/*============================================================================= Copyright (c) 2001-2007 Joel de Guzman Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) ==============================================================================*/ #ifndef PHOENIX_DETAIL_TYPE_DEDUCTION_HPP #define PHOENIX_DETAIL_TYPE_DEDUCTION_HPP /*============================================================================= Return Type Deduction [JDG Sept. 15, 2003] Before C++ adopts the typeof, there is currently no way to deduce the result type of an expression such as x + y. This deficiency is a major problem with template metaprogramming; for example, when writing forwarding functions that attempt to capture the essence of an expression inside a function. Consider the std::plus: template struct plus : public binary_function { T operator()(T const& x, T const& y) const { return x + y; } }; What's wrong with this? Well, this functor does not accurately capture the behavior of the plus operator. 1) It does not handle the case where x and y are of different types (e.g. x is short and y is int). 2) It assumes that the arguments and return type are the same (i.e. when adding a short and an int, the return type ought to be an int). Due to these shortcomings, std::plus(x, y) is a poor substitute for x + y. The case where x is short and y is int does not really expose the problem. We can simply use std::plus and be happy that the operands x and y will simply be converted to an int. The problem becomes evident when an operand is a user defined type such as bigint. Here, the conversion to bigint is simply not acceptable. Even if the unnecessary conversion is tolerable, in generic code, it is not always possible to choose the right T type that can accomodate both x and y operands. To truly model the plus operator, what we need is a polymorphic functor that can take arbitrary x and y operands. Here's a rough schematic: struct plus { template unspecified-type operator()(X const& x, Y const& y) const { return x + y; } }; Now, we can handle the case where X and Y are arbitrary types. We've solved the first problem. To solve the second problem, we need some form of return type deduction mechanism. If we had the typeof, it would be something like: template typeof(X() + Y()) operator()(X const& x, Y const& y) const { return x + y; } Without the typeof facility, it is only possible to wrap an expression such as x + y in a function or functor if we are given a hint that tells us what the actual result type of such an expression is. Such a hint can be in the form of a metaprogram, that, given the types of the arguments, will return the result type. Example: template struct result_of_plus { typedef unspecified-type type; }; Given a result_of_plus metaprogram, we can complete our polymorphic plus functor: struct plus { template typename result_of_plus::type operator()(X const& x, Y const& y) const { return x + y; } }; The process is not automatic. We have to specialize the metaprogram for specific argument types. Examples: template <> struct result_of_plus { typedef int type; }; template struct result_of_plus, std::complex > { typedef std::complex type; }; To make it easier for the user, specializations are provided for common types such as primitive c++ types (e.g. int, char, double, etc.), and standard types (e.g. std::complex, iostream, std containers and iterators). To further improve the ease of use, for user defined classes, we can supply a few more basic specializations through metaprogramming using heuristics based on canonical operator rules (Such heuristics can be found in the LL and Phoenix, for example). For example, it is rather common that the result of x += y is X& or the result of x || y is a bool. The client is out of luck if her classes do not follow the canonical rules. She'll then have to supply her own specialization. The type deduction mechanism demostrated below approaches the problem not through specialization and heuristics, but through a limited form of typeof mechanism. The code does not use heuristics, hence, no guessing games. The code takes advantage of the fact that, in general, the result type of an expression is related to one its arguments' type. For example, x + y, where x has type int and y has type double, has the result type double (the second operand type). Another example, x[y] where x is a vector and y is a std::size_t, has the result type vector::reference (the vector's reference type type). The limited form of type deduction presented can detect common relations if the result of a binary or unary operation, given arguments x and y with types X and Y (respectively), is X, Y, X&, Y&, X*, Y*, X const*, Y const*, bool, int, unsigned, double, container and iterator elements (e.g the T, where X is: T[N], T*, vector, map, vector::iterator). More arguments/return type relationships can be established if needed. A set of overloaded test(T) functions capture these argument related types. Each test(T) function returns a distinct type that can be used to determine the exact type of an expression. Consider: template x_value_type test(X const&); template y_value_type test(Y const&); Given an expression x + y, where x is int and y is double, the call to: test(x + y) will return a y_value_type. Now, if we rig x_value_type and y_value_type such that both have unique sizes, we can use sizeof(test(x + y)) to determine if the result type is either X or Y. For example, if: sizeof(test(x + y)) == sizeof(y_value_type) then, we know for sure that the result of x + y has type Y. The same basic scheme can be used to detect more argument-dependent return types where the sizeof the test(T) return type is used to index through a boost::mpl vector which holds each of the corresponding result types. ==============================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { struct error_cant_deduce_type {}; } namespace boost { namespace type_deduction_detail { typedef char(&bool_value_type)[1]; typedef char(&int_value_type)[2]; typedef char(&uint_value_type)[3]; typedef char(&double_value_type)[4]; typedef char(&bool_reference_type)[5]; typedef char(&int_reference_type)[6]; typedef char(&uint_reference_type)[7]; typedef char(&double_reference_type)[8]; typedef char(&x_value_type)[9]; typedef char(&x_reference_type)[10]; typedef char(&x_const_pointer_type)[11]; typedef char(&x_pointer_type)[12]; typedef char(&y_value_type)[13]; typedef char(&y_reference_type)[14]; typedef char(&y_const_pointer_type)[15]; typedef char(&y_pointer_type)[16]; typedef char(&container_reference_type)[17]; typedef char(&container_const_reference_type)[18]; typedef char(&container_mapped_type)[19]; typedef char(&cant_deduce_type)[20]; template ::type> struct is_basic : mpl::or_< is_same , is_same , is_same , is_same > {}; template struct reference_type { typedef typename C::reference type; }; template struct reference_type : reference_type {}; template struct reference_type { typedef T& type; }; template struct reference_type { typedef T& type; }; template struct reference_type { typedef T const& type; }; template struct const_reference_type { typedef typename C::const_reference type; }; template struct mapped_type { typedef typename C::mapped_type type; }; struct asymmetric; template cant_deduce_type test(...); // The black hole !!! template bool_value_type test(bool const&); template int_value_type test(int const&); template uint_value_type test(unsigned const&); template double_value_type test(double const&); template bool_reference_type test(bool&); template int_reference_type test(int&); template uint_reference_type test(unsigned&); template double_reference_type test(double&); template typename disable_if< mpl::or_, is_const > , x_value_type >::type test(X const&); template typename disable_if< is_basic , x_reference_type >::type test(X&); template typename disable_if< mpl::or_< is_basic , is_const > , x_const_pointer_type >::type test(X const*); template x_pointer_type test(X*); template typename disable_if< mpl::or_< is_basic , is_same , is_const , is_same > , y_value_type >::type test(Y const&); template typename disable_if< mpl::or_< is_basic , is_same , is_same > , y_reference_type >::type test(Y&); template typename disable_if< mpl::or_< is_same , is_const , is_same > , y_const_pointer_type >::type test(Y const*); template typename disable_if< mpl::or_< is_same , is_same > , y_pointer_type >::type test(Y*); template typename disable_if< mpl::or_< is_basic , is_same::type, typename X::reference> > , container_reference_type >::type test(typename X::reference); template typename enable_if< mpl::and_< mpl::or_, is_pointer > , mpl::not_ > , mpl::not_ > > , container_reference_type >::type test(Z&); template typename disable_if< mpl::or_< is_basic , is_same::type, typename X::const_reference> > , container_const_reference_type >::type test(typename X::const_reference); template typename disable_if< is_basic , container_mapped_type >::type test(typename X::mapped_type); template struct base_result_of { typedef typename phoenix::detail::unwrap_local_reference::type x_type_; typedef typename phoenix::detail::unwrap_local_reference::type y_type_; typedef typename remove_reference::type x_type; typedef typename remove_reference::type y_type; typedef mpl::vector20< mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , mpl::identity , reference_type , const_reference_type , mapped_type , mpl::identity > types; }; }} // namespace boost::type_deduction_detail #define BOOST_RESULT_OF_COMMON(expr, name, Y, SYMMETRY) \ struct name \ { \ typedef type_deduction_detail::base_result_of base_type; \ static typename base_type::x_type x; \ static typename base_type::y_type y; \ \ BOOST_STATIC_CONSTANT(int, \ size = sizeof( \ type_deduction_detail::test< \ typename base_type::x_type \ , SYMMETRY \ >(expr) \ )); \ \ BOOST_STATIC_CONSTANT(int, index = (size / sizeof(char)) - 1); \ \ typedef typename mpl::at_c< \ typename base_type::types, index>::type id; \ typedef typename id::type type; \ }; #define BOOST_UNARY_RESULT_OF(expr, name) \ template \ BOOST_RESULT_OF_COMMON(expr, name, \ type_deduction_detail::asymmetric, type_deduction_detail::asymmetric) #define BOOST_BINARY_RESULT_OF(expr, name) \ template \ BOOST_RESULT_OF_COMMON(expr, name, Y, typename base_type::y_type) #define BOOST_ASYMMETRIC_BINARY_RESULT_OF(expr, name) \ template \ BOOST_RESULT_OF_COMMON(expr, name, Y, type_deduction_detail::asymmetric) #endif