// // detail/impl/task_io_service.ipp // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2012 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_IMPL_TASK_IO_SERVICE_IPP #define BOOST_ASIO_DETAIL_IMPL_TASK_IO_SERVICE_IPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #if !defined(BOOST_ASIO_HAS_IOCP) #include #include #include #include #include namespace boost { namespace asio { namespace detail { struct task_io_service::thread_info { event* wakeup_event; op_queue private_op_queue; long private_outstanding_work; thread_info* next; }; struct task_io_service::task_cleanup { ~task_cleanup() { if (this_thread_->private_outstanding_work > 0) { boost::asio::detail::increment( task_io_service_->outstanding_work_, this_thread_->private_outstanding_work); } this_thread_->private_outstanding_work = 0; // Enqueue the completed operations and reinsert the task at the end of // the operation queue. lock_->lock(); task_io_service_->task_interrupted_ = true; task_io_service_->op_queue_.push(this_thread_->private_op_queue); task_io_service_->op_queue_.push(&task_io_service_->task_operation_); } task_io_service* task_io_service_; mutex::scoped_lock* lock_; thread_info* this_thread_; }; struct task_io_service::work_cleanup { ~work_cleanup() { if (this_thread_->private_outstanding_work > 1) { boost::asio::detail::increment( task_io_service_->outstanding_work_, this_thread_->private_outstanding_work - 1); } else if (this_thread_->private_outstanding_work < 1) { task_io_service_->work_finished(); } this_thread_->private_outstanding_work = 0; #if defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) if (!this_thread_->private_op_queue.empty()) { lock_->lock(); task_io_service_->op_queue_.push(this_thread_->private_op_queue); } #endif // defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) } task_io_service* task_io_service_; mutex::scoped_lock* lock_; thread_info* this_thread_; }; task_io_service::task_io_service( boost::asio::io_service& io_service, std::size_t concurrency_hint) : boost::asio::detail::service_base(io_service), one_thread_(concurrency_hint == 1), mutex_(), task_(0), task_interrupted_(true), outstanding_work_(0), stopped_(false), shutdown_(false), first_idle_thread_(0) { BOOST_ASIO_HANDLER_TRACKING_INIT; } void task_io_service::shutdown_service() { mutex::scoped_lock lock(mutex_); shutdown_ = true; lock.unlock(); // Destroy handler objects. while (!op_queue_.empty()) { operation* o = op_queue_.front(); op_queue_.pop(); if (o != &task_operation_) o->destroy(); } // Reset to initial state. task_ = 0; } void task_io_service::init_task() { mutex::scoped_lock lock(mutex_); if (!shutdown_ && !task_) { task_ = &use_service(this->get_io_service()); op_queue_.push(&task_operation_); wake_one_thread_and_unlock(lock); } } std::size_t task_io_service::run(boost::system::error_code& ec) { ec = boost::system::error_code(); if (outstanding_work_ == 0) { stop(); return 0; } thread_info this_thread; event wakeup_event; this_thread.wakeup_event = &wakeup_event; this_thread.private_outstanding_work = 0; this_thread.next = 0; thread_call_stack::context ctx(this, this_thread); mutex::scoped_lock lock(mutex_); std::size_t n = 0; for (; do_run_one(lock, this_thread, ec); lock.lock()) if (n != (std::numeric_limits::max)()) ++n; return n; } std::size_t task_io_service::run_one(boost::system::error_code& ec) { ec = boost::system::error_code(); if (outstanding_work_ == 0) { stop(); return 0; } thread_info this_thread; event wakeup_event; this_thread.wakeup_event = &wakeup_event; this_thread.private_outstanding_work = 0; this_thread.next = 0; thread_call_stack::context ctx(this, this_thread); mutex::scoped_lock lock(mutex_); return do_run_one(lock, this_thread, ec); } std::size_t task_io_service::poll(boost::system::error_code& ec) { ec = boost::system::error_code(); if (outstanding_work_ == 0) { stop(); return 0; } thread_info this_thread; this_thread.wakeup_event = 0; this_thread.private_outstanding_work = 0; this_thread.next = 0; thread_call_stack::context ctx(this, this_thread); mutex::scoped_lock lock(mutex_); #if defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) // We want to support nested calls to poll() and poll_one(), so any handlers // that are already on a thread-private queue need to be put on to the main // queue now. if (one_thread_) if (thread_info* outer_thread_info = ctx.next_by_key()) op_queue_.push(outer_thread_info->private_op_queue); #endif // defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) std::size_t n = 0; for (; do_poll_one(lock, this_thread, ec); lock.lock()) if (n != (std::numeric_limits::max)()) ++n; return n; } std::size_t task_io_service::poll_one(boost::system::error_code& ec) { ec = boost::system::error_code(); if (outstanding_work_ == 0) { stop(); return 0; } thread_info this_thread; this_thread.wakeup_event = 0; this_thread.private_outstanding_work = 0; this_thread.next = 0; thread_call_stack::context ctx(this, this_thread); mutex::scoped_lock lock(mutex_); #if defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) // We want to support nested calls to poll() and poll_one(), so any handlers // that are already on a thread-private queue need to be put on to the main // queue now. if (one_thread_) if (thread_info* outer_thread_info = ctx.next_by_key()) op_queue_.push(outer_thread_info->private_op_queue); #endif // defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) return do_poll_one(lock, this_thread, ec); } void task_io_service::stop() { mutex::scoped_lock lock(mutex_); stop_all_threads(lock); } bool task_io_service::stopped() const { mutex::scoped_lock lock(mutex_); return stopped_; } void task_io_service::reset() { mutex::scoped_lock lock(mutex_); stopped_ = false; } void task_io_service::post_immediate_completion(task_io_service::operation* op) { #if defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) if (one_thread_) { if (thread_info* this_thread = thread_call_stack::contains(this)) { ++this_thread->private_outstanding_work; this_thread->private_op_queue.push(op); return; } } #endif // defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) work_started(); mutex::scoped_lock lock(mutex_); op_queue_.push(op); wake_one_thread_and_unlock(lock); } void task_io_service::post_deferred_completion(task_io_service::operation* op) { #if defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) if (one_thread_) { if (thread_info* this_thread = thread_call_stack::contains(this)) { this_thread->private_op_queue.push(op); return; } } #endif // defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) mutex::scoped_lock lock(mutex_); op_queue_.push(op); wake_one_thread_and_unlock(lock); } void task_io_service::post_deferred_completions( op_queue& ops) { if (!ops.empty()) { #if defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) if (one_thread_) { if (thread_info* this_thread = thread_call_stack::contains(this)) { this_thread->private_op_queue.push(ops); return; } } #endif // defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) mutex::scoped_lock lock(mutex_); op_queue_.push(ops); wake_one_thread_and_unlock(lock); } } void task_io_service::post_private_immediate_completion( task_io_service::operation* op) { work_started(); post_private_deferred_completion(op); } void task_io_service::post_private_deferred_completion( task_io_service::operation* op) { #if defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) if (thread_info* this_thread = thread_call_stack::contains(this)) { this_thread->private_op_queue.push(op); return; } #endif // defined(BOOST_HAS_THREADS) && !defined(BOOST_ASIO_DISABLE_THREADS) mutex::scoped_lock lock(mutex_); op_queue_.push(op); wake_one_thread_and_unlock(lock); } void task_io_service::post_non_private_immediate_completion( task_io_service::operation* op) { work_started(); post_non_private_deferred_completion(op); } void task_io_service::post_non_private_deferred_completion( task_io_service::operation* op) { mutex::scoped_lock lock(mutex_); op_queue_.push(op); wake_one_thread_and_unlock(lock); } void task_io_service::abandon_operations( op_queue& ops) { op_queue ops2; ops2.push(ops); } std::size_t task_io_service::do_run_one(mutex::scoped_lock& lock, task_io_service::thread_info& this_thread, const boost::system::error_code& ec) { while (!stopped_) { if (!op_queue_.empty()) { // Prepare to execute first handler from queue. operation* o = op_queue_.front(); op_queue_.pop(); bool more_handlers = (!op_queue_.empty()); if (o == &task_operation_) { task_interrupted_ = more_handlers; if (more_handlers && !one_thread_) { if (!wake_one_idle_thread_and_unlock(lock)) lock.unlock(); } else lock.unlock(); task_cleanup on_exit = { this, &lock, &this_thread }; (void)on_exit; // Run the task. May throw an exception. Only block if the operation // queue is empty and we're not polling, otherwise we want to return // as soon as possible. task_->run(!more_handlers, this_thread.private_op_queue); } else { std::size_t task_result = o->task_result_; if (more_handlers && !one_thread_) wake_one_thread_and_unlock(lock); else lock.unlock(); // Ensure the count of outstanding work is decremented on block exit. work_cleanup on_exit = { this, &lock, &this_thread }; (void)on_exit; // Complete the operation. May throw an exception. Deletes the object. o->complete(*this, ec, task_result); return 1; } } else { // Nothing to run right now, so just wait for work to do. this_thread.next = first_idle_thread_; first_idle_thread_ = &this_thread; this_thread.wakeup_event->clear(lock); this_thread.wakeup_event->wait(lock); } } return 0; } std::size_t task_io_service::do_poll_one(mutex::scoped_lock& lock, task_io_service::thread_info& this_thread, const boost::system::error_code& ec) { if (stopped_) return 0; operation* o = op_queue_.front(); if (o == &task_operation_) { op_queue_.pop(); lock.unlock(); { task_cleanup c = { this, &lock, &this_thread }; (void)c; // Run the task. May throw an exception. Only block if the operation // queue is empty and we're not polling, otherwise we want to return // as soon as possible. task_->run(false, this_thread.private_op_queue); } o = op_queue_.front(); if (o == &task_operation_) return 0; } if (o == 0) return 0; op_queue_.pop(); bool more_handlers = (!op_queue_.empty()); std::size_t task_result = o->task_result_; if (more_handlers && !one_thread_) wake_one_thread_and_unlock(lock); else lock.unlock(); // Ensure the count of outstanding work is decremented on block exit. work_cleanup on_exit = { this, &lock, &this_thread }; (void)on_exit; // Complete the operation. May throw an exception. Deletes the object. o->complete(*this, ec, task_result); return 1; } void task_io_service::stop_all_threads( mutex::scoped_lock& lock) { stopped_ = true; while (first_idle_thread_) { thread_info* idle_thread = first_idle_thread_; first_idle_thread_ = idle_thread->next; idle_thread->next = 0; idle_thread->wakeup_event->signal(lock); } if (!task_interrupted_ && task_) { task_interrupted_ = true; task_->interrupt(); } } bool task_io_service::wake_one_idle_thread_and_unlock( mutex::scoped_lock& lock) { if (first_idle_thread_) { thread_info* idle_thread = first_idle_thread_; first_idle_thread_ = idle_thread->next; idle_thread->next = 0; idle_thread->wakeup_event->signal_and_unlock(lock); return true; } return false; } void task_io_service::wake_one_thread_and_unlock( mutex::scoped_lock& lock) { if (!wake_one_idle_thread_and_unlock(lock)) { if (!task_interrupted_ && task_) { task_interrupted_ = true; task_->interrupt(); } lock.unlock(); } } } // namespace detail } // namespace asio } // namespace boost #include #endif // !defined(BOOST_ASIO_HAS_IOCP) #endif // BOOST_ASIO_DETAIL_IMPL_TASK_IO_SERVICE_IPP