// // basic_raw_socket.hpp // ~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2010 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_BASIC_RAW_SOCKET_HPP #define BOOST_ASIO_BASIC_RAW_SOCKET_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #include #include #include #include #include #include #include #include namespace boost { namespace asio { /// Provides raw-oriented socket functionality. /** * The basic_raw_socket class template provides asynchronous and blocking * raw-oriented socket functionality. * * @par Thread Safety * @e Distinct @e objects: Safe.@n * @e Shared @e objects: Unsafe. */ template > class basic_raw_socket : public basic_socket { public: /// The native representation of a socket. typedef typename RawSocketService::native_type native_type; /// The protocol type. typedef Protocol protocol_type; /// The endpoint type. typedef typename Protocol::endpoint endpoint_type; /// Construct a basic_raw_socket without opening it. /** * This constructor creates a raw socket without opening it. The open() * function must be called before data can be sent or received on the socket. * * @param io_service The io_service object that the raw socket will use * to dispatch handlers for any asynchronous operations performed on the * socket. */ explicit basic_raw_socket(boost::asio::io_service& io_service) : basic_socket(io_service) { } /// Construct and open a basic_raw_socket. /** * This constructor creates and opens a raw socket. * * @param io_service The io_service object that the raw socket will use * to dispatch handlers for any asynchronous operations performed on the * socket. * * @param protocol An object specifying protocol parameters to be used. * * @throws boost::system::system_error Thrown on failure. */ basic_raw_socket(boost::asio::io_service& io_service, const protocol_type& protocol) : basic_socket(io_service, protocol) { } /// Construct a basic_raw_socket, opening it and binding it to the given /// local endpoint. /** * This constructor creates a raw socket and automatically opens it bound * to the specified endpoint on the local machine. The protocol used is the * protocol associated with the given endpoint. * * @param io_service The io_service object that the raw socket will use * to dispatch handlers for any asynchronous operations performed on the * socket. * * @param endpoint An endpoint on the local machine to which the raw * socket will be bound. * * @throws boost::system::system_error Thrown on failure. */ basic_raw_socket(boost::asio::io_service& io_service, const endpoint_type& endpoint) : basic_socket(io_service, endpoint) { } /// Construct a basic_raw_socket on an existing native socket. /** * This constructor creates a raw socket object to hold an existing * native socket. * * @param io_service The io_service object that the raw socket will use * to dispatch handlers for any asynchronous operations performed on the * socket. * * @param protocol An object specifying protocol parameters to be used. * * @param native_socket The new underlying socket implementation. * * @throws boost::system::system_error Thrown on failure. */ basic_raw_socket(boost::asio::io_service& io_service, const protocol_type& protocol, const native_type& native_socket) : basic_socket( io_service, protocol, native_socket) { } /// Send some data on a connected socket. /** * This function is used to send data on the raw socket. The function call * will block until the data has been sent successfully or an error occurs. * * @param buffers One ore more data buffers to be sent on the socket. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. * * @note The send operation can only be used with a connected socket. Use * the send_to function to send data on an unconnected raw socket. * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code socket.send(boost::asio::buffer(data, size)); @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template std::size_t send(const ConstBufferSequence& buffers) { boost::system::error_code ec; std::size_t s = this->service.send(this->implementation, buffers, 0, ec); boost::asio::detail::throw_error(ec); return s; } /// Send some data on a connected socket. /** * This function is used to send data on the raw socket. The function call * will block until the data has been sent successfully or an error occurs. * * @param buffers One ore more data buffers to be sent on the socket. * * @param flags Flags specifying how the send call is to be made. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. * * @note The send operation can only be used with a connected socket. Use * the send_to function to send data on an unconnected raw socket. */ template std::size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->service.send( this->implementation, buffers, flags, ec); boost::asio::detail::throw_error(ec); return s; } /// Send some data on a connected socket. /** * This function is used to send data on the raw socket. The function call * will block until the data has been sent successfully or an error occurs. * * @param buffers One or more data buffers to be sent on the socket. * * @param flags Flags specifying how the send call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes sent. * * @note The send operation can only be used with a connected socket. Use * the send_to function to send data on an unconnected raw socket. */ template std::size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags, boost::system::error_code& ec) { return this->service.send(this->implementation, buffers, flags, ec); } /// Start an asynchronous send on a connected socket. /** * This function is used to send data on the raw socket. The function call * will block until the data has been sent successfully or an error occurs. * * @param buffers One or more data buffers to be sent on the socket. Although * the buffers object may be copied as necessary, ownership of the underlying * memory blocks is retained by the caller, which must guarantee that they * remain valid until the handler is called. * * @param handler The handler to be called when the send operation completes. * Copies will be made of the handler as required. The function signature of * the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @note The async_send operation can only be used with a connected socket. * Use the async_send_to function to send data on an unconnected raw * socket. * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code * socket.async_send(boost::asio::buffer(data, size), handler); * @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template void async_send(const ConstBufferSequence& buffers, WriteHandler handler) { this->service.async_send(this->implementation, buffers, 0, handler); } /// Start an asynchronous send on a connected socket. /** * This function is used to send data on the raw socket. The function call * will block until the data has been sent successfully or an error occurs. * * @param buffers One or more data buffers to be sent on the socket. Although * the buffers object may be copied as necessary, ownership of the underlying * memory blocks is retained by the caller, which must guarantee that they * remain valid until the handler is called. * * @param flags Flags specifying how the send call is to be made. * * @param handler The handler to be called when the send operation completes. * Copies will be made of the handler as required. The function signature of * the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @note The async_send operation can only be used with a connected socket. * Use the async_send_to function to send data on an unconnected raw * socket. */ template void async_send(const ConstBufferSequence& buffers, socket_base::message_flags flags, WriteHandler handler) { this->service.async_send(this->implementation, buffers, flags, handler); } /// Send raw data to the specified endpoint. /** * This function is used to send raw data to the specified remote endpoint. * The function call will block until the data has been sent successfully or * an error occurs. * * @param buffers One or more data buffers to be sent to the remote endpoint. * * @param destination The remote endpoint to which the data will be sent. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code * boost::asio::ip::udp::endpoint destination( * boost::asio::ip::address::from_string("1.2.3.4"), 12345); * socket.send_to(boost::asio::buffer(data, size), destination); * @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template std::size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination) { boost::system::error_code ec; std::size_t s = this->service.send_to( this->implementation, buffers, destination, 0, ec); boost::asio::detail::throw_error(ec); return s; } /// Send raw data to the specified endpoint. /** * This function is used to send raw data to the specified remote endpoint. * The function call will block until the data has been sent successfully or * an error occurs. * * @param buffers One or more data buffers to be sent to the remote endpoint. * * @param destination The remote endpoint to which the data will be sent. * * @param flags Flags specifying how the send call is to be made. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. */ template std::size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->service.send_to( this->implementation, buffers, destination, flags, ec); boost::asio::detail::throw_error(ec); return s; } /// Send raw data to the specified endpoint. /** * This function is used to send raw data to the specified remote endpoint. * The function call will block until the data has been sent successfully or * an error occurs. * * @param buffers One or more data buffers to be sent to the remote endpoint. * * @param destination The remote endpoint to which the data will be sent. * * @param flags Flags specifying how the send call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes sent. */ template std::size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, boost::system::error_code& ec) { return this->service.send_to(this->implementation, buffers, destination, flags, ec); } /// Start an asynchronous send. /** * This function is used to asynchronously send raw data to the specified * remote endpoint. The function call always returns immediately. * * @param buffers One or more data buffers to be sent to the remote endpoint. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param destination The remote endpoint to which the data will be sent. * Copies will be made of the endpoint as required. * * @param handler The handler to be called when the send operation completes. * Copies will be made of the handler as required. The function signature of * the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code * boost::asio::ip::udp::endpoint destination( * boost::asio::ip::address::from_string("1.2.3.4"), 12345); * socket.async_send_to( * boost::asio::buffer(data, size), destination, handler); * @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template void async_send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, WriteHandler handler) { this->service.async_send_to(this->implementation, buffers, destination, 0, handler); } /// Start an asynchronous send. /** * This function is used to asynchronously send raw data to the specified * remote endpoint. The function call always returns immediately. * * @param buffers One or more data buffers to be sent to the remote endpoint. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param flags Flags specifying how the send call is to be made. * * @param destination The remote endpoint to which the data will be sent. * Copies will be made of the endpoint as required. * * @param handler The handler to be called when the send operation completes. * Copies will be made of the handler as required. The function signature of * the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). */ template void async_send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, WriteHandler handler) { this->service.async_send_to(this->implementation, buffers, destination, flags, handler); } /// Receive some data on a connected socket. /** * This function is used to receive data on the raw socket. The function * call will block until data has been received successfully or an error * occurs. * * @param buffers One or more buffers into which the data will be received. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. * * @note The receive operation can only be used with a connected socket. Use * the receive_from function to receive data on an unconnected raw * socket. * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code socket.receive(boost::asio::buffer(data, size)); @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template std::size_t receive(const MutableBufferSequence& buffers) { boost::system::error_code ec; std::size_t s = this->service.receive( this->implementation, buffers, 0, ec); boost::asio::detail::throw_error(ec); return s; } /// Receive some data on a connected socket. /** * This function is used to receive data on the raw socket. The function * call will block until data has been received successfully or an error * occurs. * * @param buffers One or more buffers into which the data will be received. * * @param flags Flags specifying how the receive call is to be made. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. * * @note The receive operation can only be used with a connected socket. Use * the receive_from function to receive data on an unconnected raw * socket. */ template std::size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->service.receive( this->implementation, buffers, flags, ec); boost::asio::detail::throw_error(ec); return s; } /// Receive some data on a connected socket. /** * This function is used to receive data on the raw socket. The function * call will block until data has been received successfully or an error * occurs. * * @param buffers One or more buffers into which the data will be received. * * @param flags Flags specifying how the receive call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes received. * * @note The receive operation can only be used with a connected socket. Use * the receive_from function to receive data on an unconnected raw * socket. */ template std::size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, boost::system::error_code& ec) { return this->service.receive(this->implementation, buffers, flags, ec); } /// Start an asynchronous receive on a connected socket. /** * This function is used to asynchronously receive data from the raw * socket. The function call always returns immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param handler The handler to be called when the receive operation * completes. Copies will be made of the handler as required. The function * signature of the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @note The async_receive operation can only be used with a connected socket. * Use the async_receive_from function to receive data on an unconnected * raw socket. * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code * socket.async_receive(boost::asio::buffer(data, size), handler); * @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template void async_receive(const MutableBufferSequence& buffers, ReadHandler handler) { this->service.async_receive(this->implementation, buffers, 0, handler); } /// Start an asynchronous receive on a connected socket. /** * This function is used to asynchronously receive data from the raw * socket. The function call always returns immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param flags Flags specifying how the receive call is to be made. * * @param handler The handler to be called when the receive operation * completes. Copies will be made of the handler as required. The function * signature of the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @note The async_receive operation can only be used with a connected socket. * Use the async_receive_from function to receive data on an unconnected * raw socket. */ template void async_receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, ReadHandler handler) { this->service.async_receive(this->implementation, buffers, flags, handler); } /// Receive raw data with the endpoint of the sender. /** * This function is used to receive raw data. The function call will block * until data has been received successfully or an error occurs. * * @param buffers One or more buffers into which the data will be received. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the data. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code * boost::asio::ip::udp::endpoint sender_endpoint; * socket.receive_from( * boost::asio::buffer(data, size), sender_endpoint); * @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template std::size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint) { boost::system::error_code ec; std::size_t s = this->service.receive_from( this->implementation, buffers, sender_endpoint, 0, ec); boost::asio::detail::throw_error(ec); return s; } /// Receive raw data with the endpoint of the sender. /** * This function is used to receive raw data. The function call will block * until data has been received successfully or an error occurs. * * @param buffers One or more buffers into which the data will be received. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the data. * * @param flags Flags specifying how the receive call is to be made. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. */ template std::size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->service.receive_from( this->implementation, buffers, sender_endpoint, flags, ec); boost::asio::detail::throw_error(ec); return s; } /// Receive raw data with the endpoint of the sender. /** * This function is used to receive raw data. The function call will block * until data has been received successfully or an error occurs. * * @param buffers One or more buffers into which the data will be received. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the data. * * @param flags Flags specifying how the receive call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes received. */ template std::size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, boost::system::error_code& ec) { return this->service.receive_from(this->implementation, buffers, sender_endpoint, flags, ec); } /// Start an asynchronous receive. /** * This function is used to asynchronously receive raw data. The function * call always returns immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the data. Ownership of the sender_endpoint object * is retained by the caller, which must guarantee that it is valid until the * handler is called. * * @param handler The handler to be called when the receive operation * completes. Copies will be made of the handler as required. The function * signature of the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code socket.async_receive_from( * boost::asio::buffer(data, size), 0, sender_endpoint, handler); @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template void async_receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, ReadHandler handler) { this->service.async_receive_from(this->implementation, buffers, sender_endpoint, 0, handler); } /// Start an asynchronous receive. /** * This function is used to asynchronously receive raw data. The function * call always returns immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the handler is called. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the data. Ownership of the sender_endpoint object * is retained by the caller, which must guarantee that it is valid until the * handler is called. * * @param flags Flags specifying how the receive call is to be made. * * @param handler The handler to be called when the receive operation * completes. Copies will be made of the handler as required. The function * signature of the handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). */ template void async_receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, ReadHandler handler) { this->service.async_receive_from(this->implementation, buffers, sender_endpoint, flags, handler); } }; } // namespace asio } // namespace boost #include #endif // BOOST_ASIO_BASIC_RAW_SOCKET_HPP