// // reactive_socket_service.hpp // ~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2010 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP #define BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include <boost/asio/detail/push_options.hpp> #include <boost/asio/buffer.hpp> #include <boost/asio/error.hpp> #include <boost/asio/io_service.hpp> #include <boost/asio/socket_base.hpp> #include <boost/asio/detail/bind_handler.hpp> #include <boost/asio/detail/buffer_sequence_adapter.hpp> #include <boost/asio/detail/fenced_block.hpp> #include <boost/asio/detail/noncopyable.hpp> #include <boost/asio/detail/null_buffers_op.hpp> #include <boost/asio/detail/reactor.hpp> #include <boost/asio/detail/reactor_op.hpp> #include <boost/asio/detail/socket_holder.hpp> #include <boost/asio/detail/socket_ops.hpp> #include <boost/asio/detail/socket_types.hpp> namespace boost { namespace asio { namespace detail { template <typename Protocol> class reactive_socket_service { public: // The protocol type. typedef Protocol protocol_type; // The endpoint type. typedef typename Protocol::endpoint endpoint_type; // The native type of a socket. typedef socket_type native_type; // The implementation type of the socket. class implementation_type : private boost::asio::detail::noncopyable { public: // Default constructor. implementation_type() : socket_(invalid_socket), flags_(0), protocol_(endpoint_type().protocol()) { } private: // Only this service will have access to the internal values. friend class reactive_socket_service<Protocol>; // The native socket representation. socket_type socket_; enum { // The user wants a non-blocking socket. user_set_non_blocking = 1, // The implementation wants a non-blocking socket (in order to be able to // perform asynchronous read and write operations). internal_non_blocking = 2, // Helper "flag" used to determine whether the socket is non-blocking. non_blocking = user_set_non_blocking | internal_non_blocking, // User wants connection_aborted errors, which are disabled by default. enable_connection_aborted = 4, // The user set the linger option. Needs to be checked when closing. user_set_linger = 8 }; // Flags indicating the current state of the socket. unsigned char flags_; // The protocol associated with the socket. protocol_type protocol_; // Per-descriptor data used by the reactor. reactor::per_descriptor_data reactor_data_; }; // Constructor. reactive_socket_service(boost::asio::io_service& io_service) : io_service_impl_(use_service<io_service_impl>(io_service)), reactor_(use_service<reactor>(io_service)) { reactor_.init_task(); } // Destroy all user-defined handler objects owned by the service. void shutdown_service() { } // Construct a new socket implementation. void construct(implementation_type& impl) { impl.socket_ = invalid_socket; impl.flags_ = 0; } // Destroy a socket implementation. void destroy(implementation_type& impl) { if (impl.socket_ != invalid_socket) { reactor_.close_descriptor(impl.socket_, impl.reactor_data_); if (impl.flags_ & implementation_type::non_blocking) { ioctl_arg_type non_blocking = 0; boost::system::error_code ignored_ec; socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ignored_ec); impl.flags_ &= ~implementation_type::non_blocking; } if (impl.flags_ & implementation_type::user_set_linger) { ::linger opt; opt.l_onoff = 0; opt.l_linger = 0; boost::system::error_code ignored_ec; socket_ops::setsockopt(impl.socket_, SOL_SOCKET, SO_LINGER, &opt, sizeof(opt), ignored_ec); } boost::system::error_code ignored_ec; socket_ops::close(impl.socket_, ignored_ec); impl.socket_ = invalid_socket; } } // Open a new socket implementation. boost::system::error_code open(implementation_type& impl, const protocol_type& protocol, boost::system::error_code& ec) { if (is_open(impl)) { ec = boost::asio::error::already_open; return ec; } socket_holder sock(socket_ops::socket(protocol.family(), protocol.type(), protocol.protocol(), ec)); if (sock.get() == invalid_socket) return ec; if (int err = reactor_.register_descriptor(sock.get(), impl.reactor_data_)) { ec = boost::system::error_code(err, boost::asio::error::get_system_category()); return ec; } impl.socket_ = sock.release(); impl.flags_ = 0; impl.protocol_ = protocol; ec = boost::system::error_code(); return ec; } // Assign a native socket to a socket implementation. boost::system::error_code assign(implementation_type& impl, const protocol_type& protocol, const native_type& native_socket, boost::system::error_code& ec) { if (is_open(impl)) { ec = boost::asio::error::already_open; return ec; } if (int err = reactor_.register_descriptor( native_socket, impl.reactor_data_)) { ec = boost::system::error_code(err, boost::asio::error::get_system_category()); return ec; } impl.socket_ = native_socket; impl.flags_ = 0; impl.protocol_ = protocol; ec = boost::system::error_code(); return ec; } // Determine whether the socket is open. bool is_open(const implementation_type& impl) const { return impl.socket_ != invalid_socket; } // Destroy a socket implementation. boost::system::error_code close(implementation_type& impl, boost::system::error_code& ec) { if (is_open(impl)) { reactor_.close_descriptor(impl.socket_, impl.reactor_data_); if (impl.flags_ & implementation_type::non_blocking) { ioctl_arg_type non_blocking = 0; boost::system::error_code ignored_ec; socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ignored_ec); impl.flags_ &= ~implementation_type::non_blocking; } if (socket_ops::close(impl.socket_, ec) == socket_error_retval) return ec; impl.socket_ = invalid_socket; } ec = boost::system::error_code(); return ec; } // Get the native socket representation. native_type native(implementation_type& impl) { return impl.socket_; } // Cancel all operations associated with the socket. boost::system::error_code cancel(implementation_type& impl, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } reactor_.cancel_ops(impl.socket_, impl.reactor_data_); ec = boost::system::error_code(); return ec; } // Determine whether the socket is at the out-of-band data mark. bool at_mark(const implementation_type& impl, boost::system::error_code& ec) const { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return false; } #if defined(SIOCATMARK) boost::asio::detail::ioctl_arg_type value = 0; socket_ops::ioctl(impl.socket_, SIOCATMARK, &value, ec); # if defined(ENOTTY) if (ec.value() == ENOTTY) ec = boost::asio::error::not_socket; # endif // defined(ENOTTY) #else // defined(SIOCATMARK) int value = sockatmark(impl.socket_); if (value == -1) ec = boost::system::error_code(errno, boost::asio::error::get_system_category()); else ec = boost::system::error_code(); #endif // defined(SIOCATMARK) return ec ? false : value != 0; } // Determine the number of bytes available for reading. std::size_t available(const implementation_type& impl, boost::system::error_code& ec) const { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } boost::asio::detail::ioctl_arg_type value = 0; socket_ops::ioctl(impl.socket_, FIONREAD, &value, ec); #if defined(ENOTTY) if (ec.value() == ENOTTY) ec = boost::asio::error::not_socket; #endif // defined(ENOTTY) return ec ? static_cast<std::size_t>(0) : static_cast<std::size_t>(value); } // Bind the socket to the specified local endpoint. boost::system::error_code bind(implementation_type& impl, const endpoint_type& endpoint, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } socket_ops::bind(impl.socket_, endpoint.data(), endpoint.size(), ec); return ec; } // Place the socket into the state where it will listen for new connections. boost::system::error_code listen(implementation_type& impl, int backlog, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } socket_ops::listen(impl.socket_, backlog, ec); return ec; } // Set a socket option. template <typename Option> boost::system::error_code set_option(implementation_type& impl, const Option& option, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } if (option.level(impl.protocol_) == custom_socket_option_level && option.name(impl.protocol_) == enable_connection_aborted_option) { if (option.size(impl.protocol_) != sizeof(int)) { ec = boost::asio::error::invalid_argument; } else { if (*reinterpret_cast<const int*>(option.data(impl.protocol_))) impl.flags_ |= implementation_type::enable_connection_aborted; else impl.flags_ &= ~implementation_type::enable_connection_aborted; ec = boost::system::error_code(); } return ec; } else { if (option.level(impl.protocol_) == SOL_SOCKET && option.name(impl.protocol_) == SO_LINGER) { impl.flags_ |= implementation_type::user_set_linger; } socket_ops::setsockopt(impl.socket_, option.level(impl.protocol_), option.name(impl.protocol_), option.data(impl.protocol_), option.size(impl.protocol_), ec); #if defined(__MACH__) && defined(__APPLE__) \ || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__OpenBSD__) // To implement portable behaviour for SO_REUSEADDR with UDP sockets we // need to also set SO_REUSEPORT on BSD-based platforms. if (!ec && impl.protocol_.type() == SOCK_DGRAM && option.level(impl.protocol_) == SOL_SOCKET && option.name(impl.protocol_) == SO_REUSEADDR) { boost::system::error_code ignored_ec; socket_ops::setsockopt(impl.socket_, SOL_SOCKET, SO_REUSEPORT, option.data(impl.protocol_), option.size(impl.protocol_), ignored_ec); } #endif return ec; } } // Set a socket option. template <typename Option> boost::system::error_code get_option(const implementation_type& impl, Option& option, boost::system::error_code& ec) const { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } if (option.level(impl.protocol_) == custom_socket_option_level && option.name(impl.protocol_) == enable_connection_aborted_option) { if (option.size(impl.protocol_) != sizeof(int)) { ec = boost::asio::error::invalid_argument; } else { int* target = reinterpret_cast<int*>(option.data(impl.protocol_)); if (impl.flags_ & implementation_type::enable_connection_aborted) *target = 1; else *target = 0; option.resize(impl.protocol_, sizeof(int)); ec = boost::system::error_code(); } return ec; } else { size_t size = option.size(impl.protocol_); socket_ops::getsockopt(impl.socket_, option.level(impl.protocol_), option.name(impl.protocol_), option.data(impl.protocol_), &size, ec); if (!ec) option.resize(impl.protocol_, size); return ec; } } // Perform an IO control command on the socket. template <typename IO_Control_Command> boost::system::error_code io_control(implementation_type& impl, IO_Control_Command& command, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } socket_ops::ioctl(impl.socket_, command.name(), static_cast<ioctl_arg_type*>(command.data()), ec); // When updating the non-blocking mode we always perform the ioctl // syscall, even if the flags would otherwise indicate that the socket is // already in the correct state. This ensures that the underlying socket // is put into the state that has been requested by the user. If the ioctl // syscall was successful then we need to update the flags to match. if (!ec && command.name() == static_cast<int>(FIONBIO)) { if (*static_cast<ioctl_arg_type*>(command.data())) { impl.flags_ |= implementation_type::user_set_non_blocking; } else { // Clearing the non-blocking mode always overrides any internally-set // non-blocking flag. Any subsequent asynchronous operations will need // to re-enable non-blocking I/O. impl.flags_ &= ~(implementation_type::user_set_non_blocking | implementation_type::internal_non_blocking); } } return ec; } // Get the local endpoint. endpoint_type local_endpoint(const implementation_type& impl, boost::system::error_code& ec) const { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return endpoint_type(); } endpoint_type endpoint; std::size_t addr_len = endpoint.capacity(); if (socket_ops::getsockname(impl.socket_, endpoint.data(), &addr_len, ec)) return endpoint_type(); endpoint.resize(addr_len); return endpoint; } // Get the remote endpoint. endpoint_type remote_endpoint(const implementation_type& impl, boost::system::error_code& ec) const { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return endpoint_type(); } endpoint_type endpoint; std::size_t addr_len = endpoint.capacity(); if (socket_ops::getpeername(impl.socket_, endpoint.data(), &addr_len, ec)) return endpoint_type(); endpoint.resize(addr_len); return endpoint; } /// Disable sends or receives on the socket. boost::system::error_code shutdown(implementation_type& impl, socket_base::shutdown_type what, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } socket_ops::shutdown(impl.socket_, what, ec); return ec; } // Send the given data to the peer. template <typename ConstBufferSequence> size_t send(implementation_type& impl, const ConstBufferSequence& buffers, socket_base::message_flags flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } buffer_sequence_adapter<boost::asio::const_buffer, ConstBufferSequence> bufs(buffers); // A request to receive 0 bytes on a stream socket is a no-op. if (impl.protocol_.type() == SOCK_STREAM && bufs.all_empty()) { ec = boost::system::error_code(); return 0; } // Send the data. for (;;) { // Try to complete the operation without blocking. int bytes_sent = socket_ops::send(impl.socket_, bufs.buffers(), bufs.count(), flags, ec); // Check if operation succeeded. if (bytes_sent >= 0) return bytes_sent; // Operation failed. if ((impl.flags_ & implementation_type::user_set_non_blocking) || (ec != boost::asio::error::would_block && ec != boost::asio::error::try_again)) return 0; // Wait for socket to become ready. if (socket_ops::poll_write(impl.socket_, ec) < 0) return 0; } } // Wait until data can be sent without blocking. size_t send(implementation_type& impl, const null_buffers&, socket_base::message_flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } // Wait for socket to become ready. socket_ops::poll_write(impl.socket_, ec); return 0; } template <typename ConstBufferSequence> class send_op_base : public reactor_op { public: send_op_base(socket_type socket, const ConstBufferSequence& buffers, socket_base::message_flags flags, func_type complete_func) : reactor_op(&send_op_base::do_perform, complete_func), socket_(socket), buffers_(buffers), flags_(flags) { } static bool do_perform(reactor_op* base) { send_op_base* o(static_cast<send_op_base*>(base)); buffer_sequence_adapter<boost::asio::const_buffer, ConstBufferSequence> bufs(o->buffers_); for (;;) { // Send the data. boost::system::error_code ec; int bytes = socket_ops::send(o->socket_, bufs.buffers(), bufs.count(), o->flags_, ec); // Retry operation if interrupted by signal. if (ec == boost::asio::error::interrupted) continue; // Check if we need to run the operation again. if (ec == boost::asio::error::would_block || ec == boost::asio::error::try_again) return false; o->ec_ = ec; o->bytes_transferred_ = (bytes < 0 ? 0 : bytes); return true; } } private: socket_type socket_; ConstBufferSequence buffers_; socket_base::message_flags flags_; }; template <typename ConstBufferSequence, typename Handler> class send_op : public send_op_base<ConstBufferSequence> { public: send_op(socket_type socket, const ConstBufferSequence& buffers, socket_base::message_flags flags, Handler handler) : send_op_base<ConstBufferSequence>(socket, buffers, flags, &send_op::do_complete), handler_(handler) { } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code /*ec*/, std::size_t /*bytes_transferred*/) { // Take ownership of the handler object. send_op* o(static_cast<send_op*>(base)); typedef handler_alloc_traits<Handler, send_op> alloc_traits; handler_ptr<alloc_traits> ptr(o->handler_, o); // Make the upcall if required. if (owner) { // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder2<Handler, boost::system::error_code, std::size_t> handler(o->handler_, o->ec_, o->bytes_transferred_); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: Handler handler_; }; // Start an asynchronous send. The data being sent must be valid for the // lifetime of the asynchronous operation. template <typename ConstBufferSequence, typename Handler> void async_send(implementation_type& impl, const ConstBufferSequence& buffers, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef send_op<ConstBufferSequence, Handler> value_type; typedef handler_alloc_traits<Handler, value_type> alloc_traits; raw_handler_ptr<alloc_traits> raw_ptr(handler); handler_ptr<alloc_traits> ptr(raw_ptr, impl.socket_, buffers, flags, handler); start_op(impl, reactor::write_op, ptr.get(), true, (impl.protocol_.type() == SOCK_STREAM && buffer_sequence_adapter<boost::asio::const_buffer, ConstBufferSequence>::all_empty(buffers))); ptr.release(); } // Start an asynchronous wait until data can be sent without blocking. template <typename Handler> void async_send(implementation_type& impl, const null_buffers&, socket_base::message_flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef null_buffers_op<Handler> value_type; typedef handler_alloc_traits<Handler, value_type> alloc_traits; raw_handler_ptr<alloc_traits> raw_ptr(handler); handler_ptr<alloc_traits> ptr(raw_ptr, handler); start_op(impl, reactor::write_op, ptr.get(), false, false); ptr.release(); } // Send a datagram to the specified endpoint. Returns the number of bytes // sent. template <typename ConstBufferSequence> size_t send_to(implementation_type& impl, const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } buffer_sequence_adapter<boost::asio::const_buffer, ConstBufferSequence> bufs(buffers); // Send the data. for (;;) { // Try to complete the operation without blocking. int bytes_sent = socket_ops::sendto(impl.socket_, bufs.buffers(), bufs.count(), flags, destination.data(), destination.size(), ec); // Check if operation succeeded. if (bytes_sent >= 0) return bytes_sent; // Operation failed. if ((impl.flags_ & implementation_type::user_set_non_blocking) || (ec != boost::asio::error::would_block && ec != boost::asio::error::try_again)) return 0; // Wait for socket to become ready. if (socket_ops::poll_write(impl.socket_, ec) < 0) return 0; } } // Wait until data can be sent without blocking. size_t send_to(implementation_type& impl, const null_buffers&, socket_base::message_flags, const endpoint_type&, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } // Wait for socket to become ready. socket_ops::poll_write(impl.socket_, ec); return 0; } template <typename ConstBufferSequence> class send_to_op_base : public reactor_op { public: send_to_op_base(socket_type socket, const ConstBufferSequence& buffers, const endpoint_type& endpoint, socket_base::message_flags flags, func_type complete_func) : reactor_op(&send_to_op_base::do_perform, complete_func), socket_(socket), buffers_(buffers), destination_(endpoint), flags_(flags) { } static bool do_perform(reactor_op* base) { send_to_op_base* o(static_cast<send_to_op_base*>(base)); buffer_sequence_adapter<boost::asio::const_buffer, ConstBufferSequence> bufs(o->buffers_); for (;;) { // Send the data. boost::system::error_code ec; int bytes = socket_ops::sendto(o->socket_, bufs.buffers(), bufs.count(), o->flags_, o->destination_.data(), o->destination_.size(), ec); // Retry operation if interrupted by signal. if (ec == boost::asio::error::interrupted) continue; // Check if we need to run the operation again. if (ec == boost::asio::error::would_block || ec == boost::asio::error::try_again) return false; o->ec_ = ec; o->bytes_transferred_ = (bytes < 0 ? 0 : bytes); return true; } } private: socket_type socket_; ConstBufferSequence buffers_; endpoint_type destination_; socket_base::message_flags flags_; }; template <typename ConstBufferSequence, typename Handler> class send_to_op : public send_to_op_base<ConstBufferSequence> { public: send_to_op(socket_type socket, const ConstBufferSequence& buffers, const endpoint_type& endpoint, socket_base::message_flags flags, Handler handler) : send_to_op_base<ConstBufferSequence>(socket, buffers, endpoint, flags, &send_to_op::do_complete), handler_(handler) { } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code /*ec*/, std::size_t /*bytes_transferred*/) { // Take ownership of the handler object. send_to_op* o(static_cast<send_to_op*>(base)); typedef handler_alloc_traits<Handler, send_to_op> alloc_traits; handler_ptr<alloc_traits> ptr(o->handler_, o); // Make the upcall if required. if (owner) { // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder2<Handler, boost::system::error_code, std::size_t> handler(o->handler_, o->ec_, o->bytes_transferred_); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: Handler handler_; }; // Start an asynchronous send. The data being sent must be valid for the // lifetime of the asynchronous operation. template <typename ConstBufferSequence, typename Handler> void async_send_to(implementation_type& impl, const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef send_to_op<ConstBufferSequence, Handler> value_type; typedef handler_alloc_traits<Handler, value_type> alloc_traits; raw_handler_ptr<alloc_traits> raw_ptr(handler); handler_ptr<alloc_traits> ptr(raw_ptr, impl.socket_, buffers, destination, flags, handler); start_op(impl, reactor::write_op, ptr.get(), true, false); ptr.release(); } // Start an asynchronous wait until data can be sent without blocking. template <typename Handler> void async_send_to(implementation_type& impl, const null_buffers&, socket_base::message_flags, const endpoint_type&, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef null_buffers_op<Handler> value_type; typedef handler_alloc_traits<Handler, value_type> alloc_traits; raw_handler_ptr<alloc_traits> raw_ptr(handler); handler_ptr<alloc_traits> ptr(raw_ptr, handler); start_op(impl, reactor::write_op, ptr.get(), false, false); ptr.release(); } // Receive some data from the peer. Returns the number of bytes received. template <typename MutableBufferSequence> size_t receive(implementation_type& impl, const MutableBufferSequence& buffers, socket_base::message_flags flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } buffer_sequence_adapter<boost::asio::mutable_buffer, MutableBufferSequence> bufs(buffers); // A request to receive 0 bytes on a stream socket is a no-op. if (impl.protocol_.type() == SOCK_STREAM && bufs.all_empty()) { ec = boost::system::error_code(); return 0; } // Receive some data. for (;;) { // Try to complete the operation without blocking. int bytes_recvd = socket_ops::recv(impl.socket_, bufs.buffers(), bufs.count(), flags, ec); // Check if operation succeeded. if (bytes_recvd > 0) return bytes_recvd; // Check for EOF. if (bytes_recvd == 0 && impl.protocol_.type() == SOCK_STREAM) { ec = boost::asio::error::eof; return 0; } // Operation failed. if ((impl.flags_ & implementation_type::user_set_non_blocking) || (ec != boost::asio::error::would_block && ec != boost::asio::error::try_again)) return 0; // Wait for socket to become ready. if (socket_ops::poll_read(impl.socket_, ec) < 0) return 0; } } // Wait until data can be received without blocking. size_t receive(implementation_type& impl, const null_buffers&, socket_base::message_flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } // Wait for socket to become ready. socket_ops::poll_read(impl.socket_, ec); return 0; } template <typename MutableBufferSequence> class receive_op_base : public reactor_op { public: receive_op_base(socket_type socket, int protocol_type, const MutableBufferSequence& buffers, socket_base::message_flags flags, func_type complete_func) : reactor_op(&receive_op_base::do_perform, complete_func), socket_(socket), protocol_type_(protocol_type), buffers_(buffers), flags_(flags) { } static bool do_perform(reactor_op* base) { receive_op_base* o(static_cast<receive_op_base*>(base)); buffer_sequence_adapter<boost::asio::mutable_buffer, MutableBufferSequence> bufs(o->buffers_); for (;;) { // Receive some data. boost::system::error_code ec; int bytes = socket_ops::recv(o->socket_, bufs.buffers(), bufs.count(), o->flags_, ec); if (bytes == 0 && o->protocol_type_ == SOCK_STREAM) ec = boost::asio::error::eof; // Retry operation if interrupted by signal. if (ec == boost::asio::error::interrupted) continue; // Check if we need to run the operation again. if (ec == boost::asio::error::would_block || ec == boost::asio::error::try_again) return false; o->ec_ = ec; o->bytes_transferred_ = (bytes < 0 ? 0 : bytes); return true; } } private: socket_type socket_; int protocol_type_; MutableBufferSequence buffers_; socket_base::message_flags flags_; }; template <typename MutableBufferSequence, typename Handler> class receive_op : public receive_op_base<MutableBufferSequence> { public: receive_op(socket_type socket, int protocol_type, const MutableBufferSequence& buffers, socket_base::message_flags flags, Handler handler) : receive_op_base<MutableBufferSequence>(socket, protocol_type, buffers, flags, &receive_op::do_complete), handler_(handler) { } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code /*ec*/, std::size_t /*bytes_transferred*/) { // Take ownership of the handler object. receive_op* o(static_cast<receive_op*>(base)); typedef handler_alloc_traits<Handler, receive_op> alloc_traits; handler_ptr<alloc_traits> ptr(o->handler_, o); // Make the upcall if required. if (owner) { // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder2<Handler, boost::system::error_code, std::size_t> handler(o->handler_, o->ec_, o->bytes_transferred_); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: Handler handler_; }; // Start an asynchronous receive. The buffer for the data being received // must be valid for the lifetime of the asynchronous operation. template <typename MutableBufferSequence, typename Handler> void async_receive(implementation_type& impl, const MutableBufferSequence& buffers, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef receive_op<MutableBufferSequence, Handler> value_type; typedef handler_alloc_traits<Handler, value_type> alloc_traits; raw_handler_ptr<alloc_traits> raw_ptr(handler); int protocol_type = impl.protocol_.type(); handler_ptr<alloc_traits> ptr(raw_ptr, impl.socket_, protocol_type, buffers, flags, handler); start_op(impl, (flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, ptr.get(), (flags & socket_base::message_out_of_band) == 0, (impl.protocol_.type() == SOCK_STREAM && buffer_sequence_adapter<boost::asio::mutable_buffer, MutableBufferSequence>::all_empty(buffers))); ptr.release(); } // Wait until data can be received without blocking. template <typename Handler> void async_receive(implementation_type& impl, const null_buffers&, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef null_buffers_op<Handler> value_type; typedef handler_alloc_traits<Handler, value_type> alloc_traits; raw_handler_ptr<alloc_traits> raw_ptr(handler); handler_ptr<alloc_traits> ptr(raw_ptr, handler); start_op(impl, (flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, ptr.get(), false, false); ptr.release(); } // Receive a datagram with the endpoint of the sender. Returns the number of // bytes received. template <typename MutableBufferSequence> size_t receive_from(implementation_type& impl, const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } buffer_sequence_adapter<boost::asio::mutable_buffer, MutableBufferSequence> bufs(buffers); // Receive some data. for (;;) { // Try to complete the operation without blocking. std::size_t addr_len = sender_endpoint.capacity(); int bytes_recvd = socket_ops::recvfrom(impl.socket_, bufs.buffers(), bufs.count(), flags, sender_endpoint.data(), &addr_len, ec); // Check if operation succeeded. if (bytes_recvd > 0) { sender_endpoint.resize(addr_len); return bytes_recvd; } // Check for EOF. if (bytes_recvd == 0 && impl.protocol_.type() == SOCK_STREAM) { ec = boost::asio::error::eof; return 0; } // Operation failed. if ((impl.flags_ & implementation_type::user_set_non_blocking) || (ec != boost::asio::error::would_block && ec != boost::asio::error::try_again)) return 0; // Wait for socket to become ready. if (socket_ops::poll_read(impl.socket_, ec) < 0) return 0; } } // Wait until data can be received without blocking. size_t receive_from(implementation_type& impl, const null_buffers&, endpoint_type& sender_endpoint, socket_base::message_flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } // Wait for socket to become ready. socket_ops::poll_read(impl.socket_, ec); // Reset endpoint since it can be given no sensible value at this time. sender_endpoint = endpoint_type(); return 0; } template <typename MutableBufferSequence> class receive_from_op_base : public reactor_op { public: receive_from_op_base(socket_type socket, int protocol_type, const MutableBufferSequence& buffers, endpoint_type& endpoint, socket_base::message_flags flags, func_type complete_func) : reactor_op(&receive_from_op_base::do_perform, complete_func), socket_(socket), protocol_type_(protocol_type), buffers_(buffers), sender_endpoint_(endpoint), flags_(flags) { } static bool do_perform(reactor_op* base) { receive_from_op_base* o(static_cast<receive_from_op_base*>(base)); buffer_sequence_adapter<boost::asio::mutable_buffer, MutableBufferSequence> bufs(o->buffers_); for (;;) { // Receive some data. boost::system::error_code ec; std::size_t addr_len = o->sender_endpoint_.capacity(); int bytes = socket_ops::recvfrom(o->socket_, bufs.buffers(), bufs.count(), o->flags_, o->sender_endpoint_.data(), &addr_len, ec); if (bytes == 0 && o->protocol_type_ == SOCK_STREAM) ec = boost::asio::error::eof; // Retry operation if interrupted by signal. if (ec == boost::asio::error::interrupted) continue; // Check if we need to run the operation again. if (ec == boost::asio::error::would_block || ec == boost::asio::error::try_again) return false; o->sender_endpoint_.resize(addr_len); o->ec_ = ec; o->bytes_transferred_ = (bytes < 0 ? 0 : bytes); return true; } } private: socket_type socket_; int protocol_type_; MutableBufferSequence buffers_; endpoint_type& sender_endpoint_; socket_base::message_flags flags_; }; template <typename MutableBufferSequence, typename Handler> class receive_from_op : public receive_from_op_base<MutableBufferSequence> { public: receive_from_op(socket_type socket, int protocol_type, const MutableBufferSequence& buffers, endpoint_type& endpoint, socket_base::message_flags flags, Handler handler) : receive_from_op_base<MutableBufferSequence>(socket, protocol_type, buffers, endpoint, flags, &receive_from_op::do_complete), handler_(handler) { } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code /*ec*/, std::size_t /*bytes_transferred*/) { // Take ownership of the handler object. receive_from_op* o(static_cast<receive_from_op*>(base)); typedef handler_alloc_traits<Handler, receive_from_op> alloc_traits; handler_ptr<alloc_traits> ptr(o->handler_, o); // Make the upcall if required. if (owner) { // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder2<Handler, boost::system::error_code, std::size_t> handler(o->handler_, o->ec_, o->bytes_transferred_); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: Handler handler_; }; // Start an asynchronous receive. The buffer for the data being received and // the sender_endpoint object must both be valid for the lifetime of the // asynchronous operation. template <typename MutableBufferSequence, typename Handler> void async_receive_from(implementation_type& impl, const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef receive_from_op<MutableBufferSequence, Handler> value_type; typedef handler_alloc_traits<Handler, value_type> alloc_traits; raw_handler_ptr<alloc_traits> raw_ptr(handler); int protocol_type = impl.protocol_.type(); handler_ptr<alloc_traits> ptr(raw_ptr, impl.socket_, protocol_type, buffers, sender_endpoint, flags, handler); start_op(impl, (flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, ptr.get(), true, false); ptr.release(); } // Wait until data can be received without blocking. template <typename Handler> void async_receive_from(implementation_type& impl, const null_buffers&, endpoint_type& sender_endpoint, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef null_buffers_op<Handler> value_type; typedef handler_alloc_traits<Handler, value_type> alloc_traits; raw_handler_ptr<alloc_traits> raw_ptr(handler); handler_ptr<alloc_traits> ptr(raw_ptr, handler); // Reset endpoint since it can be given no sensible value at this time. sender_endpoint = endpoint_type(); start_op(impl, (flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, ptr.get(), false, false); ptr.release(); } // Accept a new connection. template <typename Socket> boost::system::error_code accept(implementation_type& impl, Socket& peer, endpoint_type* peer_endpoint, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } // We cannot accept a socket that is already open. if (peer.is_open()) { ec = boost::asio::error::already_open; return ec; } // Accept a socket. for (;;) { // Try to complete the operation without blocking. socket_holder new_socket; std::size_t addr_len = 0; if (peer_endpoint) { addr_len = peer_endpoint->capacity(); new_socket.reset(socket_ops::accept(impl.socket_, peer_endpoint->data(), &addr_len, ec)); } else { new_socket.reset(socket_ops::accept(impl.socket_, 0, 0, ec)); } // Check if operation succeeded. if (new_socket.get() >= 0) { if (peer_endpoint) peer_endpoint->resize(addr_len); peer.assign(impl.protocol_, new_socket.get(), ec); if (!ec) new_socket.release(); return ec; } // Operation failed. if (ec == boost::asio::error::would_block || ec == boost::asio::error::try_again) { if (impl.flags_ & implementation_type::user_set_non_blocking) return ec; // Fall through to retry operation. } else if (ec == boost::asio::error::connection_aborted) { if (impl.flags_ & implementation_type::enable_connection_aborted) return ec; // Fall through to retry operation. } #if defined(EPROTO) else if (ec.value() == EPROTO) { if (impl.flags_ & implementation_type::enable_connection_aborted) return ec; // Fall through to retry operation. } #endif // defined(EPROTO) else return ec; // Wait for socket to become ready. if (socket_ops::poll_read(impl.socket_, ec) < 0) return ec; } } template <typename Socket> class accept_op_base : public reactor_op { public: accept_op_base(socket_type socket, Socket& peer, const protocol_type& protocol, endpoint_type* peer_endpoint, bool enable_connection_aborted, func_type complete_func) : reactor_op(&accept_op_base::do_perform, complete_func), socket_(socket), peer_(peer), protocol_(protocol), peer_endpoint_(peer_endpoint), enable_connection_aborted_(enable_connection_aborted) { } static bool do_perform(reactor_op* base) { accept_op_base* o(static_cast<accept_op_base*>(base)); for (;;) { // Accept the waiting connection. boost::system::error_code ec; socket_holder new_socket; std::size_t addr_len = 0; std::size_t* addr_len_p = 0; socket_addr_type* addr = 0; if (o->peer_endpoint_) { addr_len = o->peer_endpoint_->capacity(); addr_len_p = &addr_len; addr = o->peer_endpoint_->data(); } new_socket.reset(socket_ops::accept(o->socket_, addr, addr_len_p, ec)); // Retry operation if interrupted by signal. if (ec == boost::asio::error::interrupted) continue; // Check if we need to run the operation again. if (ec == boost::asio::error::would_block || ec == boost::asio::error::try_again) return false; if (ec == boost::asio::error::connection_aborted && !o->enable_connection_aborted_) return false; #if defined(EPROTO) if (ec.value() == EPROTO && !o->enable_connection_aborted_) return false; #endif // defined(EPROTO) // Transfer ownership of the new socket to the peer object. if (!ec) { if (o->peer_endpoint_) o->peer_endpoint_->resize(addr_len); o->peer_.assign(o->protocol_, new_socket.get(), ec); if (!ec) new_socket.release(); } o->ec_ = ec; return true; } } private: socket_type socket_; Socket& peer_; protocol_type protocol_; endpoint_type* peer_endpoint_; bool enable_connection_aborted_; }; template <typename Socket, typename Handler> class accept_op : public accept_op_base<Socket> { public: accept_op(socket_type socket, Socket& peer, const protocol_type& protocol, endpoint_type* peer_endpoint, bool enable_connection_aborted, Handler handler) : accept_op_base<Socket>(socket, peer, protocol, peer_endpoint, enable_connection_aborted, &accept_op::do_complete), handler_(handler) { } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code /*ec*/, std::size_t /*bytes_transferred*/) { // Take ownership of the handler object. accept_op* o(static_cast<accept_op*>(base)); typedef handler_alloc_traits<Handler, accept_op> alloc_traits; handler_ptr<alloc_traits> ptr(o->handler_, o); // Make the upcall if required. if (owner) { // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder1<Handler, boost::system::error_code> handler(o->handler_, o->ec_); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: Handler handler_; }; // Start an asynchronous accept. The peer and peer_endpoint objects // must be valid until the accept's handler is invoked. template <typename Socket, typename Handler> void async_accept(implementation_type& impl, Socket& peer, endpoint_type* peer_endpoint, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef accept_op<Socket, Handler> value_type; typedef handler_alloc_traits<Handler, value_type> alloc_traits; raw_handler_ptr<alloc_traits> raw_ptr(handler); bool enable_connection_aborted = (impl.flags_ & implementation_type::enable_connection_aborted) != 0; handler_ptr<alloc_traits> ptr(raw_ptr, impl.socket_, peer, impl.protocol_, peer_endpoint, enable_connection_aborted, handler); start_accept_op(impl, ptr.get(), peer.is_open()); ptr.release(); } // Connect the socket to the specified endpoint. boost::system::error_code connect(implementation_type& impl, const endpoint_type& peer_endpoint, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } // Perform the connect operation. socket_ops::connect(impl.socket_, peer_endpoint.data(), peer_endpoint.size(), ec); if (ec != boost::asio::error::in_progress && ec != boost::asio::error::would_block) { // The connect operation finished immediately. return ec; } // Wait for socket to become ready. if (socket_ops::poll_connect(impl.socket_, ec) < 0) return ec; // Get the error code from the connect operation. int connect_error = 0; size_t connect_error_len = sizeof(connect_error); if (socket_ops::getsockopt(impl.socket_, SOL_SOCKET, SO_ERROR, &connect_error, &connect_error_len, ec) == socket_error_retval) return ec; // Return the result of the connect operation. ec = boost::system::error_code(connect_error, boost::asio::error::get_system_category()); return ec; } class connect_op_base : public reactor_op { public: connect_op_base(socket_type socket, func_type complete_func) : reactor_op(&connect_op_base::do_perform, complete_func), socket_(socket) { } static bool do_perform(reactor_op* base) { connect_op_base* o(static_cast<connect_op_base*>(base)); // Get the error code from the connect operation. int connect_error = 0; size_t connect_error_len = sizeof(connect_error); if (socket_ops::getsockopt(o->socket_, SOL_SOCKET, SO_ERROR, &connect_error, &connect_error_len, o->ec_) == socket_error_retval) return true; // The connection failed so the handler will be posted with an error code. if (connect_error) { o->ec_ = boost::system::error_code(connect_error, boost::asio::error::get_system_category()); } return true; } private: socket_type socket_; }; template <typename Handler> class connect_op : public connect_op_base { public: connect_op(socket_type socket, Handler handler) : connect_op_base(socket, &connect_op::do_complete), handler_(handler) { } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code /*ec*/, std::size_t /*bytes_transferred*/) { // Take ownership of the handler object. connect_op* o(static_cast<connect_op*>(base)); typedef handler_alloc_traits<Handler, connect_op> alloc_traits; handler_ptr<alloc_traits> ptr(o->handler_, o); // Make the upcall if required. if (owner) { // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder1<Handler, boost::system::error_code> handler(o->handler_, o->ec_); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: Handler handler_; }; // Start an asynchronous connect. template <typename Handler> void async_connect(implementation_type& impl, const endpoint_type& peer_endpoint, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef connect_op<Handler> value_type; typedef handler_alloc_traits<Handler, value_type> alloc_traits; raw_handler_ptr<alloc_traits> raw_ptr(handler); handler_ptr<alloc_traits> ptr(raw_ptr, impl.socket_, handler); start_connect_op(impl, ptr.get(), peer_endpoint); ptr.release(); } private: // Start the asynchronous read or write operation. void start_op(implementation_type& impl, int op_type, reactor_op* op, bool non_blocking, bool noop) { if (!noop) { if (is_open(impl)) { if (!non_blocking || is_non_blocking(impl) || set_non_blocking(impl, op->ec_)) { reactor_.start_op(op_type, impl.socket_, impl.reactor_data_, op, non_blocking); return; } } else op->ec_ = boost::asio::error::bad_descriptor; } io_service_impl_.post_immediate_completion(op); } // Start the asynchronous accept operation. void start_accept_op(implementation_type& impl, reactor_op* op, bool peer_is_open) { if (!peer_is_open) start_op(impl, reactor::read_op, op, true, false); else { op->ec_ = boost::asio::error::already_open; io_service_impl_.post_immediate_completion(op); } } // Start the asynchronous connect operation. void start_connect_op(implementation_type& impl, reactor_op* op, const endpoint_type& peer_endpoint) { if (is_open(impl)) { if (is_non_blocking(impl) || set_non_blocking(impl, op->ec_)) { if (socket_ops::connect(impl.socket_, peer_endpoint.data(), peer_endpoint.size(), op->ec_) != 0) { if (op->ec_ == boost::asio::error::in_progress || op->ec_ == boost::asio::error::would_block) { op->ec_ = boost::system::error_code(); reactor_.start_op(reactor::connect_op, impl.socket_, impl.reactor_data_, op, false); return; } } } } else op->ec_ = boost::asio::error::bad_descriptor; io_service_impl_.post_immediate_completion(op); } // Determine whether the socket has been set non-blocking. bool is_non_blocking(implementation_type& impl) const { return (impl.flags_ & implementation_type::non_blocking); } // Set the internal non-blocking flag. bool set_non_blocking(implementation_type& impl, boost::system::error_code& ec) { ioctl_arg_type non_blocking = 1; if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ec)) return false; impl.flags_ |= implementation_type::internal_non_blocking; return true; } // The io_service implementation used to post completions. io_service_impl& io_service_impl_; // The selector that performs event demultiplexing for the service. reactor& reactor_; }; } // namespace detail } // namespace asio } // namespace boost #include <boost/asio/detail/pop_options.hpp> #endif // BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP