// // win_iocp_socket_service.hpp // ~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2010 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_WIN_IOCP_SOCKET_SERVICE_HPP #define BOOST_ASIO_DETAIL_WIN_IOCP_SOCKET_SERVICE_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #include #if defined(BOOST_ASIO_HAS_IOCP) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace asio { namespace detail { template class win_iocp_socket_service { public: // The protocol type. typedef Protocol protocol_type; // The endpoint type. typedef typename Protocol::endpoint endpoint_type; struct noop_deleter { void operator()(void*) {} }; typedef boost::shared_ptr shared_cancel_token_type; typedef boost::weak_ptr weak_cancel_token_type; // The native type of a socket. class native_type { public: native_type(socket_type s) : socket_(s), have_remote_endpoint_(false) { } native_type(socket_type s, const endpoint_type& ep) : socket_(s), have_remote_endpoint_(true), remote_endpoint_(ep) { } void operator=(socket_type s) { socket_ = s; have_remote_endpoint_ = false; remote_endpoint_ = endpoint_type(); } operator socket_type() const { return socket_; } HANDLE as_handle() const { return reinterpret_cast(socket_); } bool have_remote_endpoint() const { return have_remote_endpoint_; } endpoint_type remote_endpoint() const { return remote_endpoint_; } private: socket_type socket_; bool have_remote_endpoint_; endpoint_type remote_endpoint_; }; // The implementation type of the socket. class implementation_type { public: // Default constructor. implementation_type() : socket_(invalid_socket), flags_(0), cancel_token_(), protocol_(endpoint_type().protocol()), next_(0), prev_(0) { } private: // Only this service will have access to the internal values. friend class win_iocp_socket_service; // The native socket representation. native_type socket_; enum { enable_connection_aborted = 1, // User wants connection_aborted errors. close_might_block = 2, // User set linger option for blocking close. user_set_non_blocking = 4 // The user wants a non-blocking socket. }; // Flags indicating the current state of the socket. unsigned char flags_; // We use a shared pointer as a cancellation token here to work around the // broken Windows support for cancellation. MSDN says that when you call // closesocket any outstanding WSARecv or WSASend operations will complete // with the error ERROR_OPERATION_ABORTED. In practice they complete with // ERROR_NETNAME_DELETED, which means you can't tell the difference between // a local cancellation and the socket being hard-closed by the peer. shared_cancel_token_type cancel_token_; // The protocol associated with the socket. protocol_type protocol_; // Per-descriptor data used by the reactor. reactor::per_descriptor_data reactor_data_; #if defined(BOOST_ASIO_ENABLE_CANCELIO) // The ID of the thread from which it is safe to cancel asynchronous // operations. 0 means no asynchronous operations have been started yet. // ~0 means asynchronous operations have been started from more than one // thread, and cancellation is not supported for the socket. DWORD safe_cancellation_thread_id_; #endif // defined(BOOST_ASIO_ENABLE_CANCELIO) // Pointers to adjacent socket implementations in linked list. implementation_type* next_; implementation_type* prev_; }; // Constructor. win_iocp_socket_service(boost::asio::io_service& io_service) : io_service_(io_service), iocp_service_(use_service(io_service)), reactor_(0), mutex_(), impl_list_(0) { } // Destroy all user-defined handler objects owned by the service. void shutdown_service() { // Close all implementations, causing all operations to complete. boost::asio::detail::mutex::scoped_lock lock(mutex_); implementation_type* impl = impl_list_; while (impl) { boost::system::error_code ignored_ec; close_for_destruction(*impl); impl = impl->next_; } } // Construct a new socket implementation. void construct(implementation_type& impl) { impl.socket_ = invalid_socket; impl.flags_ = 0; impl.cancel_token_.reset(); #if defined(BOOST_ASIO_ENABLE_CANCELIO) impl.safe_cancellation_thread_id_ = 0; #endif // defined(BOOST_ASIO_ENABLE_CANCELIO) // Insert implementation into linked list of all implementations. boost::asio::detail::mutex::scoped_lock lock(mutex_); impl.next_ = impl_list_; impl.prev_ = 0; if (impl_list_) impl_list_->prev_ = &impl; impl_list_ = &impl; } // Destroy a socket implementation. void destroy(implementation_type& impl) { close_for_destruction(impl); // Remove implementation from linked list of all implementations. boost::asio::detail::mutex::scoped_lock lock(mutex_); if (impl_list_ == &impl) impl_list_ = impl.next_; if (impl.prev_) impl.prev_->next_ = impl.next_; if (impl.next_) impl.next_->prev_= impl.prev_; impl.next_ = 0; impl.prev_ = 0; } // Open a new socket implementation. boost::system::error_code open(implementation_type& impl, const protocol_type& protocol, boost::system::error_code& ec) { if (is_open(impl)) { ec = boost::asio::error::already_open; return ec; } socket_holder sock(socket_ops::socket(protocol.family(), protocol.type(), protocol.protocol(), ec)); if (sock.get() == invalid_socket) return ec; HANDLE sock_as_handle = reinterpret_cast(sock.get()); if (iocp_service_.register_handle(sock_as_handle, ec)) return ec; impl.socket_ = sock.release(); impl.flags_ = 0; impl.cancel_token_.reset(static_cast(0), noop_deleter()); impl.protocol_ = protocol; ec = boost::system::error_code(); return ec; } // Assign a native socket to a socket implementation. boost::system::error_code assign(implementation_type& impl, const protocol_type& protocol, const native_type& native_socket, boost::system::error_code& ec) { if (is_open(impl)) { ec = boost::asio::error::already_open; return ec; } if (iocp_service_.register_handle(native_socket.as_handle(), ec)) return ec; impl.socket_ = native_socket; impl.flags_ = 0; impl.cancel_token_.reset(static_cast(0), noop_deleter()); impl.protocol_ = protocol; ec = boost::system::error_code(); return ec; } // Determine whether the socket is open. bool is_open(const implementation_type& impl) const { return impl.socket_ != invalid_socket; } // Destroy a socket implementation. boost::system::error_code close(implementation_type& impl, boost::system::error_code& ec) { if (is_open(impl)) { // Check if the reactor was created, in which case we need to close the // socket on the reactor as well to cancel any operations that might be // running there. reactor* r = static_cast( interlocked_compare_exchange_pointer( reinterpret_cast(&reactor_), 0, 0)); if (r) r->close_descriptor(impl.socket_, impl.reactor_data_); if (socket_ops::close(impl.socket_, ec) == socket_error_retval) return ec; impl.socket_ = invalid_socket; impl.flags_ = 0; impl.cancel_token_.reset(); #if defined(BOOST_ASIO_ENABLE_CANCELIO) impl.safe_cancellation_thread_id_ = 0; #endif // defined(BOOST_ASIO_ENABLE_CANCELIO) } ec = boost::system::error_code(); return ec; } // Get the native socket representation. native_type native(implementation_type& impl) { return impl.socket_; } // Cancel all operations associated with the socket. boost::system::error_code cancel(implementation_type& impl, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } else if (FARPROC cancel_io_ex_ptr = ::GetProcAddress( ::GetModuleHandleA("KERNEL32"), "CancelIoEx")) { // The version of Windows supports cancellation from any thread. typedef BOOL (WINAPI* cancel_io_ex_t)(HANDLE, LPOVERLAPPED); cancel_io_ex_t cancel_io_ex = (cancel_io_ex_t)cancel_io_ex_ptr; socket_type sock = impl.socket_; HANDLE sock_as_handle = reinterpret_cast(sock); if (!cancel_io_ex(sock_as_handle, 0)) { DWORD last_error = ::GetLastError(); if (last_error == ERROR_NOT_FOUND) { // ERROR_NOT_FOUND means that there were no operations to be // cancelled. We swallow this error to match the behaviour on other // platforms. ec = boost::system::error_code(); } else { ec = boost::system::error_code(last_error, boost::asio::error::get_system_category()); } } else { ec = boost::system::error_code(); } } #if defined(BOOST_ASIO_ENABLE_CANCELIO) else if (impl.safe_cancellation_thread_id_ == 0) { // No operations have been started, so there's nothing to cancel. ec = boost::system::error_code(); } else if (impl.safe_cancellation_thread_id_ == ::GetCurrentThreadId()) { // Asynchronous operations have been started from the current thread only, // so it is safe to try to cancel them using CancelIo. socket_type sock = impl.socket_; HANDLE sock_as_handle = reinterpret_cast(sock); if (!::CancelIo(sock_as_handle)) { DWORD last_error = ::GetLastError(); ec = boost::system::error_code(last_error, boost::asio::error::get_system_category()); } else { ec = boost::system::error_code(); } } else { // Asynchronous operations have been started from more than one thread, // so cancellation is not safe. ec = boost::asio::error::operation_not_supported; } #else // defined(BOOST_ASIO_ENABLE_CANCELIO) else { // Cancellation is not supported as CancelIo may not be used. ec = boost::asio::error::operation_not_supported; } #endif // defined(BOOST_ASIO_ENABLE_CANCELIO) return ec; } // Determine whether the socket is at the out-of-band data mark. bool at_mark(const implementation_type& impl, boost::system::error_code& ec) const { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return false; } boost::asio::detail::ioctl_arg_type value = 0; socket_ops::ioctl(impl.socket_, SIOCATMARK, &value, ec); return ec ? false : value != 0; } // Determine the number of bytes available for reading. std::size_t available(const implementation_type& impl, boost::system::error_code& ec) const { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } boost::asio::detail::ioctl_arg_type value = 0; socket_ops::ioctl(impl.socket_, FIONREAD, &value, ec); return ec ? static_cast(0) : static_cast(value); } // Bind the socket to the specified local endpoint. boost::system::error_code bind(implementation_type& impl, const endpoint_type& endpoint, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } socket_ops::bind(impl.socket_, endpoint.data(), endpoint.size(), ec); return ec; } // Place the socket into the state where it will listen for new connections. boost::system::error_code listen(implementation_type& impl, int backlog, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } socket_ops::listen(impl.socket_, backlog, ec); return ec; } // Set a socket option. template boost::system::error_code set_option(implementation_type& impl, const Option& option, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } if (option.level(impl.protocol_) == custom_socket_option_level && option.name(impl.protocol_) == enable_connection_aborted_option) { if (option.size(impl.protocol_) != sizeof(int)) { ec = boost::asio::error::invalid_argument; } else { if (*reinterpret_cast(option.data(impl.protocol_))) impl.flags_ |= implementation_type::enable_connection_aborted; else impl.flags_ &= ~implementation_type::enable_connection_aborted; ec = boost::system::error_code(); } return ec; } else { if (option.level(impl.protocol_) == SOL_SOCKET && option.name(impl.protocol_) == SO_LINGER) { const ::linger* linger_option = reinterpret_cast(option.data(impl.protocol_)); if (linger_option->l_onoff != 0 && linger_option->l_linger != 0) impl.flags_ |= implementation_type::close_might_block; else impl.flags_ &= ~implementation_type::close_might_block; } socket_ops::setsockopt(impl.socket_, option.level(impl.protocol_), option.name(impl.protocol_), option.data(impl.protocol_), option.size(impl.protocol_), ec); return ec; } } // Set a socket option. template boost::system::error_code get_option(const implementation_type& impl, Option& option, boost::system::error_code& ec) const { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } if (option.level(impl.protocol_) == custom_socket_option_level && option.name(impl.protocol_) == enable_connection_aborted_option) { if (option.size(impl.protocol_) != sizeof(int)) { ec = boost::asio::error::invalid_argument; } else { int* target = reinterpret_cast(option.data(impl.protocol_)); if (impl.flags_ & implementation_type::enable_connection_aborted) *target = 1; else *target = 0; option.resize(impl.protocol_, sizeof(int)); ec = boost::system::error_code(); } return ec; } else { size_t size = option.size(impl.protocol_); socket_ops::getsockopt(impl.socket_, option.level(impl.protocol_), option.name(impl.protocol_), option.data(impl.protocol_), &size, ec); if (!ec) option.resize(impl.protocol_, size); return ec; } } // Perform an IO control command on the socket. template boost::system::error_code io_control(implementation_type& impl, IO_Control_Command& command, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } socket_ops::ioctl(impl.socket_, command.name(), static_cast(command.data()), ec); if (!ec && command.name() == static_cast(FIONBIO)) { if (*static_cast(command.data())) impl.flags_ |= implementation_type::user_set_non_blocking; else impl.flags_ &= ~implementation_type::user_set_non_blocking; } return ec; } // Get the local endpoint. endpoint_type local_endpoint(const implementation_type& impl, boost::system::error_code& ec) const { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return endpoint_type(); } endpoint_type endpoint; std::size_t addr_len = endpoint.capacity(); if (socket_ops::getsockname(impl.socket_, endpoint.data(), &addr_len, ec)) return endpoint_type(); endpoint.resize(addr_len); return endpoint; } // Get the remote endpoint. endpoint_type remote_endpoint(const implementation_type& impl, boost::system::error_code& ec) const { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return endpoint_type(); } if (impl.socket_.have_remote_endpoint()) { // Check if socket is still connected. DWORD connect_time = 0; size_t connect_time_len = sizeof(connect_time); if (socket_ops::getsockopt(impl.socket_, SOL_SOCKET, SO_CONNECT_TIME, &connect_time, &connect_time_len, ec) == socket_error_retval) { return endpoint_type(); } if (connect_time == 0xFFFFFFFF) { ec = boost::asio::error::not_connected; return endpoint_type(); } ec = boost::system::error_code(); return impl.socket_.remote_endpoint(); } else { endpoint_type endpoint; std::size_t addr_len = endpoint.capacity(); if (socket_ops::getpeername(impl.socket_, endpoint.data(), &addr_len, ec)) return endpoint_type(); endpoint.resize(addr_len); return endpoint; } } /// Disable sends or receives on the socket. boost::system::error_code shutdown(implementation_type& impl, socket_base::shutdown_type what, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } socket_ops::shutdown(impl.socket_, what, ec); return ec; } // Send the given data to the peer. Returns the number of bytes sent. template size_t send(implementation_type& impl, const ConstBufferSequence& buffers, socket_base::message_flags flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } buffer_sequence_adapter bufs(buffers); // A request to receive 0 bytes on a stream socket is a no-op. if (impl.protocol_.type() == SOCK_STREAM && bufs.all_empty()) { ec = boost::system::error_code(); return 0; } // Send the data. DWORD bytes_transferred = 0; int result = ::WSASend(impl.socket_, bufs.buffers(), bufs.count(), &bytes_transferred, flags, 0, 0); if (result != 0) { DWORD last_error = ::WSAGetLastError(); if (last_error == ERROR_NETNAME_DELETED) last_error = WSAECONNRESET; else if (last_error == ERROR_PORT_UNREACHABLE) last_error = WSAECONNREFUSED; ec = boost::system::error_code(last_error, boost::asio::error::get_system_category()); return 0; } ec = boost::system::error_code(); return bytes_transferred; } // Wait until data can be sent without blocking. size_t send(implementation_type& impl, const null_buffers&, socket_base::message_flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } // Wait for socket to become ready. socket_ops::poll_write(impl.socket_, ec); return 0; } template class send_op : public operation { public: send_op(weak_cancel_token_type cancel_token, const ConstBufferSequence& buffers, Handler handler) : operation(&send_op::do_complete), cancel_token_(cancel_token), buffers_(buffers), handler_(handler) { } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code ec, std::size_t bytes_transferred) { // Take ownership of the operation object. send_op* o(static_cast(base)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(o->handler_, o); // Make the upcall if required. if (owner) { #if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING) // Check whether buffers are still valid. buffer_sequence_adapter::validate(o->buffers_); #endif // defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING) // Map non-portable errors to their portable counterparts. if (ec.value() == ERROR_NETNAME_DELETED) { if (o->cancel_token_.expired()) ec = boost::asio::error::operation_aborted; else ec = boost::asio::error::connection_reset; } else if (ec.value() == ERROR_PORT_UNREACHABLE) { ec = boost::asio::error::connection_refused; } // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder2 handler(o->handler_, ec, bytes_transferred); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: weak_cancel_token_type cancel_token_; ConstBufferSequence buffers_; Handler handler_; }; // Start an asynchronous send. The data being sent must be valid for the // lifetime of the asynchronous operation. template void async_send(implementation_type& impl, const ConstBufferSequence& buffers, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef send_op value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); handler_ptr ptr(raw_ptr, impl.cancel_token_, buffers, handler); buffer_sequence_adapter bufs(buffers); start_send_op(impl, bufs.buffers(), bufs.count(), flags, impl.protocol_.type() == SOCK_STREAM && bufs.all_empty(), ptr.get()); ptr.release(); } // Start an asynchronous wait until data can be sent without blocking. template void async_send(implementation_type& impl, const null_buffers&, socket_base::message_flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef null_buffers_op value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); handler_ptr ptr(raw_ptr, handler); start_reactor_op(impl, reactor::write_op, ptr.get()); ptr.release(); } // Send a datagram to the specified endpoint. Returns the number of bytes // sent. template size_t send_to(implementation_type& impl, const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } buffer_sequence_adapter bufs(buffers); // Send the data. DWORD bytes_transferred = 0; int result = ::WSASendTo(impl.socket_, bufs.buffers(), bufs.count(), &bytes_transferred, flags, destination.data(), static_cast(destination.size()), 0, 0); if (result != 0) { DWORD last_error = ::WSAGetLastError(); if (last_error == ERROR_PORT_UNREACHABLE) last_error = WSAECONNREFUSED; ec = boost::system::error_code(last_error, boost::asio::error::get_system_category()); return 0; } ec = boost::system::error_code(); return bytes_transferred; } // Wait until data can be sent without blocking. size_t send_to(implementation_type& impl, const null_buffers&, socket_base::message_flags, const endpoint_type&, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } // Wait for socket to become ready. socket_ops::poll_write(impl.socket_, ec); return 0; } template class send_to_op : public operation { public: send_to_op(weak_cancel_token_type cancel_token, const ConstBufferSequence& buffers, Handler handler) : operation(&send_to_op::do_complete), cancel_token_(cancel_token), buffers_(buffers), handler_(handler) { } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code ec, std::size_t bytes_transferred) { // Take ownership of the operation object. send_to_op* o(static_cast(base)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(o->handler_, o); // Make the upcall if required. if (owner) { #if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING) // Check whether buffers are still valid. buffer_sequence_adapter::validate(o->buffers_); #endif // defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING) // Map non-portable errors to their portable counterparts. if (ec.value() == ERROR_PORT_UNREACHABLE) { ec = boost::asio::error::connection_refused; } // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder2 handler(o->handler_, ec, bytes_transferred); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: weak_cancel_token_type cancel_token_; ConstBufferSequence buffers_; Handler handler_; }; // Start an asynchronous send. The data being sent must be valid for the // lifetime of the asynchronous operation. template void async_send_to(implementation_type& impl, const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef send_to_op value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); handler_ptr ptr(raw_ptr, impl.cancel_token_, buffers, handler); buffer_sequence_adapter bufs(buffers); start_send_to_op(impl, bufs.buffers(), bufs.count(), destination, flags, ptr.get()); ptr.release(); } // Start an asynchronous wait until data can be sent without blocking. template void async_send_to(implementation_type& impl, const null_buffers&, socket_base::message_flags, const endpoint_type&, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef null_buffers_op value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); handler_ptr ptr(raw_ptr, handler); start_reactor_op(impl, reactor::write_op, ptr.get()); ptr.release(); } // Receive some data from the peer. Returns the number of bytes received. template size_t receive(implementation_type& impl, const MutableBufferSequence& buffers, socket_base::message_flags flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } buffer_sequence_adapter bufs(buffers); // A request to receive 0 bytes on a stream socket is a no-op. if (impl.protocol_.type() == SOCK_STREAM && bufs.all_empty()) { ec = boost::system::error_code(); return 0; } // Receive some data. DWORD bytes_transferred = 0; DWORD recv_flags = flags; int result = ::WSARecv(impl.socket_, bufs.buffers(), bufs.count(), &bytes_transferred, &recv_flags, 0, 0); if (result != 0) { DWORD last_error = ::WSAGetLastError(); if (last_error == ERROR_NETNAME_DELETED) last_error = WSAECONNRESET; else if (last_error == ERROR_PORT_UNREACHABLE) last_error = WSAECONNREFUSED; ec = boost::system::error_code(last_error, boost::asio::error::get_system_category()); return 0; } if (bytes_transferred == 0 && impl.protocol_.type() == SOCK_STREAM) { ec = boost::asio::error::eof; return 0; } ec = boost::system::error_code(); return bytes_transferred; } // Wait until data can be received without blocking. size_t receive(implementation_type& impl, const null_buffers&, socket_base::message_flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } // Wait for socket to become ready. socket_ops::poll_read(impl.socket_, ec); return 0; } template class receive_op : public operation { public: receive_op(int protocol_type, weak_cancel_token_type cancel_token, const MutableBufferSequence& buffers, Handler handler) : operation(&receive_op::do_complete), protocol_type_(protocol_type), cancel_token_(cancel_token), buffers_(buffers), handler_(handler) { } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code ec, std::size_t bytes_transferred) { // Take ownership of the operation object. receive_op* o(static_cast(base)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(o->handler_, o); // Make the upcall if required. if (owner) { #if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING) // Check whether buffers are still valid. buffer_sequence_adapter::validate(o->buffers_); #endif // defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING) // Map non-portable errors to their portable counterparts. if (ec.value() == ERROR_NETNAME_DELETED) { if (o->cancel_token_.expired()) ec = boost::asio::error::operation_aborted; else ec = boost::asio::error::connection_reset; } else if (ec.value() == ERROR_PORT_UNREACHABLE) { ec = boost::asio::error::connection_refused; } // Check for connection closed. else if (!ec && bytes_transferred == 0 && o->protocol_type_ == SOCK_STREAM && !buffer_sequence_adapter::all_empty(o->buffers_) && !boost::is_same::value) { ec = boost::asio::error::eof; } // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder2 handler(o->handler_, ec, bytes_transferred); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: int protocol_type_; weak_cancel_token_type cancel_token_; MutableBufferSequence buffers_; Handler handler_; }; // Start an asynchronous receive. The buffer for the data being received // must be valid for the lifetime of the asynchronous operation. template void async_receive(implementation_type& impl, const MutableBufferSequence& buffers, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef receive_op value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); int protocol_type = impl.protocol_.type(); handler_ptr ptr(raw_ptr, protocol_type, impl.cancel_token_, buffers, handler); buffer_sequence_adapter bufs(buffers); start_receive_op(impl, bufs.buffers(), bufs.count(), flags, protocol_type == SOCK_STREAM && bufs.all_empty(), ptr.get()); ptr.release(); } // Wait until data can be received without blocking. template void async_receive(implementation_type& impl, const null_buffers& buffers, socket_base::message_flags flags, Handler handler) { if (impl.protocol_.type() == SOCK_STREAM) { // For stream sockets on Windows, we may issue a 0-byte overlapped // WSARecv to wait until there is data available on the socket. // Allocate and construct an operation to wrap the handler. typedef receive_op value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); int protocol_type = impl.protocol_.type(); handler_ptr ptr(raw_ptr, protocol_type, impl.cancel_token_, buffers, handler); ::WSABUF buf = { 0, 0 }; start_receive_op(impl, &buf, 1, flags, false, ptr.get()); ptr.release(); } else { // Allocate and construct an operation to wrap the handler. typedef null_buffers_op value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); handler_ptr ptr(raw_ptr, handler); start_reactor_op(impl, (flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, ptr.get()); ptr.release(); } } // Receive a datagram with the endpoint of the sender. Returns the number of // bytes received. template size_t receive_from(implementation_type& impl, const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } buffer_sequence_adapter bufs(buffers); // Receive some data. DWORD bytes_transferred = 0; DWORD recv_flags = flags; int endpoint_size = static_cast(sender_endpoint.capacity()); int result = ::WSARecvFrom(impl.socket_, bufs.buffers(), bufs.count(), &bytes_transferred, &recv_flags, sender_endpoint.data(), &endpoint_size, 0, 0); if (result != 0) { DWORD last_error = ::WSAGetLastError(); if (last_error == ERROR_PORT_UNREACHABLE) last_error = WSAECONNREFUSED; ec = boost::system::error_code(last_error, boost::asio::error::get_system_category()); return 0; } if (bytes_transferred == 0 && impl.protocol_.type() == SOCK_STREAM) { ec = boost::asio::error::eof; return 0; } sender_endpoint.resize(static_cast(endpoint_size)); ec = boost::system::error_code(); return bytes_transferred; } // Wait until data can be received without blocking. size_t receive_from(implementation_type& impl, const null_buffers&, endpoint_type& sender_endpoint, socket_base::message_flags, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return 0; } // Wait for socket to become ready. socket_ops::poll_read(impl.socket_, ec); // Reset endpoint since it can be given no sensible value at this time. sender_endpoint = endpoint_type(); return 0; } template class receive_from_op : public operation { public: receive_from_op(int protocol_type, endpoint_type& endpoint, const MutableBufferSequence& buffers, Handler handler) : operation(&receive_from_op::do_complete), protocol_type_(protocol_type), endpoint_(endpoint), endpoint_size_(static_cast(endpoint.capacity())), buffers_(buffers), handler_(handler) { } int& endpoint_size() { return endpoint_size_; } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code ec, std::size_t bytes_transferred) { // Take ownership of the operation object. receive_from_op* o(static_cast(base)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(o->handler_, o); // Make the upcall if required. if (owner) { #if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING) // Check whether buffers are still valid. buffer_sequence_adapter::validate(o->buffers_); #endif // defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING) // Map non-portable errors to their portable counterparts. if (ec.value() == ERROR_PORT_UNREACHABLE) { ec = boost::asio::error::connection_refused; } // Record the size of the endpoint returned by the operation. o->endpoint_.resize(o->endpoint_size_); // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder2 handler(o->handler_, ec, bytes_transferred); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: int protocol_type_; endpoint_type& endpoint_; int endpoint_size_; weak_cancel_token_type cancel_token_; MutableBufferSequence buffers_; Handler handler_; }; // Start an asynchronous receive. The buffer for the data being received and // the sender_endpoint object must both be valid for the lifetime of the // asynchronous operation. template void async_receive_from(implementation_type& impl, const MutableBufferSequence& buffers, endpoint_type& sender_endp, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef receive_from_op value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); int protocol_type = impl.protocol_.type(); handler_ptr ptr(raw_ptr, protocol_type, sender_endp, buffers, handler); buffer_sequence_adapter bufs(buffers); start_receive_from_op(impl, bufs.buffers(), bufs.count(), sender_endp, flags, &ptr.get()->endpoint_size(), ptr.get()); ptr.release(); } // Wait until data can be received without blocking. template void async_receive_from(implementation_type& impl, const null_buffers&, endpoint_type& sender_endpoint, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef null_buffers_op value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); handler_ptr ptr(raw_ptr, handler); // Reset endpoint since it can be given no sensible value at this time. sender_endpoint = endpoint_type(); start_reactor_op(impl, (flags & socket_base::message_out_of_band) ? reactor::except_op : reactor::read_op, ptr.get()); ptr.release(); } // Accept a new connection. template boost::system::error_code accept(implementation_type& impl, Socket& peer, endpoint_type* peer_endpoint, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } // We cannot accept a socket that is already open. if (peer.is_open()) { ec = boost::asio::error::already_open; return ec; } for (;;) { socket_holder new_socket; std::size_t addr_len = 0; if (peer_endpoint) { addr_len = peer_endpoint->capacity(); new_socket.reset(socket_ops::accept(impl.socket_, peer_endpoint->data(), &addr_len, ec)); } else { new_socket.reset(socket_ops::accept(impl.socket_, 0, 0, ec)); } if (ec) { if (ec == boost::asio::error::connection_aborted && !(impl.flags_ & implementation_type::enable_connection_aborted)) { // Retry accept operation. continue; } else { return ec; } } if (peer_endpoint) peer_endpoint->resize(addr_len); peer.assign(impl.protocol_, new_socket.get(), ec); if (!ec) new_socket.release(); return ec; } } template class accept_op : public operation { public: accept_op(win_iocp_io_service& iocp_service, socket_type socket, Socket& peer, const protocol_type& protocol, endpoint_type* peer_endpoint, bool enable_connection_aborted, Handler handler) : operation(&accept_op::do_complete), iocp_service_(iocp_service), socket_(socket), peer_(peer), protocol_(protocol), peer_endpoint_(peer_endpoint), enable_connection_aborted_(enable_connection_aborted), handler_(handler) { } socket_holder& new_socket() { return new_socket_; } void* output_buffer() { return output_buffer_; } DWORD address_length() { return sizeof(sockaddr_storage_type) + 16; } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code ec, std::size_t /*bytes_transferred*/) { // Take ownership of the handler object. accept_op* o(static_cast(base)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(o->handler_, o); // Make the upcall if required. if (owner) { // Map Windows error ERROR_NETNAME_DELETED to connection_aborted. if (ec.value() == ERROR_NETNAME_DELETED) { ec = boost::asio::error::connection_aborted; } // Restart the accept operation if we got the connection_aborted error // and the enable_connection_aborted socket option is not set. if (ec == boost::asio::error::connection_aborted && !o->enable_connection_aborted_) { // Reset OVERLAPPED structure. o->reset(); // Create a new socket for the next connection, since the AcceptEx // call fails with WSAEINVAL if we try to reuse the same socket. o->new_socket_.reset(); o->new_socket_.reset(socket_ops::socket(o->protocol_.family(), o->protocol_.type(), o->protocol_.protocol(), ec)); if (o->new_socket_.get() != invalid_socket) { // Accept a connection. DWORD bytes_read = 0; BOOL result = ::AcceptEx(o->socket_, o->new_socket_.get(), o->output_buffer(), 0, o->address_length(), o->address_length(), &bytes_read, o); DWORD last_error = ::WSAGetLastError(); ec = boost::system::error_code(last_error, boost::asio::error::get_system_category()); // Check if the operation completed immediately. if (!result && last_error != WSA_IO_PENDING) { if (last_error == ERROR_NETNAME_DELETED || last_error == WSAECONNABORTED) { // Post this handler so that operation will be restarted again. o->iocp_service_.work_started(); o->iocp_service_.on_completion(o, ec); ptr.release(); return; } else { // Operation already complete. Continue with rest of this // handler. } } else { // Asynchronous operation has been successfully restarted. o->iocp_service_.work_started(); o->iocp_service_.on_pending(o); ptr.release(); return; } } } // Get the address of the peer. endpoint_type peer_endpoint; if (!ec) { LPSOCKADDR local_addr = 0; int local_addr_length = 0; LPSOCKADDR remote_addr = 0; int remote_addr_length = 0; GetAcceptExSockaddrs(o->output_buffer(), 0, o->address_length(), o->address_length(), &local_addr, &local_addr_length, &remote_addr, &remote_addr_length); if (static_cast(remote_addr_length) > peer_endpoint.capacity()) { ec = boost::asio::error::invalid_argument; } else { using namespace std; // For memcpy. memcpy(peer_endpoint.data(), remote_addr, remote_addr_length); peer_endpoint.resize(static_cast(remote_addr_length)); } } // Need to set the SO_UPDATE_ACCEPT_CONTEXT option so that getsockname // and getpeername will work on the accepted socket. if (!ec) { SOCKET update_ctx_param = o->socket_; socket_ops::setsockopt(o->new_socket_.get(), SOL_SOCKET, SO_UPDATE_ACCEPT_CONTEXT, &update_ctx_param, sizeof(SOCKET), ec); } // If the socket was successfully accepted, transfer ownership of the // socket to the peer object. if (!ec) { o->peer_.assign(o->protocol_, native_type(o->new_socket_.get(), peer_endpoint), ec); if (!ec) o->new_socket_.release(); } // Pass endpoint back to caller. if (o->peer_endpoint_) *o->peer_endpoint_ = peer_endpoint; // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder1 handler(o->handler_, ec); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: win_iocp_io_service& iocp_service_; socket_type socket_; socket_holder new_socket_; Socket& peer_; protocol_type protocol_; endpoint_type* peer_endpoint_; unsigned char output_buffer_[(sizeof(sockaddr_storage_type) + 16) * 2]; bool enable_connection_aborted_; Handler handler_; }; // Start an asynchronous accept. The peer and peer_endpoint objects // must be valid until the accept's handler is invoked. template void async_accept(implementation_type& impl, Socket& peer, endpoint_type* peer_endpoint, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef accept_op value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); bool enable_connection_aborted = (impl.flags_ & implementation_type::enable_connection_aborted); handler_ptr ptr(raw_ptr, iocp_service_, impl.socket_, peer, impl.protocol_, peer_endpoint, enable_connection_aborted, handler); start_accept_op(impl, peer.is_open(), ptr.get()->new_socket(), ptr.get()->output_buffer(), ptr.get()->address_length(), ptr.get()); ptr.release(); } // Connect the socket to the specified endpoint. boost::system::error_code connect(implementation_type& impl, const endpoint_type& peer_endpoint, boost::system::error_code& ec) { if (!is_open(impl)) { ec = boost::asio::error::bad_descriptor; return ec; } // Perform the connect operation. socket_ops::connect(impl.socket_, peer_endpoint.data(), peer_endpoint.size(), ec); return ec; } class connect_op_base : public reactor_op { public: connect_op_base(socket_type socket, func_type complete_func) : reactor_op(&connect_op_base::do_perform, complete_func), socket_(socket) { } static bool do_perform(reactor_op* base) { connect_op_base* o(static_cast(base)); // Get the error code from the connect operation. int connect_error = 0; size_t connect_error_len = sizeof(connect_error); if (socket_ops::getsockopt(o->socket_, SOL_SOCKET, SO_ERROR, &connect_error, &connect_error_len, o->ec_) == socket_error_retval) return true; // The connection failed so the handler will be posted with an error code. if (connect_error) { o->ec_ = boost::system::error_code(connect_error, boost::asio::error::get_system_category()); } return true; } private: socket_type socket_; }; template class connect_op : public connect_op_base { public: connect_op(socket_type socket, Handler handler) : connect_op_base(socket, &connect_op::do_complete), handler_(handler) { } static void do_complete(io_service_impl* owner, operation* base, boost::system::error_code /*ec*/, std::size_t /*bytes_transferred*/) { // Take ownership of the handler object. connect_op* o(static_cast(base)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(o->handler_, o); // Make the upcall if required. if (owner) { // Make a copy of the handler so that the memory can be deallocated // before the upcall is made. Even if we're not about to make an // upcall, a sub-object of the handler may be the true owner of the // memory associated with the handler. Consequently, a local copy of // the handler is required to ensure that any owning sub-object remains // valid until after we have deallocated the memory here. detail::binder1 handler(o->handler_, o->ec_); ptr.reset(); boost::asio::detail::fenced_block b; boost_asio_handler_invoke_helpers::invoke(handler, handler); } } private: Handler handler_; }; // Start an asynchronous connect. template void async_connect(implementation_type& impl, const endpoint_type& peer_endpoint, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef connect_op value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); handler_ptr ptr(raw_ptr, impl.socket_, handler); start_connect_op(impl, ptr.get(), peer_endpoint); ptr.release(); } private: // Helper function to start an asynchronous send operation. void start_send_op(implementation_type& impl, WSABUF* buffers, std::size_t buffer_count, socket_base::message_flags flags, bool noop, operation* op) { update_cancellation_thread_id(impl); iocp_service_.work_started(); if (noop) iocp_service_.on_completion(op); else if (!is_open(impl)) iocp_service_.on_completion(op, boost::asio::error::bad_descriptor); else { DWORD bytes_transferred = 0; int result = ::WSASend(impl.socket_, buffers, buffer_count, &bytes_transferred, flags, op, 0); DWORD last_error = ::WSAGetLastError(); if (last_error == ERROR_PORT_UNREACHABLE) last_error = WSAECONNREFUSED; if (result != 0 && last_error != WSA_IO_PENDING) iocp_service_.on_completion(op, last_error, bytes_transferred); else iocp_service_.on_pending(op); } } // Helper function to start an asynchronous send_to operation. void start_send_to_op(implementation_type& impl, WSABUF* buffers, std::size_t buffer_count, const endpoint_type& destination, socket_base::message_flags flags, operation* op) { update_cancellation_thread_id(impl); iocp_service_.work_started(); if (!is_open(impl)) iocp_service_.on_completion(op, boost::asio::error::bad_descriptor); else { DWORD bytes_transferred = 0; int result = ::WSASendTo(impl.socket_, buffers, buffer_count, &bytes_transferred, flags, destination.data(), static_cast(destination.size()), op, 0); DWORD last_error = ::WSAGetLastError(); if (last_error == ERROR_PORT_UNREACHABLE) last_error = WSAECONNREFUSED; if (result != 0 && last_error != WSA_IO_PENDING) iocp_service_.on_completion(op, last_error, bytes_transferred); else iocp_service_.on_pending(op); } } // Helper function to start an asynchronous receive operation. void start_receive_op(implementation_type& impl, WSABUF* buffers, std::size_t buffer_count, socket_base::message_flags flags, bool noop, operation* op) { update_cancellation_thread_id(impl); iocp_service_.work_started(); if (noop) iocp_service_.on_completion(op); else if (!is_open(impl)) iocp_service_.on_completion(op, boost::asio::error::bad_descriptor); else { DWORD bytes_transferred = 0; DWORD recv_flags = flags; int result = ::WSARecv(impl.socket_, buffers, buffer_count, &bytes_transferred, &recv_flags, op, 0); DWORD last_error = ::WSAGetLastError(); if (last_error == ERROR_NETNAME_DELETED) last_error = WSAECONNRESET; else if (last_error == ERROR_PORT_UNREACHABLE) last_error = WSAECONNREFUSED; if (result != 0 && last_error != WSA_IO_PENDING) iocp_service_.on_completion(op, last_error, bytes_transferred); else iocp_service_.on_pending(op); } } // Helper function to start an asynchronous receive_from operation. void start_receive_from_op(implementation_type& impl, WSABUF* buffers, std::size_t buffer_count, endpoint_type& sender_endpoint, socket_base::message_flags flags, int* endpoint_size, operation* op) { update_cancellation_thread_id(impl); iocp_service_.work_started(); if (!is_open(impl)) iocp_service_.on_completion(op, boost::asio::error::bad_descriptor); else { DWORD bytes_transferred = 0; DWORD recv_flags = flags; int result = ::WSARecvFrom(impl.socket_, buffers, buffer_count, &bytes_transferred, &recv_flags, sender_endpoint.data(), endpoint_size, op, 0); DWORD last_error = ::WSAGetLastError(); if (last_error == ERROR_PORT_UNREACHABLE) last_error = WSAECONNREFUSED; if (result != 0 && last_error != WSA_IO_PENDING) iocp_service_.on_completion(op, last_error, bytes_transferred); else iocp_service_.on_pending(op); } } // Helper function to start an asynchronous receive_from operation. void start_accept_op(implementation_type& impl, bool peer_is_open, socket_holder& new_socket, void* output_buffer, DWORD address_length, operation* op) { update_cancellation_thread_id(impl); iocp_service_.work_started(); if (!is_open(impl)) iocp_service_.on_completion(op, boost::asio::error::bad_descriptor); else if (peer_is_open) iocp_service_.on_completion(op, boost::asio::error::already_open); else { boost::system::error_code ec; new_socket.reset(socket_ops::socket(impl.protocol_.family(), impl.protocol_.type(), impl.protocol_.protocol(), ec)); if (new_socket.get() == invalid_socket) iocp_service_.on_completion(op, ec); else { DWORD bytes_read = 0; BOOL result = ::AcceptEx(impl.socket_, new_socket.get(), output_buffer, 0, address_length, address_length, &bytes_read, op); DWORD last_error = ::WSAGetLastError(); if (!result && last_error != WSA_IO_PENDING) iocp_service_.on_completion(op, last_error); else iocp_service_.on_pending(op); } } } // Start an asynchronous read or write operation using the the reactor. void start_reactor_op(implementation_type& impl, int op_type, reactor_op* op) { reactor& r = get_reactor(); update_cancellation_thread_id(impl); if (is_open(impl)) { r.start_op(op_type, impl.socket_, impl.reactor_data_, op, false); return; } else op->ec_ = boost::asio::error::bad_descriptor; iocp_service_.post_immediate_completion(op); } // Start the asynchronous connect operation using the reactor. void start_connect_op(implementation_type& impl, reactor_op* op, const endpoint_type& peer_endpoint) { reactor& r = get_reactor(); update_cancellation_thread_id(impl); if (is_open(impl)) { ioctl_arg_type non_blocking = 1; if (!socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, op->ec_)) { if (socket_ops::connect(impl.socket_, peer_endpoint.data(), peer_endpoint.size(), op->ec_) != 0) { if (!op->ec_ && !(impl.flags_ & implementation_type::user_set_non_blocking)) { non_blocking = 0; socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, op->ec_); } if (op->ec_ == boost::asio::error::in_progress || op->ec_ == boost::asio::error::would_block) { op->ec_ = boost::system::error_code(); r.start_op(reactor::connect_op, impl.socket_, impl.reactor_data_, op, true); return; } } } } else op->ec_ = boost::asio::error::bad_descriptor; iocp_service_.post_immediate_completion(op); } // Helper function to close a socket when the associated object is being // destroyed. void close_for_destruction(implementation_type& impl) { if (is_open(impl)) { // Check if the reactor was created, in which case we need to close the // socket on the reactor as well to cancel any operations that might be // running there. reactor* r = static_cast( interlocked_compare_exchange_pointer( reinterpret_cast(&reactor_), 0, 0)); if (r) r->close_descriptor(impl.socket_, impl.reactor_data_); // The socket destructor must not block. If the user has changed the // linger option to block in the foreground, we will change it back to the // default so that the closure is performed in the background. if (impl.flags_ & implementation_type::close_might_block) { ::linger opt; opt.l_onoff = 0; opt.l_linger = 0; boost::system::error_code ignored_ec; socket_ops::setsockopt(impl.socket_, SOL_SOCKET, SO_LINGER, &opt, sizeof(opt), ignored_ec); } boost::system::error_code ignored_ec; socket_ops::close(impl.socket_, ignored_ec); impl.socket_ = invalid_socket; impl.flags_ = 0; impl.cancel_token_.reset(); #if defined(BOOST_ASIO_ENABLE_CANCELIO) impl.safe_cancellation_thread_id_ = 0; #endif // defined(BOOST_ASIO_ENABLE_CANCELIO) } } // Update the ID of the thread from which cancellation is safe. void update_cancellation_thread_id(implementation_type& impl) { #if defined(BOOST_ASIO_ENABLE_CANCELIO) if (impl.safe_cancellation_thread_id_ == 0) impl.safe_cancellation_thread_id_ = ::GetCurrentThreadId(); else if (impl.safe_cancellation_thread_id_ != ::GetCurrentThreadId()) impl.safe_cancellation_thread_id_ = ~DWORD(0); #else // defined(BOOST_ASIO_ENABLE_CANCELIO) (void)impl; #endif // defined(BOOST_ASIO_ENABLE_CANCELIO) } // Helper function to get the reactor. If no reactor has been created yet, a // new one is obtained from the io_service and a pointer to it is cached in // this service. reactor& get_reactor() { reactor* r = static_cast( interlocked_compare_exchange_pointer( reinterpret_cast(&reactor_), 0, 0)); if (!r) { r = &(use_service(io_service_)); interlocked_exchange_pointer(reinterpret_cast(&reactor_), r); } return *r; } // Helper function to emulate InterlockedCompareExchangePointer functionality // for: // - very old Platform SDKs; and // - platform SDKs where MSVC's /Wp64 option causes spurious warnings. void* interlocked_compare_exchange_pointer(void** dest, void* exch, void* cmp) { #if defined(_M_IX86) return reinterpret_cast(InterlockedCompareExchange( reinterpret_cast(dest), reinterpret_cast(exch), reinterpret_cast(cmp))); #else return InterlockedCompareExchangePointer(dest, exch, cmp); #endif } // Helper function to emulate InterlockedExchangePointer functionality for: // - very old Platform SDKs; and // - platform SDKs where MSVC's /Wp64 option causes spurious warnings. void* interlocked_exchange_pointer(void** dest, void* val) { #if defined(_M_IX86) return reinterpret_cast(InterlockedExchange( reinterpret_cast(dest), reinterpret_cast(val))); #else return InterlockedExchangePointer(dest, val); #endif } // The io_service used to obtain the reactor, if required. boost::asio::io_service& io_service_; // The IOCP service used for running asynchronous operations and dispatching // handlers. win_iocp_io_service& iocp_service_; // The reactor used for performing connect operations. This object is created // only if needed. reactor* reactor_; // Mutex to protect access to the linked list of implementations. boost::asio::detail::mutex mutex_; // The head of a linked list of all implementations. implementation_type* impl_list_; }; } // namespace detail } // namespace asio } // namespace boost #endif // defined(BOOST_ASIO_HAS_IOCP) #include #endif // BOOST_ASIO_DETAIL_WIN_IOCP_SOCKET_SERVICE_HPP