// mac/chrono.cpp --------------------------------------------------------------// // Copyright Beman Dawes 2008 // Copyright 2009-2010 Vicente J. Botet Escriba // Distributed under the Boost Software License, Version 1.0. // See http://www.boost.org/LICENSE_1_0.txt //----------------------------------------------------------------------------// // Mac // //----------------------------------------------------------------------------// #include //for gettimeofday and timeval #include // mach_absolute_time, mach_timebase_info_data_t namespace boost { namespace chrono { // system_clock // gettimeofday is the most precise "system time" available on this platform. // It returns the number of microseconds since New Years 1970 in a struct called timeval // which has a field for seconds and a field for microseconds. // Fill in the timeval and then convert that to the time_point system_clock::time_point system_clock::now() BOOST_NOEXCEPT { timeval tv; gettimeofday(&tv, 0); return time_point(seconds(tv.tv_sec) + microseconds(tv.tv_usec)); } #if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING system_clock::time_point system_clock::now(system::error_code & ec) { timeval tv; gettimeofday(&tv, 0); if (!BOOST_CHRONO_IS_THROWS(ec)) { ec.clear(); } return time_point(seconds(tv.tv_sec) + microseconds(tv.tv_usec)); } #endif // Take advantage of the fact that on this platform time_t is nothing but // an integral count of seconds since New Years 1970 (same epoch as timeval). // Just get the duration out of the time_point and truncate it to seconds. time_t system_clock::to_time_t(const time_point& t) BOOST_NOEXCEPT { return time_t(duration_cast(t.time_since_epoch()).count()); } // Just turn the time_t into a count of seconds and construct a time_point with it. system_clock::time_point system_clock::from_time_t(time_t t) BOOST_NOEXCEPT { return system_clock::time_point(seconds(t)); } namespace chrono_detail { // steady_clock // Note, in this implementation steady_clock and high_resolution_clock // are the same clock. They are both based on mach_absolute_time(). // mach_absolute_time() * MachInfo.numer / MachInfo.denom is the number of // nanoseconds since the computer booted up. MachInfo.numer and MachInfo.denom // are run time constants supplied by the OS. This clock has no relationship // to the Gregorian calendar. It's main use is as a high resolution timer. // MachInfo.numer / MachInfo.denom is often 1 on the latest equipment. Specialize // for that case as an optimization. BOOST_CHRONO_STATIC steady_clock::rep steady_simplified() { return mach_absolute_time(); } #if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING BOOST_CHRONO_STATIC steady_clock::rep steady_simplified_ec(system::error_code & ec) { if (!BOOST_CHRONO_IS_THROWS(ec)) { ec.clear(); } return mach_absolute_time(); } #endif BOOST_CHRONO_STATIC double compute_steady_factor(kern_return_t& err) { mach_timebase_info_data_t MachInfo; err = mach_timebase_info(&MachInfo); if ( err != 0 ) { return 0; } return static_cast(MachInfo.numer) / MachInfo.denom; } BOOST_CHRONO_STATIC steady_clock::rep steady_full() { static kern_return_t err; static const double factor = chrono_detail::compute_steady_factor(err); if (err != 0) { BOOST_ASSERT(0 && "Boost::Chrono - Internal Error"); } return static_cast(mach_absolute_time() * factor); } #if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING BOOST_CHRONO_STATIC steady_clock::rep steady_full_ec(system::error_code & ec) { static kern_return_t err; static const double factor = chrono_detail::compute_steady_factor(err); if (err != 0) { if (BOOST_CHRONO_IS_THROWS(ec)) { boost::throw_exception( system::system_error( err, BOOST_CHRONO_SYSTEM_CATEGORY, "chrono::steady_clock" )); } else { ec.assign( errno, BOOST_CHRONO_SYSTEM_CATEGORY ); return steady_clock::rep(); } } if (!BOOST_CHRONO_IS_THROWS(ec)) { ec.clear(); } return static_cast(mach_absolute_time() * factor); } #endif typedef steady_clock::rep (*FP)(); #if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING typedef steady_clock::rep (*FP_ec)(system::error_code &); #endif BOOST_CHRONO_STATIC FP init_steady_clock(kern_return_t & err) { mach_timebase_info_data_t MachInfo; err = mach_timebase_info(&MachInfo); if ( err != 0 ) { return 0; } if (MachInfo.numer == MachInfo.denom) { return &chrono_detail::steady_simplified; } return &chrono_detail::steady_full; } #if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING BOOST_CHRONO_STATIC FP_ec init_steady_clock_ec(kern_return_t & err) { mach_timebase_info_data_t MachInfo; err = mach_timebase_info(&MachInfo); if ( err != 0 ) { return 0; } if (MachInfo.numer == MachInfo.denom) { return &chrono_detail::steady_simplified_ec; } return &chrono_detail::steady_full_ec; } #endif } steady_clock::time_point steady_clock::now() BOOST_NOEXCEPT { static kern_return_t err; static chrono_detail::FP fp = chrono_detail::init_steady_clock(err); if ( err != 0 ) { BOOST_ASSERT(0 && "Boost::Chrono - Internal Error"); } return time_point(duration(fp())); } #if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING steady_clock::time_point steady_clock::now(system::error_code & ec) { static kern_return_t err; static chrono_detail::FP_ec fp = chrono_detail::init_steady_clock_ec(err); if ( err != 0 ) { if (BOOST_CHRONO_IS_THROWS(ec)) { boost::throw_exception( system::system_error( err, BOOST_CHRONO_SYSTEM_CATEGORY, "chrono::steady_clock" )); } else { ec.assign( err, BOOST_CHRONO_SYSTEM_CATEGORY ); return time_point(); } } if (!BOOST_CHRONO_IS_THROWS(ec)) { ec.clear(); } return time_point(duration(fp(ec))); } #endif } // namespace chrono } // namespace boost