// Copyright 2005-2009 Daniel James. // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #if !defined(BOOST_FUNCTIONAL_HASH_DETAIL_HASH_FLOAT_HEADER) #define BOOST_FUNCTIONAL_HASH_DETAIL_HASH_FLOAT_HEADER #if defined(_MSC_VER) && (_MSC_VER >= 1020) # pragma once #endif #if defined(BOOST_MSVC) #pragma warning(push) #if BOOST_MSVC >= 1400 #pragma warning(disable:6294) // Ill-defined for-loop: initial condition does // not satisfy test. Loop body not executed #endif #endif #include #include #include #include #include // Select implementation for the current platform. // Cygwn #if defined(__CYGWIN__) # if defined(__i386__) || defined(_M_IX86) # define BOOST_HASH_USE_x86_BINARY_HASH # endif // STLport #elif defined(__SGI_STL_PORT) || defined(_STLPORT_VERSION) // fpclassify aren't good enough on STLport. // GNU libstdc++ 3 #elif defined(__GLIBCPP__) || defined(__GLIBCXX__) # if (defined(__USE_ISOC99) || defined(_GLIBCXX_USE_C99_MATH)) && \ !(defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__)) # define BOOST_HASH_USE_FPCLASSIFY # endif // Dinkumware Library, on Visual C++ #elif (defined(_YVALS) && !defined(__IBMCPP__)) || defined(_CPPLIB_VER) // Not using _fpclass because it is only available for double. #endif // On OpenBSD, numeric_limits is not reliable for long doubles, but // the macros defined in are. #if defined(__OpenBSD__) #include #endif namespace boost { namespace hash_detail { template struct limits : std::numeric_limits {}; #if defined(__OpenBSD__) template <> struct limits : std::numeric_limits { static long double epsilon() { return LDBL_EPSILON; } static long double (max)() { return LDBL_MAX; } static long double (min)() { return LDBL_MIN; } BOOST_STATIC_CONSTANT(int, digits = LDBL_MANT_DIG); BOOST_STATIC_CONSTANT(int, max_exponent = LDBL_MAX_EXP); BOOST_STATIC_CONSTANT(int, min_exponent = LDBL_MIN_EXP); }; #endif // __OpenBSD__ inline void hash_float_combine(std::size_t& seed, std::size_t value) { seed ^= value + (seed<<6) + (seed>>2); } // A simple, non-portable hash algorithm for x86. #if defined(BOOST_HASH_USE_x86_BINARY_HASH) inline std::size_t float_hash_impl(float v) { boost::uint32_t* ptr = (boost::uint32_t*)&v; std::size_t seed = *ptr; return seed; } inline std::size_t float_hash_impl(double v) { boost::uint32_t* ptr = (boost::uint32_t*)&v; std::size_t seed = *ptr++; hash_float_combine(seed, *ptr); return seed; } inline std::size_t float_hash_impl(long double v) { boost::uint32_t* ptr = (boost::uint32_t*)&v; std::size_t seed = *ptr++; hash_float_combine(seed, *ptr++); hash_float_combine(seed, *(boost::uint16_t*)ptr); return seed; } #else template inline std::size_t float_hash_impl(T v) { int exp = 0; v = boost::hash_detail::call_frexp(v, &exp); // A postive value is easier to hash, so combine the // sign with the exponent. if(v < 0) { v = -v; exp += limits::max_exponent - limits::min_exponent; } // The result of frexp is always between 0.5 and 1, so its // top bit will always be 1. Subtract by 0.5 to remove that. v -= T(0.5); v = boost::hash_detail::call_ldexp(v, limits::digits + 1); std::size_t seed = static_cast(v); v -= seed; // ceiling(digits(T) * log2(radix(T))/ digits(size_t)) - 1; std::size_t const length = (limits::digits * boost::static_log2::radix>::value - 1) / limits::digits; for(std::size_t i = 0; i != length; ++i) { v = boost::hash_detail::call_ldexp(v, limits::digits); std::size_t part = static_cast(v); v -= part; hash_float_combine(seed, part); } hash_float_combine(seed, exp); return seed; } #endif template inline std::size_t float_hash_value(T v) { #if defined(BOOST_HASH_USE_FPCLASSIFY) using namespace std; switch (fpclassify(v)) { case FP_ZERO: return 0; case FP_INFINITE: return (std::size_t)(v > 0 ? -1 : -2); case FP_NAN: return (std::size_t)(-3); case FP_NORMAL: case FP_SUBNORMAL: return float_hash_impl(v); default: BOOST_ASSERT(0); return 0; } #else return v == 0 ? 0 : float_hash_impl(v); #endif } } } #if defined(BOOST_MSVC) #pragma warning(pop) #endif #endif