// // detail/impl/kqueue_reactor.ipp // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2010 Christopher M. Kohlhoff (chris at kohlhoff dot com) // Copyright (c) 2005 Stefan Arentz (stefan at soze dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP #define BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #if defined(BOOST_ASIO_HAS_KQUEUE) #include #include #include #include #if defined(__NetBSD__) # define BOOST_ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \ EV_SET(ev, ident, filt, flags, fflags, \ data, reinterpret_cast(udata)) #else # define BOOST_ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \ EV_SET(ev, ident, filt, flags, fflags, data, udata) #endif namespace boost { namespace asio { namespace detail { kqueue_reactor::kqueue_reactor(boost::asio::io_service& io_service) : boost::asio::detail::service_base(io_service), io_service_(use_service(io_service)), mutex_(), kqueue_fd_(do_kqueue_create()), interrupter_(), shutdown_(false) { // The interrupter is put into a permanently readable state. Whenever we // want to interrupt the blocked kevent call we register a one-shot read // operation against the descriptor. interrupter_.interrupt(); } kqueue_reactor::~kqueue_reactor() { struct kevent event; BOOST_ASIO_KQUEUE_EV_SET(&event, interrupter_.read_descriptor(), EVFILT_READ, EV_DELETE, 0, 0, &interrupter_); ::kevent(kqueue_fd_, &event, 1, 0, 0, 0); close(kqueue_fd_); } void kqueue_reactor::shutdown_service() { mutex::scoped_lock lock(mutex_); shutdown_ = true; lock.unlock(); op_queue ops; while (descriptor_state* state = registered_descriptors_.first()) { for (int i = 0; i < max_ops; ++i) ops.push(state->op_queue_[i]); state->shutdown_ = true; registered_descriptors_.free(state); } timer_queues_.get_all_timers(ops); } void kqueue_reactor::init_task() { io_service_.init_task(); } int kqueue_reactor::register_descriptor(socket_type, kqueue_reactor::per_descriptor_data& descriptor_data) { mutex::scoped_lock lock(registered_descriptors_mutex_); descriptor_data = registered_descriptors_.alloc(); descriptor_data->shutdown_ = false; return 0; } void kqueue_reactor::start_op(int op_type, socket_type descriptor, kqueue_reactor::per_descriptor_data& descriptor_data, reactor_op* op, bool allow_speculative) { if (!descriptor_data) { op->ec_ = boost::asio::error::bad_descriptor; post_immediate_completion(op); return; } mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); if (descriptor_data->shutdown_) { post_immediate_completion(op); return; } bool first = descriptor_data->op_queue_[op_type].empty(); if (first) { if (allow_speculative) { if (op_type != read_op || descriptor_data->op_queue_[except_op].empty()) { if (op->perform()) { descriptor_lock.unlock(); io_service_.post_immediate_completion(op); return; } } } } descriptor_data->op_queue_[op_type].push(op); io_service_.work_started(); if (first) { struct kevent event; switch (op_type) { case read_op: BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_READ, EV_ADD | EV_ONESHOT, 0, 0, descriptor_data); break; case write_op: BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD | EV_ONESHOT, 0, 0, descriptor_data); break; case except_op: if (!descriptor_data->op_queue_[read_op].empty()) return; // Already registered for read events. BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_READ, EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data); break; } if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { op->ec_ = boost::system::error_code(errno, boost::asio::error::get_system_category()); descriptor_data->op_queue_[op_type].pop(); io_service_.post_deferred_completion(op); } } } void kqueue_reactor::cancel_ops(socket_type, kqueue_reactor::per_descriptor_data& descriptor_data) { if (!descriptor_data) return; mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); op_queue ops; for (int i = 0; i < max_ops; ++i) { while (reactor_op* op = descriptor_data->op_queue_[i].front()) { op->ec_ = boost::asio::error::operation_aborted; descriptor_data->op_queue_[i].pop(); ops.push(op); } } descriptor_lock.unlock(); io_service_.post_deferred_completions(ops); } void kqueue_reactor::close_descriptor(socket_type, kqueue_reactor::per_descriptor_data& descriptor_data) { if (!descriptor_data) return; mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_); if (!descriptor_data->shutdown_) { // Remove the descriptor from the set of known descriptors. The descriptor // will be automatically removed from the kqueue set when it is closed. op_queue ops; for (int i = 0; i < max_ops; ++i) { while (reactor_op* op = descriptor_data->op_queue_[i].front()) { op->ec_ = boost::asio::error::operation_aborted; descriptor_data->op_queue_[i].pop(); ops.push(op); } } descriptor_data->shutdown_ = true; descriptor_lock.unlock(); registered_descriptors_.free(descriptor_data); descriptor_data = 0; descriptors_lock.unlock(); io_service_.post_deferred_completions(ops); } } void kqueue_reactor::run(bool block, op_queue& ops) { mutex::scoped_lock lock(mutex_); // Determine how long to block while waiting for events. timespec timeout_buf = { 0, 0 }; timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf; lock.unlock(); // Block on the kqueue descriptor. struct kevent events[128]; int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout); // Dispatch the waiting events. for (int i = 0; i < num_events; ++i) { int descriptor = events[i].ident; void* ptr = reinterpret_cast(events[i].udata); if (ptr == &interrupter_) { // No need to reset the interrupter since we're leaving the descriptor // in a ready-to-read state and relying on one-shot notifications. } else { descriptor_state* descriptor_data = static_cast(ptr); mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); // Exception operations must be processed first to ensure that any // out-of-band data is read before normal data. #if defined(__NetBSD__) static const unsigned int filter[max_ops] = #else static const int filter[max_ops] = #endif { EVFILT_READ, EVFILT_WRITE, EVFILT_READ }; for (int j = max_ops - 1; j >= 0; --j) { if (events[i].filter == filter[j]) { if (j != except_op || events[i].flags & EV_OOBAND) { while (reactor_op* op = descriptor_data->op_queue_[j].front()) { if (events[i].flags & EV_ERROR) { op->ec_ = boost::system::error_code(events[i].data, boost::asio::error::get_system_category()); descriptor_data->op_queue_[j].pop(); ops.push(op); } if (op->perform()) { descriptor_data->op_queue_[j].pop(); ops.push(op); } else break; } } } } // Renew registration for event notifications. struct kevent event; switch (events[i].filter) { case EVFILT_READ: if (!descriptor_data->op_queue_[read_op].empty()) BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_READ, EV_ADD | EV_ONESHOT, 0, 0, descriptor_data); else if (!descriptor_data->op_queue_[except_op].empty()) BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_READ, EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data); else continue; case EVFILT_WRITE: if (!descriptor_data->op_queue_[write_op].empty()) BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD | EV_ONESHOT, 0, 0, descriptor_data); else continue; default: break; } if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { boost::system::error_code error(errno, boost::asio::error::get_system_category()); for (int j = 0; j < max_ops; ++j) { while (reactor_op* op = descriptor_data->op_queue_[j].front()) { op->ec_ = error; descriptor_data->op_queue_[j].pop(); ops.push(op); } } } } } lock.lock(); timer_queues_.get_ready_timers(ops); } void kqueue_reactor::interrupt() { struct kevent event; BOOST_ASIO_KQUEUE_EV_SET(&event, interrupter_.read_descriptor(), EVFILT_READ, EV_ADD | EV_ONESHOT, 0, 0, &interrupter_); ::kevent(kqueue_fd_, &event, 1, 0, 0, 0); } int kqueue_reactor::do_kqueue_create() { int fd = ::kqueue(); if (fd == -1) { boost::system::error_code ec(errno, boost::asio::error::get_system_category()); boost::asio::detail::throw_error(ec, "kqueue"); } return fd; } void kqueue_reactor::do_add_timer_queue(timer_queue_base& queue) { mutex::scoped_lock lock(mutex_); timer_queues_.insert(&queue); } void kqueue_reactor::do_remove_timer_queue(timer_queue_base& queue) { mutex::scoped_lock lock(mutex_); timer_queues_.erase(&queue); } timespec* kqueue_reactor::get_timeout(timespec& ts) { // By default we will wait no longer than 5 minutes. This will ensure that // any changes to the system clock are detected after no longer than this. long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000); ts.tv_sec = usec / 1000000; ts.tv_nsec = (usec % 1000000) * 1000; return &ts; } } // namespace detail } // namespace asio } // namespace boost #undef BOOST_ASIO_KQUEUE_EV_SET #include #endif // defined(BOOST_ASIO_HAS_KQUEUE) #endif // BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP