// Copyright 2005-2009 Daniel James. // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // Based on Peter Dimov's proposal // http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1756.pdf // issue 6.18. // This implements the extensions to the standard. // It's undocumented, so you shouldn't use it.... #if !defined(BOOST_FUNCTIONAL_HASH_EXTENSIONS_HPP) #define BOOST_FUNCTIONAL_HASH_EXTENSIONS_HPP #include <boost/functional/hash/hash.hpp> #include <boost/functional/hash/detail/container_fwd_0x.hpp> #include <boost/utility/enable_if.hpp> #include <boost/static_assert.hpp> #include <boost/preprocessor/repetition/repeat_from_to.hpp> #include <boost/preprocessor/repetition/enum_params.hpp> #if defined(_MSC_VER) && (_MSC_VER >= 1020) # pragma once #endif #if defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) #include <boost/type_traits/is_array.hpp> #endif #if BOOST_WORKAROUND(BOOST_MSVC, < 1300) #include <boost/type_traits/is_const.hpp> #endif namespace boost { template <class A, class B> std::size_t hash_value(std::pair<A, B> const&); template <class T, class A> std::size_t hash_value(std::vector<T, A> const&); template <class T, class A> std::size_t hash_value(std::list<T, A> const& v); template <class T, class A> std::size_t hash_value(std::deque<T, A> const& v); template <class K, class C, class A> std::size_t hash_value(std::set<K, C, A> const& v); template <class K, class C, class A> std::size_t hash_value(std::multiset<K, C, A> const& v); template <class K, class T, class C, class A> std::size_t hash_value(std::map<K, T, C, A> const& v); template <class K, class T, class C, class A> std::size_t hash_value(std::multimap<K, T, C, A> const& v); template <class T> std::size_t hash_value(std::complex<T> const&); template <class A, class B> std::size_t hash_value(std::pair<A, B> const& v) { std::size_t seed = 0; boost::hash_combine(seed, v.first); boost::hash_combine(seed, v.second); return seed; } template <class T, class A> std::size_t hash_value(std::vector<T, A> const& v) { return boost::hash_range(v.begin(), v.end()); } template <class T, class A> std::size_t hash_value(std::list<T, A> const& v) { return boost::hash_range(v.begin(), v.end()); } template <class T, class A> std::size_t hash_value(std::deque<T, A> const& v) { return boost::hash_range(v.begin(), v.end()); } template <class K, class C, class A> std::size_t hash_value(std::set<K, C, A> const& v) { return boost::hash_range(v.begin(), v.end()); } template <class K, class C, class A> std::size_t hash_value(std::multiset<K, C, A> const& v) { return boost::hash_range(v.begin(), v.end()); } template <class K, class T, class C, class A> std::size_t hash_value(std::map<K, T, C, A> const& v) { return boost::hash_range(v.begin(), v.end()); } template <class K, class T, class C, class A> std::size_t hash_value(std::multimap<K, T, C, A> const& v) { return boost::hash_range(v.begin(), v.end()); } template <class T> std::size_t hash_value(std::complex<T> const& v) { boost::hash<T> hasher; std::size_t seed = hasher(v.imag()); seed ^= hasher(v.real()) + (seed<<6) + (seed>>2); return seed; } #if !defined(BOOST_NO_CXX11_HDR_ARRAY) template <class T, std::size_t N> std::size_t hash_value(std::array<T, N> const& v) { return boost::hash_range(v.begin(), v.end()); } #endif #if !defined(BOOST_NO_CXX11_HDR_TUPLE) namespace hash_detail { template <std::size_t I, typename T> inline typename boost::enable_if_c<(I == std::tuple_size<T>::value), void>::type hash_combine_tuple(std::size_t&, T const&) { } template <std::size_t I, typename T> inline typename boost::enable_if_c<(I < std::tuple_size<T>::value), void>::type hash_combine_tuple(std::size_t& seed, T const& v) { boost::hash_combine(seed, std::get<I>(v)); boost::hash_detail::hash_combine_tuple<I + 1>(seed, v); } template <typename T> inline std::size_t hash_tuple(T const& v) { std::size_t seed = 0; boost::hash_detail::hash_combine_tuple<0>(seed, v); return seed; } } #if !defined(BOOST_NO_VARIADIC_TEMPLATES) template <typename... T> inline std::size_t hash_value(std::tuple<T...> const& v) { return boost::hash_detail::hash_tuple(v); } #else inline std::size_t hash_value(std::tuple<> const& v) { return boost::hash_detail::hash_tuple(v); } # define BOOST_HASH_TUPLE_F(z, n, _) \ template< \ BOOST_PP_ENUM_PARAMS_Z(z, n, typename A) \ > \ inline std::size_t hash_value(std::tuple< \ BOOST_PP_ENUM_PARAMS_Z(z, n, A) \ > const& v) \ { \ return boost::hash_detail::hash_tuple(v); \ } BOOST_PP_REPEAT_FROM_TO(1, 11, BOOST_HASH_TUPLE_F, _) # undef BOOST_HASH_TUPLE_F #endif #endif #if !defined(BOOST_NO_CXX11_SMART_PTR) template <typename T> inline std::size_t hash_value(std::shared_ptr<T> const& x) { return boost::hash_value(x.get()); } template <typename T, typename Deleter> inline std::size_t hash_value(std::unique_ptr<T, Deleter> const& x) { return boost::hash_value(x.get()); } #endif // // call_hash_impl // // On compilers without function template ordering, this deals with arrays. #if defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) namespace hash_detail { template <bool IsArray> struct call_hash_impl { template <class T> struct inner { static std::size_t call(T const& v) { using namespace boost; return hash_value(v); } }; }; template <> struct call_hash_impl<true> { template <class Array> struct inner { #if !BOOST_WORKAROUND(BOOST_MSVC, < 1300) static std::size_t call(Array const& v) #else static std::size_t call(Array& v) #endif { const int size = sizeof(v) / sizeof(*v); return boost::hash_range(v, v + size); } }; }; template <class T> struct call_hash : public call_hash_impl<boost::is_array<T>::value> ::BOOST_NESTED_TEMPLATE inner<T> { }; } #endif // BOOST_NO_FUNCTION_TEMPLATE_ORDERING // // boost::hash // #if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) template <class T> struct hash : std::unary_function<T, std::size_t> { #if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) std::size_t operator()(T const& val) const { return hash_value(val); } #else std::size_t operator()(T const& val) const { return hash_detail::call_hash<T>::call(val); } #endif }; #if BOOST_WORKAROUND(__DMC__, <= 0x848) template <class T, unsigned int n> struct hash<T[n]> : std::unary_function<T[n], std::size_t> { std::size_t operator()(const T* val) const { return boost::hash_range(val, val+n); } }; #endif #else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION // On compilers without partial specialization, boost::hash<T> // has already been declared to deal with pointers, so just // need to supply the non-pointer version of hash_impl. namespace hash_detail { template <bool IsPointer> struct hash_impl; #if !BOOST_WORKAROUND(BOOST_MSVC, < 1300) template <> struct hash_impl<false> { template <class T> struct inner : std::unary_function<T, std::size_t> { #if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) std::size_t operator()(T const& val) const { return hash_value(val); } #else std::size_t operator()(T const& val) const { return hash_detail::call_hash<T>::call(val); } #endif }; }; #else // Visual C++ 6.5 // Visual C++ 6.5 has problems with nested member functions and // applying const to const types in templates. So we get this: template <bool IsConst> struct hash_impl_msvc { template <class T> struct inner : public std::unary_function<T, std::size_t> { std::size_t operator()(T const& val) const { return hash_detail::call_hash<T const>::call(val); } std::size_t operator()(T& val) const { return hash_detail::call_hash<T>::call(val); } }; }; template <> struct hash_impl_msvc<true> { template <class T> struct inner : public std::unary_function<T, std::size_t> { std::size_t operator()(T& val) const { return hash_detail::call_hash<T>::call(val); } }; }; template <class T> struct hash_impl_msvc2 : public hash_impl_msvc<boost::is_const<T>::value> ::BOOST_NESTED_TEMPLATE inner<T> {}; template <> struct hash_impl<false> { template <class T> struct inner : public hash_impl_msvc2<T> {}; }; #endif // Visual C++ 6.5 } #endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION } #endif