// // detail/impl/strand_service.hpp // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2011 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_IMPL_STRAND_SERVICE_HPP #define BOOST_ASIO_DETAIL_IMPL_STRAND_SERVICE_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include <boost/asio/detail/call_stack.hpp> #include <boost/asio/detail/completion_handler.hpp> #include <boost/asio/detail/fenced_block.hpp> #include <boost/asio/detail/handler_alloc_helpers.hpp> #include <boost/asio/detail/handler_invoke_helpers.hpp> #include <boost/asio/detail/push_options.hpp> namespace boost { namespace asio { namespace detail { inline strand_service::strand_impl::strand_impl() : operation(&strand_service::do_complete), count_(0) { } struct strand_service::on_dispatch_exit { io_service_impl* io_service_; strand_impl* impl_; ~on_dispatch_exit() { impl_->mutex_.lock(); bool more_handlers = (--impl_->count_ > 0); impl_->mutex_.unlock(); if (more_handlers) io_service_->post_immediate_completion(impl_); } }; inline void strand_service::destroy(strand_service::implementation_type& impl) { impl = 0; } template <typename Handler> void strand_service::dispatch(strand_service::implementation_type& impl, Handler handler) { // If we are already in the strand then the handler can run immediately. if (call_stack<strand_impl>::contains(impl)) { boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); return; } // Allocate and construct an operation to wrap the handler. typedef completion_handler<Handler> op; typename op::ptr p = { boost::addressof(handler), boost_asio_handler_alloc_helpers::allocate( sizeof(op), handler), 0 }; p.p = new (p.v) op(handler); // If we are running inside the io_service, and no other handler is queued // or running, then the handler can run immediately. bool can_dispatch = call_stack<io_service_impl>::contains(&io_service_); impl->mutex_.lock(); bool first = (++impl->count_ == 1); if (can_dispatch && first) { // Immediate invocation is allowed. impl->mutex_.unlock(); // Memory must be releaesed before any upcall is made. p.reset(); // Indicate that this strand is executing on the current thread. call_stack<strand_impl>::context ctx(impl); // Ensure the next handler, if any, is scheduled on block exit. on_dispatch_exit on_exit = { &io_service_, impl }; (void)on_exit; boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); return; } // Immediate invocation is not allowed, so enqueue for later. impl->queue_.push(p.p); impl->mutex_.unlock(); p.v = p.p = 0; // The first handler to be enqueued is responsible for scheduling the // strand. if (first) io_service_.post_immediate_completion(impl); } // Request the io_service to invoke the given handler and return immediately. template <typename Handler> void strand_service::post(strand_service::implementation_type& impl, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef completion_handler<Handler> op; typename op::ptr p = { boost::addressof(handler), boost_asio_handler_alloc_helpers::allocate( sizeof(op), handler), 0 }; p.p = new (p.v) op(handler); // Add the handler to the queue. impl->mutex_.lock(); bool first = (++impl->count_ == 1); impl->queue_.push(p.p); impl->mutex_.unlock(); p.v = p.p = 0; // The first handler to be enqueue is responsible for scheduling the strand. if (first) io_service_.post_immediate_completion(impl); } } // namespace detail } // namespace asio } // namespace boost #include <boost/asio/detail/pop_options.hpp> #endif // BOOST_ASIO_DETAIL_IMPL_STRAND_SERVICE_HPP