/////////////////////////////////////////////////////////////////////////////// // foreach.hpp header file // // Copyright 2004 Eric Niebler. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org/libs/foreach for documentation // // Credits: // Anson Tsao - for the initial inspiration and several good suggestions. // Thorsten Ottosen - for Boost.Range, and for suggesting a way to detect // const-qualified rvalues at compile time on VC7.1+ // Russell Hind - For help porting to Borland // Alisdair Meredith - For help porting to Borland // Stefan Slapeta - For help porting to Intel // David Jenkins - For help finding a Microsoft Code Analysis bug #ifndef BOOST_FOREACH // MS compatible compilers support #pragma once #if defined(_MSC_VER) && (_MSC_VER >= 1020) # pragma once #endif #include <cstddef> #include <utility> // for std::pair #include <boost/config.hpp> #include <boost/detail/workaround.hpp> // Some compilers let us detect even const-qualified rvalues at compile-time #if BOOST_WORKAROUND(BOOST_MSVC, >= 1310) && !defined(_PREFAST_) \ || (BOOST_WORKAROUND(__GNUC__, >= 4) && !defined(BOOST_INTEL) && !defined(BOOST_CLANG)) \ || (BOOST_WORKAROUND(__GNUC__, == 3) && (__GNUC_MINOR__ >= 4) && !defined(BOOST_INTEL) && \ !defined(BOOST_CLANG)) # define BOOST_FOREACH_COMPILE_TIME_CONST_RVALUE_DETECTION #else // Some compilers allow temporaries to be bound to non-const references. // These compilers make it impossible to for BOOST_FOREACH to detect // temporaries and avoid reevaluation of the collection expression. # if BOOST_WORKAROUND(BOOST_MSVC, <= 1300) \ || BOOST_WORKAROUND(__BORLANDC__, < 0x593) \ || (BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION, <= 700) && defined(_MSC_VER)) \ || BOOST_WORKAROUND(__SUNPRO_CC, < 0x5100) \ || BOOST_WORKAROUND(__DECCXX_VER, <= 60590042) # define BOOST_FOREACH_NO_RVALUE_DETECTION # endif // Some compilers do not correctly implement the lvalue/rvalue conversion // rules of the ternary conditional operator. # if defined(BOOST_FOREACH_NO_RVALUE_DETECTION) \ || defined(BOOST_NO_SFINAE) \ || BOOST_WORKAROUND(BOOST_MSVC, BOOST_TESTED_AT(1400)) \ || BOOST_WORKAROUND(BOOST_INTEL_WIN, BOOST_TESTED_AT(1400)) \ || BOOST_WORKAROUND(__GNUC__, < 3) \ || (BOOST_WORKAROUND(__GNUC__, == 3) && (__GNUC_MINOR__ <= 2)) \ || (BOOST_WORKAROUND(__GNUC__, == 3) && (__GNUC_MINOR__ <= 3) && defined(__APPLE_CC__)) \ || BOOST_WORKAROUND(__IBMCPP__, BOOST_TESTED_AT(600)) \ || BOOST_WORKAROUND(__MWERKS__, BOOST_TESTED_AT(0x3206)) \ || BOOST_WORKAROUND(__SUNPRO_CC, >= 0x5100) \ || BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x590)) # define BOOST_FOREACH_NO_CONST_RVALUE_DETECTION # else # define BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION # endif #endif #include <boost/mpl/if.hpp> #include <boost/mpl/assert.hpp> #include <boost/mpl/logical.hpp> #include <boost/mpl/eval_if.hpp> #include <boost/noncopyable.hpp> #include <boost/range/end.hpp> #include <boost/range/begin.hpp> #include <boost/range/rend.hpp> #include <boost/range/rbegin.hpp> #include <boost/range/iterator.hpp> #include <boost/range/reverse_iterator.hpp> #include <boost/type_traits/is_array.hpp> #include <boost/type_traits/is_const.hpp> #include <boost/type_traits/is_abstract.hpp> #include <boost/type_traits/is_base_and_derived.hpp> #include <boost/iterator/iterator_traits.hpp> #include <boost/utility/addressof.hpp> #include <boost/foreach_fwd.hpp> #ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION # include <new> # include <boost/aligned_storage.hpp> # include <boost/utility/enable_if.hpp> # include <boost/type_traits/remove_const.hpp> #endif namespace boost { // forward declarations for iterator_range template<typename T> class iterator_range; // forward declarations for sub_range template<typename T> class sub_range; namespace foreach { /////////////////////////////////////////////////////////////////////////////// // in_range // template<typename T> inline std::pair<T, T> in_range(T begin, T end) { return std::make_pair(begin, end); } /////////////////////////////////////////////////////////////////////////////// // boost::foreach::is_lightweight_proxy // Specialize this for user-defined collection types if they are inexpensive to copy. // This tells BOOST_FOREACH it can avoid the rvalue/lvalue detection stuff. template<typename T> struct is_lightweight_proxy : boost::mpl::false_ { }; /////////////////////////////////////////////////////////////////////////////// // boost::foreach::is_noncopyable // Specialize this for user-defined collection types if they cannot be copied. // This also tells BOOST_FOREACH to avoid the rvalue/lvalue detection stuff. template<typename T> struct is_noncopyable #if !defined(BOOST_BROKEN_IS_BASE_AND_DERIVED) && !defined(BOOST_NO_IS_ABSTRACT) : boost::mpl::or_< boost::is_abstract<T> , boost::is_base_and_derived<boost::noncopyable, T> > #elif !defined(BOOST_BROKEN_IS_BASE_AND_DERIVED) : boost::is_base_and_derived<boost::noncopyable, T> #elif !defined(BOOST_NO_IS_ABSTRACT) : boost::is_abstract<T> #else : boost::mpl::false_ #endif { }; } // namespace foreach } // namespace boost // vc6/7 needs help ordering the following overloads #ifdef BOOST_NO_FUNCTION_TEMPLATE_ORDERING # define BOOST_FOREACH_TAG_DEFAULT ... #else # define BOOST_FOREACH_TAG_DEFAULT boost::foreach::tag #endif /////////////////////////////////////////////////////////////////////////////// // boost_foreach_is_lightweight_proxy // Another customization point for the is_lightweight_proxy optimization, // this one works on legacy compilers. Overload boost_foreach_is_lightweight_proxy // at the global namespace for your type. template<typename T> inline boost::foreach::is_lightweight_proxy<T> * boost_foreach_is_lightweight_proxy(T *&, BOOST_FOREACH_TAG_DEFAULT) { return 0; } template<typename T> inline boost::mpl::true_ * boost_foreach_is_lightweight_proxy(std::pair<T, T> *&, boost::foreach::tag) { return 0; } template<typename T> inline boost::mpl::true_ * boost_foreach_is_lightweight_proxy(boost::iterator_range<T> *&, boost::foreach::tag) { return 0; } template<typename T> inline boost::mpl::true_ * boost_foreach_is_lightweight_proxy(boost::sub_range<T> *&, boost::foreach::tag) { return 0; } template<typename T> inline boost::mpl::true_ * boost_foreach_is_lightweight_proxy(T **&, boost::foreach::tag) { return 0; } /////////////////////////////////////////////////////////////////////////////// // boost_foreach_is_noncopyable // Another customization point for the is_noncopyable trait, // this one works on legacy compilers. Overload boost_foreach_is_noncopyable // at the global namespace for your type. template<typename T> inline boost::foreach::is_noncopyable<T> * boost_foreach_is_noncopyable(T *&, BOOST_FOREACH_TAG_DEFAULT) { return 0; } namespace boost { namespace foreach_detail_ { /////////////////////////////////////////////////////////////////////////////// // Define some utilities for assessing the properties of expressions // template<typename Bool1, typename Bool2> inline boost::mpl::and_<Bool1, Bool2> *and_(Bool1 *, Bool2 *) { return 0; } template<typename Bool1, typename Bool2, typename Bool3> inline boost::mpl::and_<Bool1, Bool2, Bool3> *and_(Bool1 *, Bool2 *, Bool3 *) { return 0; } template<typename Bool1, typename Bool2> inline boost::mpl::or_<Bool1, Bool2> *or_(Bool1 *, Bool2 *) { return 0; } template<typename Bool1, typename Bool2, typename Bool3> inline boost::mpl::or_<Bool1, Bool2, Bool3> *or_(Bool1 *, Bool2 *, Bool3 *) { return 0; } template<typename Bool1> inline boost::mpl::not_<Bool1> *not_(Bool1 *) { return 0; } template<typename T> inline boost::mpl::false_ *is_rvalue_(T &, int) { return 0; } template<typename T> inline boost::mpl::true_ *is_rvalue_(T const &, ...) { return 0; } template<typename T> inline boost::is_array<T> *is_array_(T const &) { return 0; } template<typename T> inline boost::is_const<T> *is_const_(T &) { return 0; } #ifndef BOOST_FOREACH_NO_RVALUE_DETECTION template<typename T> inline boost::mpl::true_ *is_const_(T const &) { return 0; } #endif /////////////////////////////////////////////////////////////////////////////// // auto_any_t/auto_any // General utility for putting an object of any type into automatic storage struct auto_any_base { // auto_any_base must evaluate to false in boolean context so that // they can be declared in if() statements. operator bool() const { return false; } }; template<typename T> struct auto_any : auto_any_base { explicit auto_any(T const &t) : item(t) { } // temporaries of type auto_any will be bound to const auto_any_base // references, but we still want to be able to mutate the stored // data, so declare it as mutable. mutable T item; }; typedef auto_any_base const &auto_any_t; template<typename T, typename C> inline BOOST_DEDUCED_TYPENAME boost::mpl::if_<C, T const, T>::type &auto_any_cast(auto_any_t a) { return static_cast<auto_any<T> const &>(a).item; } typedef boost::mpl::true_ const_; /////////////////////////////////////////////////////////////////////////////// // type2type // template<typename T, typename C = boost::mpl::false_> struct type2type : boost::mpl::if_<C, T const, T> { }; template<typename T> struct wrap_cstr { typedef T type; }; template<> struct wrap_cstr<char *> { typedef wrap_cstr<char *> type; typedef char *iterator; typedef char *const_iterator; }; template<> struct wrap_cstr<char const *> { typedef wrap_cstr<char const *> type; typedef char const *iterator; typedef char const *const_iterator; }; template<> struct wrap_cstr<wchar_t *> { typedef wrap_cstr<wchar_t *> type; typedef wchar_t *iterator; typedef wchar_t *const_iterator; }; template<> struct wrap_cstr<wchar_t const *> { typedef wrap_cstr<wchar_t const *> type; typedef wchar_t const *iterator; typedef wchar_t const *const_iterator; }; template<typename T> struct is_char_array : mpl::and_< is_array<T> , mpl::or_< is_convertible<T, char const *> , is_convertible<T, wchar_t const *> > > {}; template<typename T, typename C = boost::mpl::false_> struct foreach_iterator { // **** READ THIS IF YOUR COMPILE BREAKS HERE **** // // There is an ambiguity about how to iterate over arrays of char and wchar_t. // Should the last array element be treated as a null terminator to be skipped, or // is it just like any other element in the array? To fix the problem, you must // say which behavior you want. // // To treat the container as a null-terminated string, merely cast it to a // char const *, as in BOOST_FOREACH( char ch, (char const *)"hello" ) ... // // To treat the container as an array, use boost::as_array() in <boost/range/as_array.hpp>, // as in BOOST_FOREACH( char ch, boost::as_array("hello") ) ... #if !defined(BOOST_MSVC) || BOOST_MSVC > 1300 BOOST_MPL_ASSERT_MSG( (!is_char_array<T>::value), IS_THIS_AN_ARRAY_OR_A_NULL_TERMINATED_STRING, (T&) ); #endif // If the type is a pointer to a null terminated string (as opposed // to an array type), there is no ambiguity. typedef BOOST_DEDUCED_TYPENAME wrap_cstr<T>::type container; typedef BOOST_DEDUCED_TYPENAME boost::mpl::eval_if< C , range_const_iterator<container> , range_mutable_iterator<container> >::type type; }; template<typename T, typename C = boost::mpl::false_> struct foreach_reverse_iterator { // **** READ THIS IF YOUR COMPILE BREAKS HERE **** // // There is an ambiguity about how to iterate over arrays of char and wchar_t. // Should the last array element be treated as a null terminator to be skipped, or // is it just like any other element in the array? To fix the problem, you must // say which behavior you want. // // To treat the container as a null-terminated string, merely cast it to a // char const *, as in BOOST_FOREACH( char ch, (char const *)"hello" ) ... // // To treat the container as an array, use boost::as_array() in <boost/range/as_array.hpp>, // as in BOOST_FOREACH( char ch, boost::as_array("hello") ) ... #if !defined(BOOST_MSVC) || BOOST_MSVC > 1300 BOOST_MPL_ASSERT_MSG( (!is_char_array<T>::value), IS_THIS_AN_ARRAY_OR_A_NULL_TERMINATED_STRING, (T&) ); #endif // If the type is a pointer to a null terminated string (as opposed // to an array type), there is no ambiguity. typedef BOOST_DEDUCED_TYPENAME wrap_cstr<T>::type container; typedef BOOST_DEDUCED_TYPENAME boost::mpl::eval_if< C , range_reverse_iterator<container const> , range_reverse_iterator<container> >::type type; }; template<typename T, typename C = boost::mpl::false_> struct foreach_reference : iterator_reference<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type> { }; /////////////////////////////////////////////////////////////////////////////// // encode_type // template<typename T> inline type2type<T> *encode_type(T &, boost::mpl::false_ *) { return 0; } template<typename T> inline type2type<T, const_> *encode_type(T const &, boost::mpl::true_ *) { return 0; } /////////////////////////////////////////////////////////////////////////////// // set_false // inline bool set_false(bool &b) { b = false; return false; } /////////////////////////////////////////////////////////////////////////////// // to_ptr // template<typename T> inline T *&to_ptr(T const &) { static T *t = 0; return t; } // Borland needs a little extra help with arrays #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564)) template<typename T,std::size_t N> inline T (*&to_ptr(T (&)[N]))[N] { static T (*t)[N] = 0; return t; } #endif /////////////////////////////////////////////////////////////////////////////// // derefof // template<typename T> inline T &derefof(T *t) { // This is a work-around for a compiler bug in Borland. If T* is a pointer to array type U(*)[N], // then dereferencing it results in a U* instead of U(&)[N]. The cast forces the issue. return reinterpret_cast<T &>( *const_cast<char *>( reinterpret_cast<char const volatile *>(t) ) ); } #ifdef BOOST_FOREACH_COMPILE_TIME_CONST_RVALUE_DETECTION /////////////////////////////////////////////////////////////////////////////// // Detect at compile-time whether an expression yields an rvalue or // an lvalue. This is rather non-standard, but some popular compilers // accept it. /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // rvalue_probe // template<typename T> struct rvalue_probe { struct private_type_ {}; // can't ever return an array by value typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_< boost::mpl::or_<boost::is_abstract<T>, boost::is_array<T> >, private_type_, T >::type value_type; operator value_type() { return *reinterpret_cast<value_type *>(this); } // never called operator T &() const { return *reinterpret_cast<T *>(const_cast<rvalue_probe *>(this)); } // never called }; template<typename T> rvalue_probe<T> const make_probe(T const &) { return rvalue_probe<T>(); } # define BOOST_FOREACH_IS_RVALUE(COL) \ boost::foreach_detail_::and_( \ boost::foreach_detail_::not_(boost::foreach_detail_::is_array_(COL)) \ , (true ? 0 : boost::foreach_detail_::is_rvalue_( \ (true ? boost::foreach_detail_::make_probe(COL) : (COL)), 0))) #elif defined(BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION) /////////////////////////////////////////////////////////////////////////////// // Detect at run-time whether an expression yields an rvalue // or an lvalue. This is 100% standard C++, but not all compilers // accept it. Also, it causes FOREACH to break when used with non- // copyable collection types. /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // rvalue_probe // template<typename T> struct rvalue_probe { rvalue_probe(T &t, bool &b) : value(t) , is_rvalue(b) { } struct private_type_ {}; // can't ever return an array or an abstract type by value #ifdef BOOST_NO_IS_ABSTRACT typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_< boost::is_array<T>, private_type_, T >::type value_type; #else typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_< boost::mpl::or_<boost::is_abstract<T>, boost::is_array<T> >, private_type_, T >::type value_type; #endif operator value_type() { this->is_rvalue = true; return this->value; } operator T &() const { return this->value; } private: T &value; bool &is_rvalue; }; template<typename T> rvalue_probe<T> make_probe(T &t, bool &b) { return rvalue_probe<T>(t, b); } template<typename T> rvalue_probe<T const> make_probe(T const &t, bool &b) { return rvalue_probe<T const>(t, b); } /////////////////////////////////////////////////////////////////////////////// // simple_variant // holds either a T or a T const* template<typename T> struct simple_variant { simple_variant(T const *t) : is_rvalue(false) { *static_cast<T const **>(this->data.address()) = t; } simple_variant(T const &t) : is_rvalue(true) { ::new(this->data.address()) T(t); } simple_variant(simple_variant const &that) : is_rvalue(that.is_rvalue) { if(this->is_rvalue) ::new(this->data.address()) T(*that.get()); else *static_cast<T const **>(this->data.address()) = that.get(); } ~simple_variant() { if(this->is_rvalue) this->get()->~T(); } T const *get() const { if(this->is_rvalue) return static_cast<T const *>(this->data.address()); else return *static_cast<T const * const *>(this->data.address()); } private: enum size_type { size = sizeof(T) > sizeof(T*) ? sizeof(T) : sizeof(T*) }; simple_variant &operator =(simple_variant const &); bool const is_rvalue; aligned_storage<size> data; }; // If the collection is an array or is noncopyable, it must be an lvalue. // If the collection is a lightweight proxy, treat it as an rvalue // BUGBUG what about a noncopyable proxy? template<typename LValue, typename IsProxy> inline BOOST_DEDUCED_TYPENAME boost::enable_if<boost::mpl::or_<LValue, IsProxy>, IsProxy>::type * should_copy_impl(LValue *, IsProxy *, bool *) { return 0; } // Otherwise, we must determine at runtime whether it's an lvalue or rvalue inline bool * should_copy_impl(boost::mpl::false_ *, boost::mpl::false_ *, bool *is_rvalue) { return is_rvalue; } #endif /////////////////////////////////////////////////////////////////////////////// // contain // template<typename T> inline auto_any<T> contain(T const &t, boost::mpl::true_ *) // rvalue { return auto_any<T>(t); } template<typename T> inline auto_any<T *> contain(T &t, boost::mpl::false_ *) // lvalue { // Cannot seem to get sunpro to handle addressof() with array types. #if BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x570)) return auto_any<T *>(&t); #else return auto_any<T *>(boost::addressof(t)); #endif } #ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION template<typename T> inline auto_any<simple_variant<T> > contain(T const &t, bool *rvalue) { return auto_any<simple_variant<T> >(*rvalue ? simple_variant<T>(t) : simple_variant<T>(&t)); } #endif ///////////////////////////////////////////////////////////////////////////// // begin // template<typename T, typename C> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type> begin(auto_any_t col, type2type<T, C> *, boost::mpl::true_ *) // rvalue { return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>( boost::begin(auto_any_cast<T, C>(col))); } template<typename T, typename C> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type> begin(auto_any_t col, type2type<T, C> *, boost::mpl::false_ *) // lvalue { typedef BOOST_DEDUCED_TYPENAME type2type<T, C>::type type; typedef BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type iterator; return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>( iterator(boost::begin(derefof(auto_any_cast<type *, boost::mpl::false_>(col))))); } #ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION template<typename T> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, const_>::type> begin(auto_any_t col, type2type<T, const_> *, bool *) { return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, const_>::type>( boost::begin(*auto_any_cast<simple_variant<T>, boost::mpl::false_>(col).get())); } #endif #ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING template<typename T, typename C> inline auto_any<T *> begin(auto_any_t col, type2type<T *, C> *, boost::mpl::true_ *) // null-terminated C-style strings { return auto_any<T *>(auto_any_cast<T *, boost::mpl::false_>(col)); } #endif /////////////////////////////////////////////////////////////////////////////// // end // template<typename T, typename C> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type> end(auto_any_t col, type2type<T, C> *, boost::mpl::true_ *) // rvalue { return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>( boost::end(auto_any_cast<T, C>(col))); } template<typename T, typename C> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type> end(auto_any_t col, type2type<T, C> *, boost::mpl::false_ *) // lvalue { typedef BOOST_DEDUCED_TYPENAME type2type<T, C>::type type; typedef BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type iterator; return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>( iterator(boost::end(derefof(auto_any_cast<type *, boost::mpl::false_>(col))))); } #ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION template<typename T> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, const_>::type> end(auto_any_t col, type2type<T, const_> *, bool *) { return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, const_>::type>( boost::end(*auto_any_cast<simple_variant<T>, boost::mpl::false_>(col).get())); } #endif #ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING template<typename T, typename C> inline auto_any<int> end(auto_any_t, type2type<T *, C> *, boost::mpl::true_ *) // null-terminated C-style strings { return auto_any<int>(0); // not used } #endif /////////////////////////////////////////////////////////////////////////////// // done // template<typename T, typename C> inline bool done(auto_any_t cur, auto_any_t end, type2type<T, C> *) { typedef BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type iter_t; return auto_any_cast<iter_t, boost::mpl::false_>(cur) == auto_any_cast<iter_t, boost::mpl::false_>(end); } #ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING template<typename T, typename C> inline bool done(auto_any_t cur, auto_any_t, type2type<T *, C> *) // null-terminated C-style strings { return ! *auto_any_cast<T *, boost::mpl::false_>(cur); } #endif /////////////////////////////////////////////////////////////////////////////// // next // template<typename T, typename C> inline void next(auto_any_t cur, type2type<T, C> *) { typedef BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type iter_t; ++auto_any_cast<iter_t, boost::mpl::false_>(cur); } /////////////////////////////////////////////////////////////////////////////// // deref // template<typename T, typename C> inline BOOST_DEDUCED_TYPENAME foreach_reference<T, C>::type deref(auto_any_t cur, type2type<T, C> *) { typedef BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type iter_t; return *auto_any_cast<iter_t, boost::mpl::false_>(cur); } ///////////////////////////////////////////////////////////////////////////// // rbegin // template<typename T, typename C> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type> rbegin(auto_any_t col, type2type<T, C> *, boost::mpl::true_ *) // rvalue { return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>( boost::rbegin(auto_any_cast<T, C>(col))); } template<typename T, typename C> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type> rbegin(auto_any_t col, type2type<T, C> *, boost::mpl::false_ *) // lvalue { typedef BOOST_DEDUCED_TYPENAME type2type<T, C>::type type; typedef BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type iterator; return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>( iterator(boost::rbegin(derefof(auto_any_cast<type *, boost::mpl::false_>(col))))); } #ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION template<typename T> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, const_>::type> rbegin(auto_any_t col, type2type<T, const_> *, bool *) { return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, const_>::type>( boost::rbegin(*auto_any_cast<simple_variant<T>, boost::mpl::false_>(col).get())); } #endif #ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING template<typename T, typename C> inline auto_any<reverse_iterator<T *> > rbegin(auto_any_t col, type2type<T *, C> *, boost::mpl::true_ *) // null-terminated C-style strings { T *p = auto_any_cast<T *, boost::mpl::false_>(col); while(0 != *p) ++p; return auto_any<reverse_iterator<T *> >(reverse_iterator<T *>(p)); } #endif /////////////////////////////////////////////////////////////////////////////// // rend // template<typename T, typename C> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type> rend(auto_any_t col, type2type<T, C> *, boost::mpl::true_ *) // rvalue { return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>( boost::rend(auto_any_cast<T, C>(col))); } template<typename T, typename C> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type> rend(auto_any_t col, type2type<T, C> *, boost::mpl::false_ *) // lvalue { typedef BOOST_DEDUCED_TYPENAME type2type<T, C>::type type; typedef BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type iterator; return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>( iterator(boost::rend(derefof(auto_any_cast<type *, boost::mpl::false_>(col))))); } #ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION template<typename T> inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, const_>::type> rend(auto_any_t col, type2type<T, const_> *, bool *) { return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, const_>::type>( boost::rend(*auto_any_cast<simple_variant<T>, boost::mpl::false_>(col).get())); } #endif #ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING template<typename T, typename C> inline auto_any<reverse_iterator<T *> > rend(auto_any_t col, type2type<T *, C> *, boost::mpl::true_ *) // null-terminated C-style strings { return auto_any<reverse_iterator<T *> >( reverse_iterator<T *>(auto_any_cast<T *, boost::mpl::false_>(col))); } #endif /////////////////////////////////////////////////////////////////////////////// // rdone // template<typename T, typename C> inline bool rdone(auto_any_t cur, auto_any_t end, type2type<T, C> *) { typedef BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type iter_t; return auto_any_cast<iter_t, boost::mpl::false_>(cur) == auto_any_cast<iter_t, boost::mpl::false_>(end); } /////////////////////////////////////////////////////////////////////////////// // rnext // template<typename T, typename C> inline void rnext(auto_any_t cur, type2type<T, C> *) { typedef BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type iter_t; ++auto_any_cast<iter_t, boost::mpl::false_>(cur); } /////////////////////////////////////////////////////////////////////////////// // rderef // template<typename T, typename C> inline BOOST_DEDUCED_TYPENAME foreach_reference<T, C>::type rderef(auto_any_t cur, type2type<T, C> *) { typedef BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type iter_t; return *auto_any_cast<iter_t, boost::mpl::false_>(cur); } } // namespace foreach_detail_ } // namespace boost // Suppress a bogus code analysis warning on vc8+ #if BOOST_WORKAROUND(BOOST_MSVC, >= 1400) # define BOOST_FOREACH_SUPPRESS_WARNINGS() __pragma(warning(suppress:6001)) #else # define BOOST_FOREACH_SUPPRESS_WARNINGS() #endif /////////////////////////////////////////////////////////////////////////////// // Define a macro for giving hidden variables a unique name. Not strictly // needed, but eliminates some warnings on some compilers. #if BOOST_WORKAROUND(BOOST_MSVC, BOOST_TESTED_AT(1500)) // With some versions of MSVC, use of __LINE__ to create unique identifiers // can fail when the Edit-and-Continue debug flag is used. # define BOOST_FOREACH_ID(x) x #else # define BOOST_FOREACH_ID(x) BOOST_PP_CAT(x, __LINE__) #endif // A sneaky way to get the type of the collection without evaluating the expression #define BOOST_FOREACH_TYPEOF(COL) \ (true ? 0 : boost::foreach_detail_::encode_type(COL, boost::foreach_detail_::is_const_(COL))) // returns true_* if the type is noncopyable #define BOOST_FOREACH_IS_NONCOPYABLE(COL) \ boost_foreach_is_noncopyable( \ boost::foreach_detail_::to_ptr(COL) \ , boost_foreach_argument_dependent_lookup_hack_value) // returns true_* if the type is a lightweight proxy (and is not noncopyable) #define BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL) \ boost::foreach_detail_::and_( \ boost::foreach_detail_::not_(BOOST_FOREACH_IS_NONCOPYABLE(COL)) \ , boost_foreach_is_lightweight_proxy( \ boost::foreach_detail_::to_ptr(COL) \ , boost_foreach_argument_dependent_lookup_hack_value)) #ifdef BOOST_FOREACH_COMPILE_TIME_CONST_RVALUE_DETECTION /////////////////////////////////////////////////////////////////////////////// // R-values and const R-values supported here with zero runtime overhead /////////////////////////////////////////////////////////////////////////////// // No variable is needed to track the rvalue-ness of the collection expression # define BOOST_FOREACH_PREAMBLE() \ BOOST_FOREACH_SUPPRESS_WARNINGS() // Evaluate the collection expression # define BOOST_FOREACH_EVALUATE(COL) \ (COL) # define BOOST_FOREACH_SHOULD_COPY(COL) \ (true ? 0 : boost::foreach_detail_::or_( \ BOOST_FOREACH_IS_RVALUE(COL) \ , BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL))) #elif defined(BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION) /////////////////////////////////////////////////////////////////////////////// // R-values and const R-values supported here /////////////////////////////////////////////////////////////////////////////// // Declare a variable to track the rvalue-ness of the collection expression # define BOOST_FOREACH_PREAMBLE() \ BOOST_FOREACH_SUPPRESS_WARNINGS() \ if (bool BOOST_FOREACH_ID(_foreach_is_rvalue) = false) {} else // Evaluate the collection expression, and detect if it is an lvalue or and rvalue # define BOOST_FOREACH_EVALUATE(COL) \ (true ? boost::foreach_detail_::make_probe((COL), BOOST_FOREACH_ID(_foreach_is_rvalue)) : (COL)) // The rvalue/lvalue-ness of the collection expression is determined dynamically, unless // type type is an array or is noncopyable or is non-const, in which case we know it's an lvalue. // If the type happens to be a lightweight proxy, always make a copy. # define BOOST_FOREACH_SHOULD_COPY(COL) \ (boost::foreach_detail_::should_copy_impl( \ true ? 0 : boost::foreach_detail_::or_( \ boost::foreach_detail_::is_array_(COL) \ , BOOST_FOREACH_IS_NONCOPYABLE(COL) \ , boost::foreach_detail_::not_(boost::foreach_detail_::is_const_(COL))) \ , true ? 0 : BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL) \ , &BOOST_FOREACH_ID(_foreach_is_rvalue))) #elif !defined(BOOST_FOREACH_NO_RVALUE_DETECTION) /////////////////////////////////////////////////////////////////////////////// // R-values supported here, const R-values NOT supported here /////////////////////////////////////////////////////////////////////////////// // No variable is needed to track the rvalue-ness of the collection expression # define BOOST_FOREACH_PREAMBLE() \ BOOST_FOREACH_SUPPRESS_WARNINGS() // Evaluate the collection expression # define BOOST_FOREACH_EVALUATE(COL) \ (COL) // Determine whether the collection expression is an lvalue or an rvalue. // NOTE: this gets the answer wrong for const rvalues. # define BOOST_FOREACH_SHOULD_COPY(COL) \ (true ? 0 : boost::foreach_detail_::or_( \ boost::foreach_detail_::is_rvalue_((COL), 0) \ , BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL))) #else /////////////////////////////////////////////////////////////////////////////// // R-values NOT supported here /////////////////////////////////////////////////////////////////////////////// // No variable is needed to track the rvalue-ness of the collection expression # define BOOST_FOREACH_PREAMBLE() \ BOOST_FOREACH_SUPPRESS_WARNINGS() // Evaluate the collection expression # define BOOST_FOREACH_EVALUATE(COL) \ (COL) // Can't use rvalues with BOOST_FOREACH (unless they are lightweight proxies) # define BOOST_FOREACH_SHOULD_COPY(COL) \ (true ? 0 : BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL)) #endif #define BOOST_FOREACH_CONTAIN(COL) \ boost::foreach_detail_::contain( \ BOOST_FOREACH_EVALUATE(COL) \ , BOOST_FOREACH_SHOULD_COPY(COL)) #define BOOST_FOREACH_BEGIN(COL) \ boost::foreach_detail_::begin( \ BOOST_FOREACH_ID(_foreach_col) \ , BOOST_FOREACH_TYPEOF(COL) \ , BOOST_FOREACH_SHOULD_COPY(COL)) #define BOOST_FOREACH_END(COL) \ boost::foreach_detail_::end( \ BOOST_FOREACH_ID(_foreach_col) \ , BOOST_FOREACH_TYPEOF(COL) \ , BOOST_FOREACH_SHOULD_COPY(COL)) #define BOOST_FOREACH_DONE(COL) \ boost::foreach_detail_::done( \ BOOST_FOREACH_ID(_foreach_cur) \ , BOOST_FOREACH_ID(_foreach_end) \ , BOOST_FOREACH_TYPEOF(COL)) #define BOOST_FOREACH_NEXT(COL) \ boost::foreach_detail_::next( \ BOOST_FOREACH_ID(_foreach_cur) \ , BOOST_FOREACH_TYPEOF(COL)) #define BOOST_FOREACH_DEREF(COL) \ boost::foreach_detail_::deref( \ BOOST_FOREACH_ID(_foreach_cur) \ , BOOST_FOREACH_TYPEOF(COL)) #define BOOST_FOREACH_RBEGIN(COL) \ boost::foreach_detail_::rbegin( \ BOOST_FOREACH_ID(_foreach_col) \ , BOOST_FOREACH_TYPEOF(COL) \ , BOOST_FOREACH_SHOULD_COPY(COL)) #define BOOST_FOREACH_REND(COL) \ boost::foreach_detail_::rend( \ BOOST_FOREACH_ID(_foreach_col) \ , BOOST_FOREACH_TYPEOF(COL) \ , BOOST_FOREACH_SHOULD_COPY(COL)) #define BOOST_FOREACH_RDONE(COL) \ boost::foreach_detail_::rdone( \ BOOST_FOREACH_ID(_foreach_cur) \ , BOOST_FOREACH_ID(_foreach_end) \ , BOOST_FOREACH_TYPEOF(COL)) #define BOOST_FOREACH_RNEXT(COL) \ boost::foreach_detail_::rnext( \ BOOST_FOREACH_ID(_foreach_cur) \ , BOOST_FOREACH_TYPEOF(COL)) #define BOOST_FOREACH_RDEREF(COL) \ boost::foreach_detail_::rderef( \ BOOST_FOREACH_ID(_foreach_cur) \ , BOOST_FOREACH_TYPEOF(COL)) /////////////////////////////////////////////////////////////////////////////// // BOOST_FOREACH // // For iterating over collections. Collections can be // arrays, null-terminated strings, or STL containers. // The loop variable can be a value or reference. For // example: // // std::list<int> int_list(/*stuff*/); // BOOST_FOREACH(int &i, int_list) // { // /* // * loop body goes here. // * i is a reference to the int in int_list. // */ // } // // Alternately, you can declare the loop variable first, // so you can access it after the loop finishes. Obviously, // if you do it this way, then the loop variable cannot be // a reference. // // int i; // BOOST_FOREACH(i, int_list) // { ... } // #define BOOST_FOREACH(VAR, COL) \ BOOST_FOREACH_PREAMBLE() \ if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_col) = BOOST_FOREACH_CONTAIN(COL)) {} else \ if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_cur) = BOOST_FOREACH_BEGIN(COL)) {} else \ if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_end) = BOOST_FOREACH_END(COL)) {} else \ for (bool BOOST_FOREACH_ID(_foreach_continue) = true; \ BOOST_FOREACH_ID(_foreach_continue) && !BOOST_FOREACH_DONE(COL); \ BOOST_FOREACH_ID(_foreach_continue) ? BOOST_FOREACH_NEXT(COL) : (void)0) \ if (boost::foreach_detail_::set_false(BOOST_FOREACH_ID(_foreach_continue))) {} else \ for (VAR = BOOST_FOREACH_DEREF(COL); !BOOST_FOREACH_ID(_foreach_continue); BOOST_FOREACH_ID(_foreach_continue) = true) /////////////////////////////////////////////////////////////////////////////// // BOOST_REVERSE_FOREACH // // For iterating over collections in reverse order. In // all other respects, BOOST_REVERSE_FOREACH is like // BOOST_FOREACH. // #define BOOST_REVERSE_FOREACH(VAR, COL) \ BOOST_FOREACH_PREAMBLE() \ if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_col) = BOOST_FOREACH_CONTAIN(COL)) {} else \ if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_cur) = BOOST_FOREACH_RBEGIN(COL)) {} else \ if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_end) = BOOST_FOREACH_REND(COL)) {} else \ for (bool BOOST_FOREACH_ID(_foreach_continue) = true; \ BOOST_FOREACH_ID(_foreach_continue) && !BOOST_FOREACH_RDONE(COL); \ BOOST_FOREACH_ID(_foreach_continue) ? BOOST_FOREACH_RNEXT(COL) : (void)0) \ if (boost::foreach_detail_::set_false(BOOST_FOREACH_ID(_foreach_continue))) {} else \ for (VAR = BOOST_FOREACH_RDEREF(COL); !BOOST_FOREACH_ID(_foreach_continue); BOOST_FOREACH_ID(_foreach_continue) = true) #endif