kevent event; EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { boost::system::error_code ec(errno, boost::asio::error::get_system_category()); write_op_queue_.perform_all_operations(descriptor, ec); } } } // Start a new exception operation. The handler object will be invoked when // the given descriptor has exception information, or an error has occurred. template void start_except_op(socket_type descriptor, per_descriptor_data&, Handler handler) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (shutdown_) return; if (except_op_queue_.enqueue_operation(descriptor, handler)) { struct kevent event; if (read_op_queue_.has_operation(descriptor)) EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0); else EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { boost::system::error_code ec(errno, boost::asio::error::get_system_category()); except_op_queue_.perform_all_operations(descriptor, ec); } } } // Start a new write operation. The handler object will be invoked when the // given descriptor is ready to be written, or an error has occurred. template void start_connect_op(socket_type descriptor, per_descriptor_data& descriptor_data, Handler handler) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (shutdown_) return; // Speculative writes are not ok as there will be queued write operations. descriptor_data.allow_speculative_write = false; if (write_op_queue_.enqueue_operation(descriptor, handler)) { struct kevent event; EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { boost::system::error_code ec(errno, boost::asio::error::get_system_category()); write_op_queue_.perform_all_operations(descriptor, ec); } } } // Cancel all operations associated with the given descriptor. The // handlers associated with the descriptor will be invoked with the // operation_aborted error. void cancel_ops(socket_type descriptor, per_descriptor_data&) { boost::asio::detail::mutex::scoped_lock lock(mutex_); cancel_ops_unlocked(descriptor); } // Cancel any operations that are running against the descriptor and remove // its registration from the reactor. void close_descriptor(socket_type descriptor, per_descriptor_data&) { boost::asio::detail::mutex::scoped_lock lock(mutex_); // Remove the descriptor from kqueue. struct kevent event[2]; EV_SET(&event[0], descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0); EV_SET(&event[1], descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0); ::kevent(kqueue_fd_, event, 2, 0, 0, 0); // Cancel any outstanding operations associated with the descriptor. cancel_ops_unlocked(descriptor); } // Add a new timer queue to the reactor. template void add_timer_queue(timer_queue& timer_queue) { boost::asio::detail::mutex::scoped_lock lock(mutex_); timer_queues_.push_back(&timer_queue); } // Remove a timer queue from the reactor. template void remove_timer_queue(timer_queue& timer_queue) { boost::asio::detail::mutex::scoped_lock lock(mutex_); for (std::size_t i = 0; i < timer_queues_.size(); ++i) { if (timer_queues_[i] == &timer_queue) { timer_queues_.erase(timer_queues_.begin() + i); return; } } } // Schedule a timer in the given timer queue to expire at the specified // absolute time. The handler object will be invoked when the timer expires. template void schedule_timer(timer_queue& timer_queue, const typename Time_Traits::time_type& time, Handler handler, void* token) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (!shutdown_) if (timer_queue.enqueue_timer(time, handler, token)) interrupter_.interrupt(); } // Cancel the timer associated with the given token. Returns the number of // handlers that have been posted or dispatched. template std::size_t cancel_timer(timer_queue& timer_queue, void* token) { boost::asio::detail::mutex::scoped_lock lock(mutex_); std::size_t n = timer_queue.cancel_timer(token); if (n > 0) interrupter_.interrupt(); return n; } private: friend class task_io_service >; // Run the kqueue loop. void run(bool block) { boost::asio::detail::mutex::scoped_lock lock(mutex_); // Dispatch any operation cancellations that were made while the select // loop was not running. read_op_queue_.perform_cancellations(); write_op_queue_.perform_cancellations(); except_op_queue_.perform_cancellations(); for (std::size_t i = 0; i < timer_queues_.size(); ++i) timer_queues_[i]->dispatch_cancellations(); // Check if the thread is supposed to stop. if (stop_thread_) { complete_operations_and_timers(lock); return; } // We can return immediately if there's no work to do and the reactor is // not supposed to block. if (!block && read_op_queue_.empty() && write_op_queue_.empty() && except_op_queue_.empty() && all_timer_queues_are_empty()) { complete_operations_and_timers(lock); return; } // Determine how long to block while waiting for events. timespec timeout_buf = { 0, 0 }; timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf; wait_in_progress_ = true; lock.unlock(); // Block on the kqueue descriptor. struct kevent events[128]; int num_events = (block || need_kqueue_wait_) ? kevent(kqueue_fd_, 0, 0, events, 128, timeout) : 0; lock.lock(); wait_in_progress_ = false; // Block signals while performing operations. boost::asio::detail::signal_blocker sb; // Dispatch the waiting events. for (int i = 0; i < num_events; ++i) { int descriptor = events[i].ident; if (descriptor == interrupter_.read_descriptor()) { interrupter_.reset(); } else if (events[i].filter == EVFILT_READ) { // Dispatch operations associated with the descriptor. bool more_reads = false; bool more_except = false; if (events[i].flags & EV_ERROR) { boost::system::error_code error( events[i].data, boost::asio::error::get_system_category()); except_op_queue_.perform_all_operations(descriptor, error); read_op_queue_.perform_all_operations(descriptor, error); } else if (events[i].flags & EV_OOBAND) { boost::system::error_code error; more_except = except_op_queue_.perform_operation(descriptor, error); if (events[i].data > 0) more_reads = read_op_queue_.perform_operation(descriptor, error); else more_reads = read_op_queue_.has_operation(descriptor); } else { boost::system::error_code error; more_reads = read_op_queue_.perform_operation(descriptor, error); more_except = except_op_queue_.has_operation(descriptor); } // Update the descriptor in the kqueue. struct kevent event; if (more_reads) EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0); else if (more_except) EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0); else EV_SET(&event, descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { boost::system::error_code error(errno, boost::asio::error::get_system_category()); except_op_queue_.perform_all_operations(descriptor, error); read_op_queue_.perform_all_operations(descriptor, error); } } else if (events[i].filter == EVFILT_WRITE) { // Dispatch operations associated with the descriptor. bool more_writes = false; if (events[i].flags & EV_ERROR) { boost::system::error_code error( events[i].data, boost::asio::error::get_system_category()); write_op_queue_.perform_all_operations(descriptor, error); } else { boost::system::error_code error; more_writes = write_op_queue_.perform_operation(descriptor, error); } // Update the descriptor in the kqueue. struct kevent event; if (more_writes) EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0); else EV_SET(&event, descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { boost::system::error_code error(errno, boost::asio::error::get_system_category()); write_op_queue_.perform_all_operations(descriptor, error); } } } read_op_queue_.perform_cancellations(); write_op_queue_.perform_cancellations(); except_op_queue_.perform_cancellations(); for (std::size_t i = 0; i < timer_queues_.size(); ++i) { timer_queues_[i]->dispatch_timers(); timer_queues_[i]->dispatch_cancellations(); } // Issue any pending cancellations. for (std::size_t i = 0; i < pending_cancellations_.size(); ++i) cancel_ops_unlocked(pending_cancellations_[i]); pending_cancellations_.clear(); // Determine whether kqueue needs to be called next time the reactor is run. need_kqueue_wait_ = !read_op_queue_.empty() || !write_op_queue_.empty() || !except_op_queue_.empty(); complete_operations_and_timers(lock); } // Run the select loop in the thread. void run_thread() { boost::asio::detail::mutex::scoped_lock lock(mutex_); while (!stop_thread_) { lock.unlock(); run(true); lock.lock(); } } // Entry point for the select loop thread. static void call_run_thread(kqueue_reactor* reactor) { reactor->run_thread(); } // Interrupt the select loop. void interrupt() { interrupter_.interrupt(); } // Create the kqueue file descriptor. Throws an exception if the descriptor // cannot be created. static int do_kqueue_create() { int fd = kqueue(); if (fd == -1) { boost::throw_exception( boost::system::system_error( boost::system::error_code(errno, boost::asio::error::get_system_category()), "kqueue")); } return fd; } // Check if all timer queues are empty. bool all_timer_queues_are_empty() const { for (std::size_t i = 0; i < timer_queues_.size(); ++i) if (!timer_queues_[i]->empty()) return false; return true; } // Get the timeout value for the kevent call. timespec* get_timeout(timespec& ts) { if (all_timer_queues_are_empty()) return 0; // By default we will wait no longer than 5 minutes. This will ensure that // any changes to the system clock are detected after no longer than this. boost::posix_time::time_duration minimum_wait_duration = boost::posix_time::minutes(5); for (std::size_t i = 0; i < timer_queues_.size(); ++i) { boost::posix_time::time_duration wait_duration = timer_queues_[i]->wait_duration(); if (wait_duration < minimum_wait_duration) minimum_wait_duration = wait_duration; } if (minimum_wait_duration > boost::posix_time::time_duration()) { ts.tv_sec = minimum_wait_duration.total_seconds(); ts.tv_nsec = minimum_wait_duration.total_nanoseconds() % 1000000000; } else { ts.tv_sec = 0; ts.tv_nsec = 0; } return &ts; } // Cancel all operations associated with the given descriptor. The do_cancel // function of the handler objects will be invoked. This function does not // acquire the kqueue_reactor's mutex. void cancel_ops_unlocked(socket_type descriptor) { bool interrupt = read_op_queue_.cancel_operations(descriptor); interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt; interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt; if (interrupt) interrupter_.interrupt(); } // Clean up operations and timers. We must not hold the lock since the // destructors may make calls back into this reactor. We make a copy of the // vector of timer queues since the original may be modified while the lock // is not held. void complete_operations_and_timers( boost::asio::detail::mutex::scoped_lock& lock) { timer_queues_for_cleanup_ = timer_queues_; lock.unlock(); read_op_queue_.complete_operations(); write_op_queue_.complete_operations(); except_op_queue_.complete_operations(); for (std::size_t i = 0; i < timer_queues_for_cleanup_.size(); ++i) timer_queues_for_cleanup_[i]->complete_timers(); } // Mutex to protect access to internal data. boost::asio::detail::mutex mutex_; // The kqueue file descriptor. int kqueue_fd_; // Whether the kqueue wait call is currently in progress bool wait_in_progress_; // The interrupter is used to break a blocking kevent call. select_interrupter interrupter_; // The queue of read operations. reactor_op_queue read_op_queue_; // The queue of write operations. reactor_op_queue write_op_queue_; // The queue of except operations. reactor_op_queue except_op_queue_; // The timer queues. std::vector timer_queues_; // A copy of the timer queues, used when cleaning up timers. The copy is // stored as a class data member to avoid unnecessary memory allocation. std::vector timer_queues_for_cleanup_; // The descriptors that are pending cancellation. std::vector pending_cancellations_; // Does the reactor loop thread need to stop. bool stop_thread_; // The thread that is running the reactor loop. boost::asio::detail::thread* thread_; // Whether the service has been shut down. bool shutdown_; // Whether we need to call kqueue the next time the reactor is run. bool need_kqueue_wait_; }; } // namespace detail } // namespace asio } // namespace boost #endif // defined(BOOST_ASIO_HAS_KQUEUE) #include #endif // BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP