#if !defined(BOOST_PROTO_DONT_USE_PREPROCESSED_FILES) #ifndef BOOST_NO_VARIADIC_TEMPLATES #include <boost/proto/detail/preprocessed/expr_variadic.hpp> #else #include <boost/proto/detail/preprocessed/expr.hpp> #endif #elif !defined(BOOST_PP_IS_ITERATING) /// INTERNAL ONLY /// #define BOOST_PROTO_CHILD(Z, N, DATA) \ typedef BOOST_PP_CAT(Arg, N) BOOST_PP_CAT(proto_child, N); \ BOOST_PP_CAT(proto_child, N) BOOST_PP_CAT(child, N); \ /**< INTERNAL ONLY */ /// INTERNAL ONLY /// #define BOOST_PROTO_VOID(Z, N, DATA) \ typedef void BOOST_PP_CAT(proto_child, N); \ /**< INTERNAL ONLY */ // Generate variadic versions of expr #if defined(__WAVE__) && defined(BOOST_PROTO_CREATE_PREPROCESSED_FILES) #pragma wave option(preserve: 2, line: 0, output: "preprocessed/expr_variadic.hpp") #endif /////////////////////////////////////////////////////////////////////////////// /// \file expr_variadic.hpp /// Contains definition of expr\<\> class template. // // Copyright 2008 Eric Niebler. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #if defined(__WAVE__) && defined(BOOST_PROTO_CREATE_PREPROCESSED_FILES) #pragma wave option(preserve: 1) #endif // The expr<> specializations are actually defined here. #define BOOST_PROTO_DEFINE_TERMINAL #define BOOST_PP_ITERATION_PARAMS_1 \ (3, (0, 0, <boost/proto/detail/expr.hpp>)) #include BOOST_PP_ITERATE() #undef BOOST_PROTO_DEFINE_TERMINAL #define BOOST_PP_ITERATION_PARAMS_1 \ (3, (1, BOOST_PROTO_MAX_ARITY, <boost/proto/detail/expr.hpp>)) #include BOOST_PP_ITERATE() // Generate non-variadic versions of expr #if defined(__WAVE__) && defined(BOOST_PROTO_CREATE_PREPROCESSED_FILES) #define BOOST_NO_VARIADIC_TEMPLATES #pragma wave option(preserve: 2, line: 0, output: "preprocessed/expr.hpp") /////////////////////////////////////////////////////////////////////////////// /// \file expr.hpp /// Contains definition of expr\<\> class template. // // Copyright 2008 Eric Niebler. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #pragma wave option(preserve: 1) // The expr<> specializations are actually defined here. #define BOOST_PROTO_DEFINE_TERMINAL #define BOOST_PP_ITERATION_PARAMS_1 (3, (0, 0, <boost/proto/detail/expr.hpp>)) #include BOOST_PP_ITERATE() #undef BOOST_PROTO_DEFINE_TERMINAL #define BOOST_PP_ITERATION_PARAMS_1 (3, (1, BOOST_PROTO_MAX_ARITY, <boost/proto/detail/expr.hpp>)) #include BOOST_PP_ITERATE() #pragma wave option(output: null) #undef BOOST_NO_VARIADIC_TEMPLATES #endif #undef BOOST_PROTO_CHILD #undef BOOST_PROTO_VOID #else #define ARG_COUNT BOOST_PP_MAX(1, BOOST_PP_ITERATION()) /// \brief Representation of a node in an expression tree. /// /// \c proto::expr\<\> is a node in an expression template tree. It /// is a container for its child sub-trees. It also serves as /// the terminal nodes of the tree. /// /// \c Tag is type that represents the operation encoded by /// this expression. It is typically one of the structs /// in the \c boost::proto::tag namespace, but it doesn't /// have to be. /// /// \c Args is a type list representing the type of the children /// of this expression. It is an instantiation of one /// of \c proto::list1\<\>, \c proto::list2\<\>, etc. The /// child types must all themselves be either \c expr\<\> /// or <tt>proto::expr\<\>&</tt>. If \c Args is an /// instantiation of \c proto::term\<\> then this /// \c expr\<\> type represents a terminal expression; /// the parameter to the \c proto::term\<\> template /// represents the terminal's value type. /// /// \c Arity is an integral constant representing the number of child /// nodes this node contains. If \c Arity is 0, then this /// node is a terminal. /// /// \c proto::expr\<\> is a valid Fusion random-access sequence, where /// the elements of the sequence are the child expressions. #ifdef BOOST_PROTO_DEFINE_TERMINAL template<typename Tag, typename Arg0> struct expr<Tag, term<Arg0>, 0> #else template<typename Tag BOOST_PP_ENUM_TRAILING_PARAMS(ARG_COUNT, typename Arg)> struct expr<Tag, BOOST_PP_CAT(list, BOOST_PP_ITERATION())<BOOST_PP_ENUM_PARAMS(ARG_COUNT, Arg)>, BOOST_PP_ITERATION() > #endif { typedef Tag proto_tag; static const long proto_arity_c = BOOST_PP_ITERATION(); typedef mpl::long_<BOOST_PP_ITERATION() > proto_arity; typedef expr proto_base_expr; #ifdef BOOST_PROTO_DEFINE_TERMINAL typedef term<Arg0> proto_args; #else typedef BOOST_PP_CAT(list, BOOST_PP_ITERATION())<BOOST_PP_ENUM_PARAMS(ARG_COUNT, Arg)> proto_args; #endif typedef basic_expr<Tag, proto_args, BOOST_PP_ITERATION() > proto_grammar; typedef default_domain proto_domain; typedef default_generator proto_generator; typedef proto::tag::proto_expr<Tag, proto_domain> fusion_tag; typedef expr proto_derived_expr; typedef void proto_is_expr_; /**< INTERNAL ONLY */ BOOST_PP_REPEAT(ARG_COUNT, BOOST_PROTO_CHILD, ~) BOOST_PP_REPEAT_FROM_TO(ARG_COUNT, BOOST_PROTO_MAX_ARITY, BOOST_PROTO_VOID, ~) /// \return *this /// BOOST_FORCEINLINE expr const &proto_base() const { return *this; } /// \overload /// BOOST_FORCEINLINE expr &proto_base() { return *this; } #ifdef BOOST_PROTO_DEFINE_TERMINAL /// \return A new \c expr\<\> object initialized with the specified /// arguments. /// template<typename A0> BOOST_FORCEINLINE static expr const make(A0 &a0) { return detail::make_terminal(a0, static_cast<expr *>(0), static_cast<proto_args *>(0)); } /// \overload /// template<typename A0> BOOST_FORCEINLINE static expr const make(A0 const &a0) { return detail::make_terminal(a0, static_cast<expr *>(0), static_cast<proto_args *>(0)); } #else /// \return A new \c expr\<\> object initialized with the specified /// arguments. /// template<BOOST_PP_ENUM_PARAMS(ARG_COUNT, typename A)> BOOST_FORCEINLINE static expr const make(BOOST_PP_ENUM_BINARY_PARAMS(ARG_COUNT, A, const &a)) { expr that = {BOOST_PP_ENUM_PARAMS(ARG_COUNT, a)}; return that; } #endif #if 1 == BOOST_PP_ITERATION() /// If \c Tag is \c boost::proto::tag::address_of and \c proto_child0 is /// <tt>T&</tt>, then \c address_of_hack_type_ is <tt>T*</tt>. /// Otherwise, it is some undefined type. typedef typename detail::address_of_hack<Tag, proto_child0>::type address_of_hack_type_; /// \return The address of <tt>this->child0</tt> if \c Tag is /// \c boost::proto::tag::address_of. Otherwise, this function will /// fail to compile. /// /// \attention Proto overloads <tt>operator&</tt>, which means that /// proto-ified objects cannot have their addresses taken, unless we use /// the following hack to make \c &x implicitly convertible to \c X*. BOOST_FORCEINLINE operator address_of_hack_type_() const { return boost::addressof(this->child0); } #else /// INTERNAL ONLY /// typedef detail::not_a_valid_type address_of_hack_type_; #endif /// Assignment /// /// \param a The rhs. /// \return A new \c expr\<\> node representing an assignment of \c that to \c *this. BOOST_FORCEINLINE proto::expr< proto::tag::assign , list2<expr &, expr const &> , 2 > const operator =(expr const &a) { proto::expr< proto::tag::assign , list2<expr &, expr const &> , 2 > that = {*this, a}; return that; } /// Assignment /// /// \param a The rhs. /// \return A new \c expr\<\> node representing an assignment of \c a to \c *this. template<typename A> BOOST_FORCEINLINE proto::expr< proto::tag::assign , list2<expr const &, typename result_of::as_child<A>::type> , 2 > const operator =(A &a) const { proto::expr< proto::tag::assign , list2<expr const &, typename result_of::as_child<A>::type> , 2 > that = {*this, proto::as_child(a)}; return that; } /// \overload /// template<typename A> BOOST_FORCEINLINE proto::expr< proto::tag::assign , list2<expr const &, typename result_of::as_child<A const>::type> , 2 > const operator =(A const &a) const { proto::expr< proto::tag::assign , list2<expr const &, typename result_of::as_child<A const>::type> , 2 > that = {*this, proto::as_child(a)}; return that; } #ifdef BOOST_PROTO_DEFINE_TERMINAL /// \overload /// template<typename A> BOOST_FORCEINLINE proto::expr< proto::tag::assign , list2<expr &, typename result_of::as_child<A>::type> , 2 > const operator =(A &a) { proto::expr< proto::tag::assign , list2<expr &, typename result_of::as_child<A>::type> , 2 > that = {*this, proto::as_child(a)}; return that; } /// \overload /// template<typename A> BOOST_FORCEINLINE proto::expr< proto::tag::assign , list2<expr &, typename result_of::as_child<A const>::type> , 2 > const operator =(A const &a) { proto::expr< proto::tag::assign , list2<expr &, typename result_of::as_child<A const>::type> , 2 > that = {*this, proto::as_child(a)}; return that; } #endif /// Subscript /// /// \param a The rhs. /// \return A new \c expr\<\> node representing \c *this subscripted with \c a. template<typename A> BOOST_FORCEINLINE proto::expr< proto::tag::subscript , list2<expr const &, typename result_of::as_child<A>::type> , 2 > const operator [](A &a) const { proto::expr< proto::tag::subscript , list2<expr const &, typename result_of::as_child<A>::type> , 2 > that = {*this, proto::as_child(a)}; return that; } /// \overload /// template<typename A> BOOST_FORCEINLINE proto::expr< proto::tag::subscript , list2<expr const &, typename result_of::as_child<A const>::type> , 2 > const operator [](A const &a) const { proto::expr< proto::tag::subscript , list2<expr const &, typename result_of::as_child<A const>::type> , 2 > that = {*this, proto::as_child(a)}; return that; } #ifdef BOOST_PROTO_DEFINE_TERMINAL /// \overload /// template<typename A> BOOST_FORCEINLINE proto::expr< proto::tag::subscript , list2<expr &, typename result_of::as_child<A>::type> , 2 > const operator [](A &a) { proto::expr< proto::tag::subscript , list2<expr &, typename result_of::as_child<A>::type> , 2 > that = {*this, proto::as_child(a)}; return that; } /// \overload /// template<typename A> BOOST_FORCEINLINE proto::expr< proto::tag::subscript , list2<expr &, typename result_of::as_child<A const>::type> , 2 > const operator [](A const &a) { proto::expr< proto::tag::subscript , list2<expr &, typename result_of::as_child<A const>::type> , 2 > that = {*this, proto::as_child(a)}; return that; } #endif /// Encodes the return type of \c expr\<\>::operator(), for use with \c boost::result_of\<\> /// template<typename Sig> struct result { typedef typename result_of::funop<Sig, expr, default_domain>::type const type; }; #ifndef BOOST_NO_VARIADIC_TEMPLATES /// \overload /// template<typename ...A> BOOST_FORCEINLINE typename result_of::funop< expr const(A const &...) , expr , default_domain >::type const operator ()(A const &... a) const { return result_of::funop< expr const(A const &...) , expr , default_domain >::call(*this, a...); } #ifdef BOOST_PROTO_DEFINE_TERMINAL /// \overload /// template<typename ...A> BOOST_FORCEINLINE typename result_of::funop< expr(A const &...) , expr , default_domain >::type const operator ()(A const &... a) { return result_of::funop< expr(A const &...) , expr , default_domain >::call(*this, a...); } #endif #else // BOOST_NO_VARIADIC_TEMPLATES /// Function call /// /// \return A new \c expr\<\> node representing the function invocation of \c (*this)(). BOOST_FORCEINLINE proto::expr<proto::tag::function, list1<expr const &>, 1> const operator ()() const { proto::expr<proto::tag::function, list1<expr const &>, 1> that = {*this}; return that; } #ifdef BOOST_PROTO_DEFINE_TERMINAL /// \overload /// BOOST_FORCEINLINE proto::expr<proto::tag::function, list1<expr &>, 1> const operator ()() { proto::expr<proto::tag::function, list1<expr &>, 1> that = {*this}; return that; } #endif #define BOOST_PP_ITERATION_PARAMS_2 \ (3, (1, BOOST_PP_DEC(BOOST_PROTO_MAX_FUNCTION_CALL_ARITY), <boost/proto/detail/expr_funop.hpp>)) #include BOOST_PP_ITERATE() #endif }; #undef ARG_COUNT #endif