// Copyright (c) 2001 Daniel C. Nuffer // Copyright (c) 2001-2011 Hartmut Kaiser // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #if !defined(BOOST_SPIRIT_ITERATOR_SPLIT_DEQUE_POLICY_APR_06_2008_0138PM) #define BOOST_SPIRIT_ITERATOR_SPLIT_DEQUE_POLICY_APR_06_2008_0138PM #include #include #include #include namespace boost { namespace spirit { namespace iterator_policies { /////////////////////////////////////////////////////////////////////////// // class split_std_deque // // Implementation of the StoragePolicy used by multi_pass // This stores all data in a std::vector (despite its name), and keeps an // offset to the current position. It stores all the data unless there is // only one iterator using the queue. // /////////////////////////////////////////////////////////////////////////// struct split_std_deque { enum { threshold = 16 }; /////////////////////////////////////////////////////////////////////// template class unique //: public detail::default_storage_policy { private: typedef std::vector queue_type; protected: unique() : queued_position(0) {} unique(unique const& x) : queued_position(x.queued_position) {} void swap(unique& x) { boost::swap(queued_position, x.queued_position); } // This is called when the iterator is dereferenced. It's a // template method so we can recover the type of the multi_pass // iterator and call advance_input and input_is_valid. template static typename MultiPass::reference dereference(MultiPass const& mp) { queue_type& queue = mp.shared()->queued_elements; typename queue_type::size_type size = queue.size(); BOOST_ASSERT(mp.queued_position <= size); if (mp.queued_position == size) { // check if this is the only iterator if (size >= threshold && MultiPass::is_unique(mp)) { // free up the memory used by the queue. queue.clear(); mp.queued_position = 0; } return MultiPass::get_input(mp); } return queue[mp.queued_position]; } // This is called when the iterator is incremented. It's a template // method so we can recover the type of the multi_pass iterator // and call is_unique and advance_input. template static void increment(MultiPass& mp) { queue_type& queue = mp.shared()->queued_elements; typename queue_type::size_type size = queue.size(); BOOST_ASSERT(mp.queued_position <= size); // // do not increment iterator as long as the current token is // // invalid // if (size > 0 && !MultiPass::input_is_valid(mp, queue[mp.queued_position-1])) // return; if (mp.queued_position == size) { // check if this is the only iterator if (size >= threshold && MultiPass::is_unique(mp)) { // free up the memory used by the queue. we avoid // clearing the queue on every increment, though, // because this would be too time consuming queue.clear(); mp.queued_position = 0; } else { queue.push_back(MultiPass::get_input(mp)); ++mp.queued_position; } MultiPass::advance_input(mp); } else { ++mp.queued_position; } } // called to forcibly clear the queue template static void clear_queue(MultiPass& mp) { mp.shared()->queued_elements.clear(); mp.queued_position = 0; } // called to determine whether the iterator is an eof iterator template static bool is_eof(MultiPass const& mp) { return mp.queued_position == mp.shared()->queued_elements.size() && MultiPass::input_at_eof(mp); } // called by operator== template static bool equal_to(MultiPass const& mp, MultiPass const& x) { return mp.queued_position == x.queued_position; } // called by operator< template static bool less_than(MultiPass const& mp, MultiPass const& x) { return mp.queued_position < x.queued_position; } template static void destroy(MultiPass&) {} protected: mutable typename queue_type::size_type queued_position; }; /////////////////////////////////////////////////////////////////////// template struct shared { shared() { queued_elements.reserve(threshold); } typedef std::vector queue_type; queue_type queued_elements; }; }; // split_std_deque }}} #endif