// // kqueue_reactor.hpp // ~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2010 Christopher M. Kohlhoff (chris at kohlhoff dot com) // Copyright (c) 2005 Stefan Arentz (stefan at soze dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP #define BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #include #if defined(BOOST_ASIO_HAS_KQUEUE) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Older versions of Mac OS X may not define EV_OOBAND. #if !defined(EV_OOBAND) # define EV_OOBAND EV_FLAG1 #endif // !defined(EV_OOBAND) namespace boost { namespace asio { namespace detail { class kqueue_reactor : public boost::asio::detail::service_base { public: enum op_types { read_op = 0, write_op = 1, connect_op = 1, except_op = 2, max_ops = 3 }; // Per-descriptor queues. struct descriptor_state { descriptor_state() {} descriptor_state(const descriptor_state&) {} void operator=(const descriptor_state&) {} mutex mutex_; op_queue op_queue_[max_ops]; bool shutdown_; }; // Per-descriptor data. typedef descriptor_state* per_descriptor_data; // Constructor. kqueue_reactor(boost::asio::io_service& io_service) : boost::asio::detail::service_base(io_service), io_service_(use_service(io_service)), mutex_(), kqueue_fd_(do_kqueue_create()), interrupter_(), shutdown_(false) { // The interrupter is put into a permanently readable state. Whenever we // want to interrupt the blocked kevent call we register a one-shot read // operation against the descriptor. interrupter_.interrupt(); } // Destructor. ~kqueue_reactor() { close(kqueue_fd_); } // Destroy all user-defined handler objects owned by the service. void shutdown_service() { mutex::scoped_lock lock(mutex_); shutdown_ = true; lock.unlock(); op_queue ops; descriptor_map::iterator iter = registered_descriptors_.begin(); descriptor_map::iterator end = registered_descriptors_.end(); while (iter != end) { for (int i = 0; i < max_ops; ++i) ops.push(iter->second.op_queue_[i]); iter->second.shutdown_ = true; ++iter; } timer_queues_.get_all_timers(ops); } // Initialise the task. void init_task() { io_service_.init_task(); } // Register a socket with the reactor. Returns 0 on success, system error // code on failure. int register_descriptor(socket_type descriptor, per_descriptor_data& descriptor_data) { mutex::scoped_lock lock(registered_descriptors_mutex_); descriptor_map::iterator new_entry = registered_descriptors_.insert( std::make_pair(descriptor, descriptor_state())).first; descriptor_data = &new_entry->second; descriptor_data->shutdown_ = false; return 0; } // Start a new operation. The reactor operation will be performed when the // given descriptor is flagged as ready, or an error has occurred. void start_op(int op_type, socket_type descriptor, per_descriptor_data& descriptor_data, reactor_op* op, bool allow_speculative) { mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); if (descriptor_data->shutdown_) return; bool first = descriptor_data->op_queue_[op_type].empty(); if (first) { if (allow_speculative) { if (op_type != read_op || descriptor_data->op_queue_[except_op].empty()) { if (op->perform()) { descriptor_lock.unlock(); io_service_.post_immediate_completion(op); return; } } } } descriptor_data->op_queue_[op_type].push(op); io_service_.work_started(); if (first) { struct kevent event; switch (op_type) { case read_op: EV_SET(&event, descriptor, EVFILT_READ, EV_ADD | EV_ONESHOT, 0, 0, descriptor_data); break; case write_op: EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD | EV_ONESHOT, 0, 0, descriptor_data); break; case except_op: if (!descriptor_data->op_queue_[read_op].empty()) return; // Already registered for read events. EV_SET(&event, descriptor, EVFILT_READ, EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data); break; } if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { op->ec_ = boost::system::error_code(errno, boost::asio::error::get_system_category()); descriptor_data->op_queue_[op_type].pop(); io_service_.post_deferred_completion(op); } } } // Cancel all operations associated with the given descriptor. The // handlers associated with the descriptor will be invoked with the // operation_aborted error. void cancel_ops(socket_type descriptor, per_descriptor_data& descriptor_data) { mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); op_queue ops; for (int i = 0; i < max_ops; ++i) { while (reactor_op* op = descriptor_data->op_queue_[i].front()) { op->ec_ = boost::asio::error::operation_aborted; descriptor_data->op_queue_[i].pop(); ops.push(op); } } descriptor_lock.unlock(); io_service_.post_deferred_completions(ops); } // Cancel any operations that are running against the descriptor and remove // its registration from the reactor. void close_descriptor(socket_type descriptor, per_descriptor_data& descriptor_data) { mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_); // Remove the descriptor from the set of known descriptors. The descriptor // will be automatically removed from the kqueue set when it is closed. descriptor_data->shutdown_ = true; op_queue ops; for (int i = 0; i < max_ops; ++i) { while (reactor_op* op = descriptor_data->op_queue_[i].front()) { op->ec_ = boost::asio::error::operation_aborted; descriptor_data->op_queue_[i].pop(); ops.push(op); } } descriptor_lock.unlock(); registered_descriptors_.erase(descriptor); descriptors_lock.unlock(); io_service_.post_deferred_completions(ops); } // Add a new timer queue to the reactor. template void add_timer_queue(timer_queue& timer_queue) { mutex::scoped_lock lock(mutex_); timer_queues_.insert(&timer_queue); } // Remove a timer queue from the reactor. template void remove_timer_queue(timer_queue& timer_queue) { mutex::scoped_lock lock(mutex_); timer_queues_.erase(&timer_queue); } // Schedule a new operation in the given timer queue to expire at the // specified absolute time. template void schedule_timer(timer_queue& timer_queue, const typename Time_Traits::time_type& time, timer_op* op, void* token) { mutex::scoped_lock lock(mutex_); if (!shutdown_) { bool earliest = timer_queue.enqueue_timer(time, op, token); io_service_.work_started(); if (earliest) interrupt(); } } // Cancel the timer operations associated with the given token. Returns the // number of operations that have been posted or dispatched. template std::size_t cancel_timer(timer_queue& timer_queue, void* token) { mutex::scoped_lock lock(mutex_); op_queue ops; std::size_t n = timer_queue.cancel_timer(token, ops); lock.unlock(); io_service_.post_deferred_completions(ops); return n; } // Run the kqueue loop. void run(bool block, op_queue& ops) { mutex::scoped_lock lock(mutex_); // Determine how long to block while waiting for events. timespec timeout_buf = { 0, 0 }; timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf; lock.unlock(); // Block on the kqueue descriptor. struct kevent events[128]; int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout); // Dispatch the waiting events. for (int i = 0; i < num_events; ++i) { int descriptor = events[i].ident; void* ptr = events[i].udata; if (ptr == &interrupter_) { // No need to reset the interrupter since we're leaving the descriptor // in a ready-to-read state and relying on one-shot notifications. } else { descriptor_state* descriptor_data = static_cast(ptr); mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); // Exception operations must be processed first to ensure that any // out-of-band data is read before normal data. static const int filter[max_ops] = { EVFILT_READ, EVFILT_WRITE, EVFILT_READ }; for (int j = max_ops - 1; j >= 0; --j) { if (events[i].filter == filter[j]) { if (j != except_op || events[i].flags & EV_OOBAND) { while (reactor_op* op = descriptor_data->op_queue_[j].front()) { if (events[i].flags & EV_ERROR) { op->ec_ = boost::system::error_code(events[i].data, boost::asio::error::get_system_category()); descriptor_data->op_queue_[j].pop(); ops.push(op); } if (op->perform()) { descriptor_data->op_queue_[j].pop(); ops.push(op); } else break; } } } } // Renew registration for event notifications. struct kevent event; switch (events[i].filter) { case EVFILT_READ: if (!descriptor_data->op_queue_[read_op].empty()) EV_SET(&event, descriptor, EVFILT_READ, EV_ADD | EV_ONESHOT, 0, 0, descriptor_data); else if (!descriptor_data->op_queue_[except_op].empty()) EV_SET(&event, descriptor, EVFILT_READ, EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data); else continue; case EVFILT_WRITE: if (!descriptor_data->op_queue_[write_op].empty()) EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD | EV_ONESHOT, 0, 0, descriptor_data); else continue; default: break; } if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { boost::system::error_code error(errno, boost::asio::error::get_system_category()); for (int j = 0; j < max_ops; ++j) { while (reactor_op* op = descriptor_data->op_queue_[j].front()) { op->ec_ = error; descriptor_data->op_queue_[j].pop(); ops.push(op); } } } } } lock.lock(); timer_queues_.get_ready_timers(ops); } // Interrupt the kqueue loop. void interrupt() { struct kevent event; EV_SET(&event, interrupter_.read_descriptor(), EVFILT_READ, EV_ADD | EV_ONESHOT, 0, 0, &interrupter_); ::kevent(kqueue_fd_, &event, 1, 0, 0, 0); } private: // Create the kqueue file descriptor. Throws an exception if the descriptor // cannot be created. static int do_kqueue_create() { int fd = kqueue(); if (fd == -1) { boost::throw_exception( boost::system::system_error( boost::system::error_code(errno, boost::asio::error::get_system_category()), "kqueue")); } return fd; } // Get the timeout value for the kevent call. timespec* get_timeout(timespec& ts) { // By default we will wait no longer than 5 minutes. This will ensure that // any changes to the system clock are detected after no longer than this. long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000); ts.tv_sec = usec / 1000000; ts.tv_nsec = (usec % 1000000) * 1000; return &ts; } // The io_service implementation used to post completions. io_service_impl& io_service_; // Mutex to protect access to internal data. mutex mutex_; // The kqueue file descriptor. int kqueue_fd_; // The interrupter is used to break a blocking kevent call. select_interrupter interrupter_; // The timer queues. timer_queue_set timer_queues_; // Whether the service has been shut down. bool shutdown_; // Mutex to protect access to the registered descriptors. mutex registered_descriptors_mutex_; // Keep track of all registered descriptors. This code relies on the fact that // the hash_map implementation pools deleted nodes, meaning that we can assume // our descriptor_state pointer remains valid even after the entry is removed. // Technically this is not true for C++98, as that standard says that spliced // elements in a list are invalidated. However, C++0x fixes this shortcoming // so we'll just assume that C++98 std::list implementations will do the right // thing anyway. typedef detail::hash_map descriptor_map; descriptor_map registered_descriptors_; }; } // namespace detail } // namespace asio } // namespace boost #endif // defined(BOOST_ASIO_HAS_KQUEUE) #include #endif // BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP