// // epoll_reactor.hpp // ~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2010 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_EPOLL_REACTOR_HPP #define BOOST_ASIO_DETAIL_EPOLL_REACTOR_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #include #if defined(BOOST_ASIO_HAS_EPOLL) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if (__GLIBC__ > 2) || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8) # define BOOST_ASIO_HAS_TIMERFD 1 #endif // (__GLIBC__ > 2) || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8) #if defined(BOOST_ASIO_HAS_TIMERFD) # include # include # include #endif // defined(BOOST_ASIO_HAS_TIMERFD) namespace boost { namespace asio { namespace detail { class epoll_reactor : public boost::asio::detail::service_base { public: enum { read_op = 0, write_op = 1, connect_op = 1, except_op = 2, max_ops = 3 }; // Per-descriptor queues. struct descriptor_state { descriptor_state() {} descriptor_state(const descriptor_state&) {} void operator=(const descriptor_state&) {} mutex mutex_; op_queue op_queue_[max_ops]; bool shutdown_; }; // Per-descriptor data. typedef descriptor_state* per_descriptor_data; // Constructor. epoll_reactor(boost::asio::io_service& io_service) : boost::asio::detail::service_base(io_service), io_service_(use_service(io_service)), mutex_(), epoll_fd_(do_epoll_create()), #if defined(BOOST_ASIO_HAS_TIMERFD) timer_fd_(timerfd_create(CLOCK_MONOTONIC, 0)), #else // defined(BOOST_ASIO_HAS_TIMERFD) timer_fd_(-1), #endif // defined(BOOST_ASIO_HAS_TIMERFD) interrupter_(), shutdown_(false) { // Add the interrupter's descriptor to epoll. epoll_event ev = { 0, { 0 } }; ev.events = EPOLLIN | EPOLLERR | EPOLLET; ev.data.ptr = &interrupter_; epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, interrupter_.read_descriptor(), &ev); interrupter_.interrupt(); // Add the timer descriptor to epoll. if (timer_fd_ != -1) { ev.events = EPOLLIN | EPOLLERR; ev.data.ptr = &timer_fd_; epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, timer_fd_, &ev); } } // Destructor. ~epoll_reactor() { close(epoll_fd_); if (timer_fd_ != -1) close(timer_fd_); } // Destroy all user-defined handler objects owned by the service. void shutdown_service() { mutex::scoped_lock lock(mutex_); shutdown_ = true; lock.unlock(); op_queue ops; descriptor_map::iterator iter = registered_descriptors_.begin(); descriptor_map::iterator end = registered_descriptors_.end(); while (iter != end) { for (int i = 0; i < max_ops; ++i) ops.push(iter->second.op_queue_[i]); iter->second.shutdown_ = true; ++iter; } timer_queues_.get_all_timers(ops); } // Initialise the task. void init_task() { io_service_.init_task(); } // Register a socket with the reactor. Returns 0 on success, system error // code on failure. int register_descriptor(socket_type descriptor, per_descriptor_data& descriptor_data) { mutex::scoped_lock lock(registered_descriptors_mutex_); descriptor_map::iterator new_entry = registered_descriptors_.insert( std::make_pair(descriptor, descriptor_state())).first; descriptor_data = &new_entry->second; epoll_event ev = { 0, { 0 } }; ev.events = EPOLLIN | EPOLLERR | EPOLLHUP | EPOLLOUT | EPOLLPRI | EPOLLET; ev.data.ptr = descriptor_data; int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev); if (result != 0) return errno; descriptor_data->shutdown_ = false; return 0; } // Start a new operation. The reactor operation will be performed when the // given descriptor is flagged as ready, or an error has occurred. void start_op(int op_type, socket_type descriptor, per_descriptor_data& descriptor_data, reactor_op* op, bool allow_speculative) { mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); if (descriptor_data->shutdown_) return; if (descriptor_data->op_queue_[op_type].empty()) { if (allow_speculative && (op_type != read_op || descriptor_data->op_queue_[except_op].empty())) { if (op->perform()) { descriptor_lock.unlock(); io_service_.post_immediate_completion(op); return; } } else { epoll_event ev = { 0, { 0 } }; ev.events = EPOLLIN | EPOLLERR | EPOLLHUP | EPOLLOUT | EPOLLPRI | EPOLLET; ev.data.ptr = descriptor_data; epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev); } } descriptor_data->op_queue_[op_type].push(op); io_service_.work_started(); } // Cancel all operations associated with the given descriptor. The // handlers associated with the descriptor will be invoked with the // operation_aborted error. void cancel_ops(socket_type, per_descriptor_data& descriptor_data) { mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); op_queue ops; for (int i = 0; i < max_ops; ++i) { while (reactor_op* op = descriptor_data->op_queue_[i].front()) { op->ec_ = boost::asio::error::operation_aborted; descriptor_data->op_queue_[i].pop(); ops.push(op); } } descriptor_lock.unlock(); io_service_.post_deferred_completions(ops); } // Cancel any operations that are running against the descriptor and remove // its registration from the reactor. void close_descriptor(socket_type descriptor, per_descriptor_data& descriptor_data) { mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_); // Remove the descriptor from the set of known descriptors. The descriptor // will be automatically removed from the epoll set when it is closed. descriptor_data->shutdown_ = true; op_queue ops; for (int i = 0; i < max_ops; ++i) { while (reactor_op* op = descriptor_data->op_queue_[i].front()) { op->ec_ = boost::asio::error::operation_aborted; descriptor_data->op_queue_[i].pop(); ops.push(op); } } descriptor_lock.unlock(); registered_descriptors_.erase(descriptor); descriptors_lock.unlock(); io_service_.post_deferred_completions(ops); } // Add a new timer queue to the reactor. template void add_timer_queue(timer_queue& timer_queue) { mutex::scoped_lock lock(mutex_); timer_queues_.insert(&timer_queue); } // Remove a timer queue from the reactor. template void remove_timer_queue(timer_queue& timer_queue) { mutex::scoped_lock lock(mutex_); timer_queues_.erase(&timer_queue); } // Schedule a new operation in the given timer queue to expire at the // specified absolute time. template void schedule_timer(timer_queue& timer_queue, const typename Time_Traits::time_type& time, timer_op* op, void* token) { mutex::scoped_lock lock(mutex_); if (!shutdown_) { bool earliest = timer_queue.enqueue_timer(time, op, token); io_service_.work_started(); if (earliest) { #if defined(BOOST_ASIO_HAS_TIMERFD) if (timer_fd_ != -1) { itimerspec new_timeout; itimerspec old_timeout; int flags = get_timeout(new_timeout); timerfd_settime(timer_fd_, flags, &new_timeout, &old_timeout); return; } #endif // defined(BOOST_ASIO_HAS_TIMERFD) interrupter_.interrupt(); } } } // Cancel the timer operations associated with the given token. Returns the // number of operations that have been posted or dispatched. template std::size_t cancel_timer(timer_queue& timer_queue, void* token) { mutex::scoped_lock lock(mutex_); op_queue ops; std::size_t n = timer_queue.cancel_timer(token, ops); lock.unlock(); io_service_.post_deferred_completions(ops); return n; } // Run epoll once until interrupted or events are ready to be dispatched. void run(bool block, op_queue& ops) { // Calculate a timeout only if timerfd is not used. int timeout; if (timer_fd_ != -1) timeout = block ? -1 : 0; else { mutex::scoped_lock lock(mutex_); timeout = block ? get_timeout() : 0; } // Block on the epoll descriptor. epoll_event events[128]; int num_events = epoll_wait(epoll_fd_, events, 128, timeout); #if defined(BOOST_ASIO_HAS_TIMERFD) bool check_timers = (timer_fd_ == -1); #else // defined(BOOST_ASIO_HAS_TIMERFD) bool check_timers = true; #endif // defined(BOOST_ASIO_HAS_TIMERFD) // Dispatch the waiting events. for (int i = 0; i < num_events; ++i) { void* ptr = events[i].data.ptr; if (ptr == &interrupter_) { // No need to reset the interrupter since we're leaving the descriptor // in a ready-to-read state and relying on edge-triggered notifications // to make it so that we only get woken up when the descriptor's epoll // registration is updated. #if defined(BOOST_ASIO_HAS_TIMERFD) if (timer_fd_ == -1) check_timers = true; #else // defined(BOOST_ASIO_HAS_TIMERFD) check_timers = true; #endif // defined(BOOST_ASIO_HAS_TIMERFD) } #if defined(BOOST_ASIO_HAS_TIMERFD) else if (ptr == &timer_fd_) { check_timers = true; } #endif // defined(BOOST_ASIO_HAS_TIMERFD) else { descriptor_state* descriptor_data = static_cast(ptr); mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); // Exception operations must be processed first to ensure that any // out-of-band data is read before normal data. static const int flag[max_ops] = { EPOLLIN, EPOLLOUT, EPOLLPRI }; for (int j = max_ops - 1; j >= 0; --j) { if (events[i].events & (flag[j] | EPOLLERR | EPOLLHUP)) { while (reactor_op* op = descriptor_data->op_queue_[j].front()) { if (op->perform()) { descriptor_data->op_queue_[j].pop(); ops.push(op); } else break; } } } } } if (check_timers) { mutex::scoped_lock common_lock(mutex_); timer_queues_.get_ready_timers(ops); #if defined(BOOST_ASIO_HAS_TIMERFD) if (timer_fd_ != -1) { itimerspec new_timeout; itimerspec old_timeout; int flags = get_timeout(new_timeout); timerfd_settime(timer_fd_, flags, &new_timeout, &old_timeout); } #endif // defined(BOOST_ASIO_HAS_TIMERFD) } } // Interrupt the select loop. void interrupt() { epoll_event ev = { 0, { 0 } }; ev.events = EPOLLIN | EPOLLERR | EPOLLET; ev.data.ptr = &interrupter_; epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, interrupter_.read_descriptor(), &ev); } private: // The hint to pass to epoll_create to size its data structures. enum { epoll_size = 20000 }; // Create the epoll file descriptor. Throws an exception if the descriptor // cannot be created. static int do_epoll_create() { int fd = epoll_create(epoll_size); if (fd == -1) { boost::throw_exception( boost::system::system_error( boost::system::error_code(errno, boost::asio::error::get_system_category()), "epoll")); } return fd; } // Get the timeout value for the epoll_wait call. The timeout value is // returned as a number of milliseconds. A return value of -1 indicates // that epoll_wait should block indefinitely. int get_timeout() { // By default we will wait no longer than 5 minutes. This will ensure that // any changes to the system clock are detected after no longer than this. return timer_queues_.wait_duration_msec(5 * 60 * 1000); } #if defined(BOOST_ASIO_HAS_TIMERFD) // Get the timeout value for the timer descriptor. The return value is the // flag argument to be used when calling timerfd_settime. int get_timeout(itimerspec& ts) { ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000); ts.it_value.tv_sec = usec / 1000000; ts.it_value.tv_nsec = usec ? (usec % 1000000) * 1000 : 1; return usec ? 0 : TFD_TIMER_ABSTIME; } #endif // defined(BOOST_ASIO_HAS_TIMERFD) // The io_service implementation used to post completions. io_service_impl& io_service_; // Mutex to protect access to internal data. mutex mutex_; // The epoll file descriptor. int epoll_fd_; // The timer file descriptor. int timer_fd_; // The interrupter is used to break a blocking epoll_wait call. select_interrupter interrupter_; // The timer queues. timer_queue_set timer_queues_; // Whether the service has been shut down. bool shutdown_; // Mutex to protect access to the registered descriptors. mutex registered_descriptors_mutex_; // Keep track of all registered descriptors. This code relies on the fact that // the hash_map implementation pools deleted nodes, meaning that we can assume // our descriptor_state pointer remains valid even after the entry is removed. // Technically this is not true for C++98, as that standard says that spliced // elements in a list are invalidated. However, C++0x fixes this shortcoming // so we'll just assume that C++98 std::list implementations will do the right // thing anyway. typedef detail::hash_map descriptor_map; descriptor_map registered_descriptors_; }; } // namespace detail } // namespace asio } // namespace boost #endif // defined(BOOST_ASIO_HAS_EPOLL) #include #endif // BOOST_ASIO_DETAIL_EPOLL_REACTOR_HPP