// Copyright 2005-2009 Daniel James. // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // Based on Peter Dimov's proposal // http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1756.pdf // issue 6.18. // This implements the extensions to the standard. // It's undocumented, so you shouldn't use it.... #if !defined(BOOST_FUNCTIONAL_HASH_EXTENSIONS_HPP) #define BOOST_FUNCTIONAL_HASH_EXTENSIONS_HPP #include <boost/functional/hash/hash.hpp> #include <boost/detail/container_fwd.hpp> #if defined(_MSC_VER) && (_MSC_VER >= 1020) # pragma once #endif #if defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) #include <boost/type_traits/is_array.hpp> #endif #if BOOST_WORKAROUND(BOOST_MSVC, < 1300) #include <boost/type_traits/is_const.hpp> #endif namespace boost { template <class A, class B> std::size_t hash_value(std::pair<A, B> const&); template <class T, class A> std::size_t hash_value(std::vector<T, A> const&); template <class T, class A> std::size_t hash_value(std::list<T, A> const& v); template <class T, class A> std::size_t hash_value(std::deque<T, A> const& v); template <class K, class C, class A> std::size_t hash_value(std::set<K, C, A> const& v); template <class K, class C, class A> std::size_t hash_value(std::multiset<K, C, A> const& v); template <class K, class T, class C, class A> std::size_t hash_value(std::map<K, T, C, A> const& v); template <class K, class T, class C, class A> std::size_t hash_value(std::multimap<K, T, C, A> const& v); template <class T> std::size_t hash_value(std::complex<T> const&); template <class A, class B> std::size_t hash_value(std::pair<A, B> const& v) { std::size_t seed = 0; hash_combine(seed, v.first); hash_combine(seed, v.second); return seed; } template <class T, class A> std::size_t hash_value(std::vector<T, A> const& v) { return hash_range(v.begin(), v.end()); } template <class T, class A> std::size_t hash_value(std::list<T, A> const& v) { return hash_range(v.begin(), v.end()); } template <class T, class A> std::size_t hash_value(std::deque<T, A> const& v) { return hash_range(v.begin(), v.end()); } template <class K, class C, class A> std::size_t hash_value(std::set<K, C, A> const& v) { return hash_range(v.begin(), v.end()); } template <class K, class C, class A> std::size_t hash_value(std::multiset<K, C, A> const& v) { return hash_range(v.begin(), v.end()); } template <class K, class T, class C, class A> std::size_t hash_value(std::map<K, T, C, A> const& v) { return hash_range(v.begin(), v.end()); } template <class K, class T, class C, class A> std::size_t hash_value(std::multimap<K, T, C, A> const& v) { return hash_range(v.begin(), v.end()); } template <class T> std::size_t hash_value(std::complex<T> const& v) { boost::hash<T> hasher; std::size_t seed = hasher(v.imag()); seed ^= hasher(v.real()) + (seed<<6) + (seed>>2); return seed; } // // call_hash_impl // // On compilers without function template ordering, this deals with arrays. #if defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) namespace hash_detail { template <bool IsArray> struct call_hash_impl { template <class T> struct inner { static std::size_t call(T const& v) { using namespace boost; return hash_value(v); } }; }; template <> struct call_hash_impl<true> { template <class Array> struct inner { #if !BOOST_WORKAROUND(BOOST_MSVC, < 1300) static std::size_t call(Array const& v) #else static std::size_t call(Array& v) #endif { const int size = sizeof(v) / sizeof(*v); return boost::hash_range(v, v + size); } }; }; template <class T> struct call_hash : public call_hash_impl<boost::is_array<T>::value> ::BOOST_NESTED_TEMPLATE inner<T> { }; } #endif // BOOST_NO_FUNCTION_TEMPLATE_ORDERING // // boost::hash // #if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) template <class T> struct hash : std::unary_function<T, std::size_t> { #if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) std::size_t operator()(T const& val) const { return hash_value(val); } #else std::size_t operator()(T const& val) const { return hash_detail::call_hash<T>::call(val); } #endif }; #if BOOST_WORKAROUND(__DMC__, <= 0x848) template <class T, unsigned int n> struct hash<T[n]> : std::unary_function<T[n], std::size_t> { std::size_t operator()(const T* val) const { return boost::hash_range(val, val+n); } }; #endif #else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION // On compilers without partial specialization, boost::hash<T> // has already been declared to deal with pointers, so just // need to supply the non-pointer version of hash_impl. namespace hash_detail { template <bool IsPointer> struct hash_impl; #if !BOOST_WORKAROUND(BOOST_MSVC, < 1300) template <> struct hash_impl<false> { template <class T> struct inner : std::unary_function<T, std::size_t> { #if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) std::size_t operator()(T const& val) const { return hash_value(val); } #else std::size_t operator()(T const& val) const { return hash_detail::call_hash<T>::call(val); } #endif }; }; #else // Visual C++ 6.5 // Visual C++ 6.5 has problems with nested member functions and // applying const to const types in templates. So we get this: template <bool IsConst> struct hash_impl_msvc { template <class T> struct inner : public std::unary_function<T, std::size_t> { std::size_t operator()(T const& val) const { return hash_detail::call_hash<T const>::call(val); } std::size_t operator()(T& val) const { return hash_detail::call_hash<T>::call(val); } }; }; template <> struct hash_impl_msvc<true> { template <class T> struct inner : public std::unary_function<T, std::size_t> { std::size_t operator()(T& val) const { return hash_detail::call_hash<T>::call(val); } }; }; template <class T> struct hash_impl_msvc2 : public hash_impl_msvc<boost::is_const<T>::value> ::BOOST_NESTED_TEMPLATE inner<T> {}; template <> struct hash_impl<false> { template <class T> struct inner : public hash_impl_msvc2<T> {}; }; #endif // Visual C++ 6.5 } #endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION } #endif