// (C) Copyright 2008-10 Anthony Williams // (C) Copyright 2011-2012 Vicente J. Botet Escriba // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_THREAD_FUTURE_HPP #define BOOST_THREAD_FUTURE_HPP #include <boost/thread/detail/config.hpp> // boost::thread::future requires exception handling // due to boost::exception::exception_ptr dependency #ifndef BOOST_NO_EXCEPTIONS #include <boost/detail/scoped_enum_emulation.hpp> #include <stdexcept> #include <boost/thread/detail/move.hpp> #include <boost/thread/thread_time.hpp> #include <boost/thread/mutex.hpp> #include <boost/thread/condition_variable.hpp> #include <boost/exception_ptr.hpp> #include <boost/shared_ptr.hpp> #include <boost/scoped_ptr.hpp> #include <boost/type_traits/is_fundamental.hpp> #include <boost/type_traits/is_convertible.hpp> #include <boost/type_traits/remove_reference.hpp> #include <boost/type_traits/remove_cv.hpp> #include <boost/mpl/if.hpp> #include <boost/config.hpp> #include <boost/throw_exception.hpp> #include <algorithm> #include <boost/function.hpp> #include <boost/bind.hpp> #include <boost/ref.hpp> #include <boost/scoped_array.hpp> #include <boost/utility/enable_if.hpp> #include <list> #include <boost/next_prior.hpp> #include <vector> #include <boost/system/error_code.hpp> #ifdef BOOST_THREAD_USES_CHRONO #include <boost/chrono/system_clocks.hpp> #endif #if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS #include <boost/thread/detail/memory.hpp> #endif #include <boost/utility/result_of.hpp> #include <boost/thread/thread.hpp> #if defined BOOST_THREAD_PROVIDES_FUTURE #define BOOST_THREAD_FUTURE future #else #define BOOST_THREAD_FUTURE unique_future #endif namespace boost { //enum class future_errc BOOST_SCOPED_ENUM_DECLARE_BEGIN(future_errc) { broken_promise, future_already_retrieved, promise_already_satisfied, no_state } BOOST_SCOPED_ENUM_DECLARE_END(future_errc) namespace system { template <> struct BOOST_SYMBOL_VISIBLE is_error_code_enum<future_errc> : public true_type {}; #ifdef BOOST_NO_CXX11_SCOPED_ENUMS template <> struct BOOST_SYMBOL_VISIBLE is_error_code_enum<future_errc::enum_type> : public true_type { }; #endif } //enum class launch BOOST_SCOPED_ENUM_DECLARE_BEGIN(launch) { async = 1, deferred = 2, any = async | deferred } BOOST_SCOPED_ENUM_DECLARE_END(launch) //enum class future_status BOOST_SCOPED_ENUM_DECLARE_BEGIN(future_status) { ready, timeout, deferred } BOOST_SCOPED_ENUM_DECLARE_END(future_status) BOOST_THREAD_DECL const system::error_category& future_category() BOOST_NOEXCEPT; namespace system { inline error_code make_error_code(future_errc e) //BOOST_NOEXCEPT { return error_code(underlying_cast<int>(e), boost::future_category()); } inline error_condition make_error_condition(future_errc e) //BOOST_NOEXCEPT { return error_condition(underlying_cast<int>(e), future_category()); } } class BOOST_SYMBOL_VISIBLE future_error : public std::logic_error { system::error_code ec_; public: future_error(system::error_code ec) : logic_error(ec.message()), ec_(ec) { } const system::error_code& code() const BOOST_NOEXCEPT { return ec_; } const char* what() const BOOST_THREAD_NOEXCEPT_OR_THROW { return code().message().c_str(); } }; class BOOST_SYMBOL_VISIBLE future_uninitialized: public future_error { public: future_uninitialized() : future_error(system::make_error_code(future_errc::no_state)) {} }; class BOOST_SYMBOL_VISIBLE broken_promise: public future_error { public: broken_promise(): future_error(system::make_error_code(future_errc::broken_promise)) {} }; class BOOST_SYMBOL_VISIBLE future_already_retrieved: public future_error { public: future_already_retrieved(): future_error(system::make_error_code(future_errc::future_already_retrieved)) {} }; class BOOST_SYMBOL_VISIBLE promise_already_satisfied: public future_error { public: promise_already_satisfied(): future_error(system::make_error_code(future_errc::promise_already_satisfied)) {} }; class BOOST_SYMBOL_VISIBLE task_already_started: public future_error { public: task_already_started(): future_error(system::make_error_code(future_errc::promise_already_satisfied)) {} }; class BOOST_SYMBOL_VISIBLE task_moved: public future_error { public: task_moved(): future_error(system::make_error_code(future_errc::no_state)) {} }; class promise_moved: public future_error { public: promise_moved(): future_error(system::make_error_code(future_errc::no_state)) {} }; namespace future_state { enum state { uninitialized, waiting, ready, moved }; } namespace detail { struct future_object_base { boost::exception_ptr exception; bool done; bool thread_was_interrupted; boost::mutex mutex; boost::condition_variable waiters; typedef std::list<boost::condition_variable_any*> waiter_list; waiter_list external_waiters; boost::function<void()> callback; future_object_base(): done(false), thread_was_interrupted(false) {} virtual ~future_object_base() {} waiter_list::iterator register_external_waiter(boost::condition_variable_any& cv) { boost::unique_lock<boost::mutex> lock(mutex); do_callback(lock); return external_waiters.insert(external_waiters.end(),&cv); } void remove_external_waiter(waiter_list::iterator it) { boost::lock_guard<boost::mutex> lock(mutex); external_waiters.erase(it); } void mark_finished_internal() { done=true; waiters.notify_all(); for(waiter_list::const_iterator it=external_waiters.begin(), end=external_waiters.end();it!=end;++it) { (*it)->notify_all(); } } struct relocker { boost::unique_lock<boost::mutex>& lock; relocker(boost::unique_lock<boost::mutex>& lock_): lock(lock_) { lock.unlock(); } ~relocker() { lock.lock(); } private: relocker& operator=(relocker const&); }; void do_callback(boost::unique_lock<boost::mutex>& lock) { if(callback && !done) { boost::function<void()> local_callback=callback; relocker relock(lock); local_callback(); } } void wait(bool rethrow=true) { boost::unique_lock<boost::mutex> lock(mutex); do_callback(lock); while(!done) { waiters.wait(lock); } if(rethrow && thread_was_interrupted) { throw boost::thread_interrupted(); } if(rethrow && exception) { boost::rethrow_exception(exception); } } bool timed_wait_until(boost::system_time const& target_time) { boost::unique_lock<boost::mutex> lock(mutex); do_callback(lock); while(!done) { bool const success=waiters.timed_wait(lock,target_time); if(!success && !done) { return false; } } return true; } #ifdef BOOST_THREAD_USES_CHRONO template <class Clock, class Duration> future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) { boost::unique_lock<boost::mutex> lock(mutex); do_callback(lock); while(!done) { cv_status const st=waiters.wait_until(lock,abs_time); if(st==cv_status::timeout && !done) { return future_status::timeout; } } return future_status::ready; } #endif void mark_exceptional_finish_internal(boost::exception_ptr const& e) { exception=e; mark_finished_internal(); } void mark_exceptional_finish() { boost::lock_guard<boost::mutex> lock(mutex); mark_exceptional_finish_internal(boost::current_exception()); } void mark_interrupted_finish() { boost::lock_guard<boost::mutex> lock(mutex); thread_was_interrupted=true; mark_finished_internal(); } bool has_value() { boost::lock_guard<boost::mutex> lock(mutex); return done && !(exception || thread_was_interrupted); } bool has_exception() { boost::lock_guard<boost::mutex> lock(mutex); return done && (exception || thread_was_interrupted); } template<typename F,typename U> void set_wait_callback(F f,U* u) { callback=boost::bind(f,boost::ref(*u)); } private: future_object_base(future_object_base const&); future_object_base& operator=(future_object_base const&); }; template<typename T> struct future_traits { typedef boost::scoped_ptr<T> storage_type; #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES typedef T const& source_reference_type; struct dummy; typedef typename boost::mpl::if_<boost::is_fundamental<T>,dummy&,BOOST_THREAD_RV_REF(T)>::type rvalue_source_type; typedef typename boost::mpl::if_<boost::is_fundamental<T>,T,BOOST_THREAD_RV_REF(T)>::type move_dest_type; #elif defined BOOST_THREAD_USES_MOVE typedef T& source_reference_type; typedef typename boost::mpl::if_<boost::has_move_emulation_enabled<T>,BOOST_THREAD_RV_REF(T),T const&>::type rvalue_source_type; typedef typename boost::mpl::if_<boost::has_move_emulation_enabled<T>,BOOST_THREAD_RV_REF(T),T>::type move_dest_type; #else typedef T& source_reference_type; typedef typename boost::mpl::if_<boost::is_convertible<T&,BOOST_THREAD_RV_REF(T) >,BOOST_THREAD_RV_REF(T),T const&>::type rvalue_source_type; typedef typename boost::mpl::if_<boost::is_convertible<T&,BOOST_THREAD_RV_REF(T) >,BOOST_THREAD_RV_REF(T),T>::type move_dest_type; #endif typedef const T& shared_future_get_result_type; static void init(storage_type& storage,source_reference_type t) { storage.reset(new T(t)); } static void init(storage_type& storage,rvalue_source_type t) { storage.reset(new T(static_cast<rvalue_source_type>(t))); } static void cleanup(storage_type& storage) { storage.reset(); } }; template<typename T> struct future_traits<T&> { typedef T* storage_type; typedef T& source_reference_type; struct rvalue_source_type {}; typedef T& move_dest_type; typedef T& shared_future_get_result_type; static void init(storage_type& storage,T& t) { storage=&t; } static void cleanup(storage_type& storage) { storage=0; } }; template<> struct future_traits<void> { typedef bool storage_type; typedef void move_dest_type; typedef void shared_future_get_result_type; static void init(storage_type& storage) { storage=true; } static void cleanup(storage_type& storage) { storage=false; } }; template<typename T> struct future_object: detail::future_object_base { typedef typename future_traits<T>::storage_type storage_type; typedef typename future_traits<T>::source_reference_type source_reference_type; typedef typename future_traits<T>::rvalue_source_type rvalue_source_type; typedef typename future_traits<T>::move_dest_type move_dest_type; typedef typename future_traits<T>::shared_future_get_result_type shared_future_get_result_type; storage_type result; future_object(): result(0) {} void mark_finished_with_result_internal(source_reference_type result_) { future_traits<T>::init(result,result_); mark_finished_internal(); } void mark_finished_with_result_internal(rvalue_source_type result_) { future_traits<T>::init(result,static_cast<rvalue_source_type>(result_)); mark_finished_internal(); } void mark_finished_with_result(source_reference_type result_) { boost::lock_guard<boost::mutex> lock(mutex); mark_finished_with_result_internal(result_); } void mark_finished_with_result(rvalue_source_type result_) { boost::lock_guard<boost::mutex> lock(mutex); mark_finished_with_result_internal(static_cast<rvalue_source_type>(result_)); } move_dest_type get() { wait(); return static_cast<move_dest_type>(*result); } shared_future_get_result_type get_sh() { wait(); return static_cast<shared_future_get_result_type>(*result); } future_state::state get_state() { boost::lock_guard<boost::mutex> guard(mutex); if(!done) { return future_state::waiting; } else { return future_state::ready; } } private: future_object(future_object const&); future_object& operator=(future_object const&); }; template<> struct future_object<void>: detail::future_object_base { typedef void shared_future_get_result_type; future_object() {} void mark_finished_with_result_internal() { mark_finished_internal(); } void mark_finished_with_result() { boost::lock_guard<boost::mutex> lock(mutex); mark_finished_with_result_internal(); } void get() { wait(); } void get_sh() { wait(); } future_state::state get_state() { boost::lock_guard<boost::mutex> guard(mutex); if(!done) { return future_state::waiting; } else { return future_state::ready; } } private: future_object(future_object const&); future_object& operator=(future_object const&); }; // template<typename T, typename Allocator> // struct future_object_alloc: public future_object<T> // { // typedef future_object<T> base; // Allocator alloc_; // // public: // explicit future_object_alloc(const Allocator& a) // : alloc_(a) {} // // }; class future_waiter { struct registered_waiter; typedef std::vector<int>::size_type count_type; struct registered_waiter { boost::shared_ptr<detail::future_object_base> future_; detail::future_object_base::waiter_list::iterator wait_iterator; count_type index; registered_waiter(boost::shared_ptr<detail::future_object_base> const& a_future, detail::future_object_base::waiter_list::iterator wait_iterator_, count_type index_): future_(a_future),wait_iterator(wait_iterator_),index(index_) {} }; struct all_futures_lock { #ifdef _MANAGED typedef std::ptrdiff_t count_type_portable; #else typedef count_type count_type_portable; #endif count_type_portable count; boost::scoped_array<boost::unique_lock<boost::mutex> > locks; all_futures_lock(std::vector<registered_waiter>& futures): count(futures.size()),locks(new boost::unique_lock<boost::mutex>[count]) { for(count_type_portable i=0;i<count;++i) { #if defined __DECCXX || defined __SUNPRO_CC || defined __hpux locks[i]=boost::unique_lock<boost::mutex>(futures[i].future_->mutex).move(); #else locks[i]=boost::unique_lock<boost::mutex>(futures[i].future_->mutex); #endif } } void lock() { boost::lock(locks.get(),locks.get()+count); } void unlock() { for(count_type_portable i=0;i<count;++i) { locks[i].unlock(); } } }; boost::condition_variable_any cv; std::vector<registered_waiter> futures; count_type future_count; public: future_waiter(): future_count(0) {} template<typename F> void add(F& f) { if(f.future_) { futures.push_back(registered_waiter(f.future_,f.future_->register_external_waiter(cv),future_count)); } ++future_count; } count_type wait() { all_futures_lock lk(futures); for(;;) { for(count_type i=0;i<futures.size();++i) { if(futures[i].future_->done) { return futures[i].index; } } cv.wait(lk); } } ~future_waiter() { for(count_type i=0;i<futures.size();++i) { futures[i].future_->remove_external_waiter(futures[i].wait_iterator); } } }; } template <typename R> class BOOST_THREAD_FUTURE; template <typename R> class shared_future; template<typename T> struct is_future_type { BOOST_STATIC_CONSTANT(bool, value=false); }; template<typename T> struct is_future_type<BOOST_THREAD_FUTURE<T> > { BOOST_STATIC_CONSTANT(bool, value=true); }; template<typename T> struct is_future_type<shared_future<T> > { BOOST_STATIC_CONSTANT(bool, value=true); }; template<typename Iterator> typename boost::disable_if<is_future_type<Iterator>,void>::type wait_for_all(Iterator begin,Iterator end) { for(Iterator current=begin;current!=end;++current) { current->wait(); } } template<typename F1,typename F2> typename boost::enable_if<is_future_type<F1>,void>::type wait_for_all(F1& f1,F2& f2) { f1.wait(); f2.wait(); } template<typename F1,typename F2,typename F3> void wait_for_all(F1& f1,F2& f2,F3& f3) { f1.wait(); f2.wait(); f3.wait(); } template<typename F1,typename F2,typename F3,typename F4> void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4) { f1.wait(); f2.wait(); f3.wait(); f4.wait(); } template<typename F1,typename F2,typename F3,typename F4,typename F5> void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5) { f1.wait(); f2.wait(); f3.wait(); f4.wait(); f5.wait(); } template<typename Iterator> typename boost::disable_if<is_future_type<Iterator>,Iterator>::type wait_for_any(Iterator begin,Iterator end) { if(begin==end) return end; detail::future_waiter waiter; for(Iterator current=begin;current!=end;++current) { waiter.add(*current); } return boost::next(begin,waiter.wait()); } template<typename F1,typename F2> typename boost::enable_if<is_future_type<F1>,unsigned>::type wait_for_any(F1& f1,F2& f2) { detail::future_waiter waiter; waiter.add(f1); waiter.add(f2); return waiter.wait(); } template<typename F1,typename F2,typename F3> unsigned wait_for_any(F1& f1,F2& f2,F3& f3) { detail::future_waiter waiter; waiter.add(f1); waiter.add(f2); waiter.add(f3); return waiter.wait(); } template<typename F1,typename F2,typename F3,typename F4> unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4) { detail::future_waiter waiter; waiter.add(f1); waiter.add(f2); waiter.add(f3); waiter.add(f4); return waiter.wait(); } template<typename F1,typename F2,typename F3,typename F4,typename F5> unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5) { detail::future_waiter waiter; waiter.add(f1); waiter.add(f2); waiter.add(f3); waiter.add(f4); waiter.add(f5); return waiter.wait(); } template <typename R> class promise; template <typename R> class packaged_task; template <typename R> class BOOST_THREAD_FUTURE { private: typedef boost::shared_ptr<detail::future_object<R> > future_ptr; future_ptr future_; friend class shared_future<R>; friend class promise<R>; friend class packaged_task<R>; friend class detail::future_waiter; typedef typename detail::future_traits<R>::move_dest_type move_dest_type; BOOST_THREAD_FUTURE(future_ptr a_future): future_(a_future) {} public: BOOST_THREAD_MOVABLE_ONLY(BOOST_THREAD_FUTURE) typedef future_state::state state; BOOST_THREAD_FUTURE() {} ~BOOST_THREAD_FUTURE() {} BOOST_THREAD_FUTURE(BOOST_THREAD_RV_REF(BOOST_THREAD_FUTURE) other) BOOST_NOEXCEPT: future_(BOOST_THREAD_RV(other).future_) { BOOST_THREAD_RV(other).future_.reset(); } BOOST_THREAD_FUTURE& operator=(BOOST_THREAD_RV_REF(BOOST_THREAD_FUTURE) other) BOOST_NOEXCEPT { future_=BOOST_THREAD_RV(other).future_; BOOST_THREAD_RV(other).future_.reset(); return *this; } shared_future<R> share() { return shared_future<R>(::boost::move(*this)); } void swap(BOOST_THREAD_FUTURE& other) { future_.swap(other.future_); } // retrieving the value move_dest_type get() { if(!future_) { boost::throw_exception(future_uninitialized()); } return future_->get(); } // functions to check state, and wait for ready state get_state() const BOOST_NOEXCEPT { if(!future_) { return future_state::uninitialized; } return future_->get_state(); } bool is_ready() const BOOST_NOEXCEPT { return get_state()==future_state::ready; } bool has_exception() const BOOST_NOEXCEPT { return future_ && future_->has_exception(); } bool has_value() const BOOST_NOEXCEPT { return future_ && future_->has_value(); } bool valid() const BOOST_NOEXCEPT { return future_ != 0; } void wait() const { if(!future_) { boost::throw_exception(future_uninitialized()); } future_->wait(false); } template<typename Duration> bool timed_wait(Duration const& rel_time) const { return timed_wait_until(boost::get_system_time()+rel_time); } bool timed_wait_until(boost::system_time const& abs_time) const { if(!future_) { boost::throw_exception(future_uninitialized()); } return future_->timed_wait_until(abs_time); } #ifdef BOOST_THREAD_USES_CHRONO template <class Rep, class Period> future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const { return wait_until(chrono::steady_clock::now() + rel_time); } template <class Clock, class Duration> future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const { if(!future_) { boost::throw_exception(future_uninitialized()); } return future_->wait_until(abs_time); } #endif }; BOOST_THREAD_DCL_MOVABLE_BEG(T) BOOST_THREAD_FUTURE<T> BOOST_THREAD_DCL_MOVABLE_END template <typename R> class shared_future { typedef boost::shared_ptr<detail::future_object<R> > future_ptr; future_ptr future_; friend class detail::future_waiter; friend class promise<R>; friend class packaged_task<R>; shared_future(future_ptr a_future): future_(a_future) {} public: BOOST_THREAD_MOVABLE(shared_future) shared_future(shared_future const& other): future_(other.future_) {} typedef future_state::state state; shared_future() {} ~shared_future() {} shared_future& operator=(shared_future const& other) { future_=other.future_; return *this; } shared_future(BOOST_THREAD_RV_REF(shared_future) other) BOOST_NOEXCEPT : future_(BOOST_THREAD_RV(other).future_) { BOOST_THREAD_RV(other).future_.reset(); } shared_future(BOOST_THREAD_RV_REF_BEG BOOST_THREAD_FUTURE<R> BOOST_THREAD_RV_REF_END other) BOOST_NOEXCEPT : future_(BOOST_THREAD_RV(other).future_) { BOOST_THREAD_RV(other).future_.reset(); } shared_future& operator=(BOOST_THREAD_RV_REF(shared_future) other) BOOST_NOEXCEPT { future_.swap(BOOST_THREAD_RV(other).future_); BOOST_THREAD_RV(other).future_.reset(); return *this; } shared_future& operator=(BOOST_THREAD_RV_REF_BEG BOOST_THREAD_FUTURE<R> BOOST_THREAD_RV_REF_END other) BOOST_NOEXCEPT { future_.swap(BOOST_THREAD_RV(other).future_); BOOST_THREAD_RV(other).future_.reset(); return *this; } void swap(shared_future& other) BOOST_NOEXCEPT { future_.swap(other.future_); } // retrieving the value typename detail::future_object<R>::shared_future_get_result_type get() { if(!future_) { boost::throw_exception(future_uninitialized()); } return future_->get_sh(); } // functions to check state, and wait for ready state get_state() const BOOST_NOEXCEPT { if(!future_) { return future_state::uninitialized; } return future_->get_state(); } bool valid() const BOOST_NOEXCEPT { return future_ != 0; } bool is_ready() const BOOST_NOEXCEPT { return get_state()==future_state::ready; } bool has_exception() const BOOST_NOEXCEPT { return future_ && future_->has_exception(); } bool has_value() const BOOST_NOEXCEPT { return future_ && future_->has_value(); } void wait() const { if(!future_) { boost::throw_exception(future_uninitialized()); } future_->wait(false); } template<typename Duration> bool timed_wait(Duration const& rel_time) const { return timed_wait_until(boost::get_system_time()+rel_time); } bool timed_wait_until(boost::system_time const& abs_time) const { if(!future_) { boost::throw_exception(future_uninitialized()); } return future_->timed_wait_until(abs_time); } #ifdef BOOST_THREAD_USES_CHRONO template <class Rep, class Period> future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const { return wait_until(chrono::steady_clock::now() + rel_time); } template <class Clock, class Duration> future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const { if(!future_) { boost::throw_exception(future_uninitialized()); } return future_->wait_until(abs_time); } #endif }; BOOST_THREAD_DCL_MOVABLE_BEG(T) shared_future<T> BOOST_THREAD_DCL_MOVABLE_END template <typename R> class promise { typedef boost::shared_ptr<detail::future_object<R> > future_ptr; future_ptr future_; bool future_obtained; void lazy_init() { #if defined BOOST_THREAD_PROMISE_LAZY if(!atomic_load(&future_)) { future_ptr blank; atomic_compare_exchange(&future_,&blank,future_ptr(new detail::future_object<R>)); } #endif } public: BOOST_THREAD_MOVABLE_ONLY(promise) #if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS template <class Allocator> promise(boost::allocator_arg_t, Allocator a) { typedef typename Allocator::template rebind<detail::future_object<R> >::other A2; A2 a2(a); typedef thread_detail::allocator_destructor<A2> D; future_ = future_ptr(::new(a2.allocate(1)) detail::future_object<R>(), D(a2, 1) ); future_obtained = false; } #endif promise(): #if defined BOOST_THREAD_PROMISE_LAZY future_(), #else future_(new detail::future_object<R>()), #endif future_obtained(false) {} ~promise() { if(future_) { boost::lock_guard<boost::mutex> lock(future_->mutex); if(!future_->done) { future_->mark_exceptional_finish_internal(boost::copy_exception(broken_promise())); } } } // Assignment promise(BOOST_THREAD_RV_REF(promise) rhs) BOOST_NOEXCEPT : future_(BOOST_THREAD_RV(rhs).future_),future_obtained(BOOST_THREAD_RV(rhs).future_obtained) { BOOST_THREAD_RV(rhs).future_.reset(); BOOST_THREAD_RV(rhs).future_obtained=false; } promise & operator=(BOOST_THREAD_RV_REF(promise) rhs) BOOST_NOEXCEPT { future_=BOOST_THREAD_RV(rhs).future_; future_obtained=BOOST_THREAD_RV(rhs).future_obtained; BOOST_THREAD_RV(rhs).future_.reset(); BOOST_THREAD_RV(rhs).future_obtained=false; return *this; } void swap(promise& other) { future_.swap(other.future_); std::swap(future_obtained,other.future_obtained); } // Result retrieval BOOST_THREAD_FUTURE<R> get_future() { lazy_init(); if (future_.get()==0) { boost::throw_exception(promise_moved()); } if (future_obtained) { boost::throw_exception(future_already_retrieved()); } future_obtained=true; return BOOST_THREAD_FUTURE<R>(future_); } void set_value(typename detail::future_traits<R>::source_reference_type r) { lazy_init(); boost::lock_guard<boost::mutex> lock(future_->mutex); if(future_->done) { boost::throw_exception(promise_already_satisfied()); } future_->mark_finished_with_result_internal(r); } // void set_value(R && r); void set_value(typename detail::future_traits<R>::rvalue_source_type r) { lazy_init(); boost::lock_guard<boost::mutex> lock(future_->mutex); if(future_->done) { boost::throw_exception(promise_already_satisfied()); } future_->mark_finished_with_result_internal(static_cast<typename detail::future_traits<R>::rvalue_source_type>(r)); } void set_exception(boost::exception_ptr p) { lazy_init(); boost::lock_guard<boost::mutex> lock(future_->mutex); if(future_->done) { boost::throw_exception(promise_already_satisfied()); } future_->mark_exceptional_finish_internal(p); } // setting the result with deferred notification //void set_value_at_thread_exit(const R& r); // NOT YET IMPLEMENTED //void set_value_at_thread_exit(see below); // NOT YET IMPLEMENTED //void set_exception_at_thread_exit(exception_ptr p); // NOT YET IMPLEMENTED template<typename F> void set_wait_callback(F f) { lazy_init(); future_->set_wait_callback(f,this); } }; template <> class promise<void> { typedef boost::shared_ptr<detail::future_object<void> > future_ptr; future_ptr future_; bool future_obtained; void lazy_init() { #if defined BOOST_THREAD_PROMISE_LAZY if(!atomic_load(&future_)) { future_ptr blank; atomic_compare_exchange(&future_,&blank,future_ptr(new detail::future_object<void>)); } #endif } public: BOOST_THREAD_MOVABLE_ONLY(promise) #if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS template <class Allocator> promise(boost::allocator_arg_t, Allocator a) { typedef typename Allocator::template rebind<detail::future_object<void> >::other A2; A2 a2(a); typedef thread_detail::allocator_destructor<A2> D; future_ = future_ptr(::new(a2.allocate(1)) detail::future_object<void>(), D(a2, 1) ); future_obtained = false; } #endif promise(): #if defined BOOST_THREAD_PROMISE_LAZY future_(), #else future_(new detail::future_object<void>), #endif future_obtained(false) {} ~promise() { if(future_) { boost::lock_guard<boost::mutex> lock(future_->mutex); if(!future_->done) { future_->mark_exceptional_finish_internal(boost::copy_exception(broken_promise())); } } } // Assignment promise(BOOST_THREAD_RV_REF(promise) rhs) BOOST_NOEXCEPT : future_(BOOST_THREAD_RV(rhs).future_),future_obtained(BOOST_THREAD_RV(rhs).future_obtained) { // we need to release the future as shared_ptr doesn't implements move semantics BOOST_THREAD_RV(rhs).future_.reset(); BOOST_THREAD_RV(rhs).future_obtained=false; } promise & operator=(BOOST_THREAD_RV_REF(promise) rhs) BOOST_NOEXCEPT { future_=BOOST_THREAD_RV(rhs).future_; future_obtained=BOOST_THREAD_RV(rhs).future_obtained; BOOST_THREAD_RV(rhs).future_.reset(); BOOST_THREAD_RV(rhs).future_obtained=false; return *this; } void swap(promise& other) { future_.swap(other.future_); std::swap(future_obtained,other.future_obtained); } // Result retrieval BOOST_THREAD_FUTURE<void> get_future() { lazy_init(); if (future_.get()==0) { boost::throw_exception(promise_moved()); } if(future_obtained) { boost::throw_exception(future_already_retrieved()); } future_obtained=true; return BOOST_THREAD_FUTURE<void>(future_); } void set_value() { lazy_init(); boost::lock_guard<boost::mutex> lock(future_->mutex); if(future_->done) { boost::throw_exception(promise_already_satisfied()); } future_->mark_finished_with_result_internal(); } void set_exception(boost::exception_ptr p) { lazy_init(); boost::lock_guard<boost::mutex> lock(future_->mutex); if(future_->done) { boost::throw_exception(promise_already_satisfied()); } future_->mark_exceptional_finish_internal(p); } template<typename F> void set_wait_callback(F f) { lazy_init(); future_->set_wait_callback(f,this); } }; #if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS namespace container { template <class R, class Alloc> struct uses_allocator<promise<R> , Alloc> : true_type { }; } #endif BOOST_THREAD_DCL_MOVABLE_BEG(T) promise<T> BOOST_THREAD_DCL_MOVABLE_END namespace detail { template<typename R> struct task_base: detail::future_object<R> { bool started; task_base(): started(false) {} void reset() { started=false; } void run() { { boost::lock_guard<boost::mutex> lk(this->mutex); if(started) { boost::throw_exception(task_already_started()); } started=true; } do_run(); } void owner_destroyed() { boost::lock_guard<boost::mutex> lk(this->mutex); if(!started) { started=true; this->mark_exceptional_finish_internal(boost::copy_exception(boost::broken_promise())); } } virtual void do_run()=0; }; template<typename R,typename F> struct task_object: task_base<R> { private: task_object(task_object&); public: F f; task_object(F const& f_): f(f_) {} #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES task_object(BOOST_THREAD_RV_REF(F) f_): f(boost::forward<F>(f_)) {} #else task_object(BOOST_THREAD_RV_REF(F) f_): f(boost::move(f_)) {} #endif void do_run() { try { this->mark_finished_with_result(f()); } catch(thread_interrupted& ) { this->mark_interrupted_finish(); } catch(...) { this->mark_exceptional_finish(); } } }; template<typename R> struct task_object<R,R (*)()>: task_base<R> { private: task_object(task_object&); public: R (*f)(); task_object(R (*f_)()): f(f_) {} void do_run() { try { this->mark_finished_with_result(f()); } catch(thread_interrupted& ) { this->mark_interrupted_finish(); } catch(...) { this->mark_exceptional_finish(); } } }; template<typename F> struct task_object<void,F>: task_base<void> { private: task_object(task_object&); public: F f; task_object(F const& f_): f(f_) {} #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES task_object(BOOST_THREAD_RV_REF(F) f_): f(boost::forward<F>(f_)) {} #else task_object(BOOST_THREAD_RV_REF(F) f_): f(boost::move(f_)) {} #endif void do_run() { try { f(); this->mark_finished_with_result(); } catch(thread_interrupted& ) { this->mark_interrupted_finish(); } catch(...) { this->mark_exceptional_finish(); } } }; template<> struct task_object<void,void (*)()>: task_base<void> { private: task_object(task_object&); public: void (*f)(); task_object(void (*f_)()): f(f_) {} void do_run() { try { f(); this->mark_finished_with_result(); } catch(thread_interrupted& ) { this->mark_interrupted_finish(); } catch(...) { this->mark_exceptional_finish(); } } }; } template<typename R> class packaged_task { typedef boost::shared_ptr<detail::task_base<R> > task_ptr; boost::shared_ptr<detail::task_base<R> > task; bool future_obtained; public: typedef R result_type; BOOST_THREAD_MOVABLE_ONLY(packaged_task) packaged_task(): future_obtained(false) {} // construction and destruction explicit packaged_task(R(*f)()): task(new detail::task_object<R,R(*)()>(f)),future_obtained(false) {} #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES template <class F> explicit packaged_task(BOOST_THREAD_RV_REF(F) f): task(new detail::task_object<R, typename remove_cv<typename remove_reference<F>::type>::type >(boost::forward<F>(f))),future_obtained(false) {} #else template <class F> explicit packaged_task(F const& f): task(new detail::task_object<R,F>(f)),future_obtained(false) {} template <class F> explicit packaged_task(BOOST_THREAD_RV_REF(F) f): task(new detail::task_object<R,F>(boost::move(f))),future_obtained(false) {} #endif #if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS template <class Allocator> packaged_task(boost::allocator_arg_t, Allocator a, R(*f)()) { typedef R(*FR)(); typedef typename Allocator::template rebind<detail::task_object<R,FR> >::other A2; A2 a2(a); typedef thread_detail::allocator_destructor<A2> D; task = task_ptr(::new(a2.allocate(1)) detail::task_object<R,FR>(f), D(a2, 1) ); future_obtained = false; } #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES template <class F, class Allocator> packaged_task(boost::allocator_arg_t, Allocator a, BOOST_THREAD_RV_REF(F) f) { typedef typename remove_cv<typename remove_reference<F>::type>::type FR; typedef typename Allocator::template rebind<detail::task_object<R,FR> >::other A2; A2 a2(a); typedef thread_detail::allocator_destructor<A2> D; task = task_ptr(::new(a2.allocate(1)) detail::task_object<R,FR>(boost::forward<F>(f)), D(a2, 1) ); future_obtained = false; } #else template <class F, class Allocator> packaged_task(boost::allocator_arg_t, Allocator a, const F& f) { typedef typename Allocator::template rebind<detail::task_object<R,F> >::other A2; A2 a2(a); typedef thread_detail::allocator_destructor<A2> D; task = task_ptr(::new(a2.allocate(1)) detail::task_object<R,F>(f), D(a2, 1) ); future_obtained = false; } template <class F, class Allocator> packaged_task(boost::allocator_arg_t, Allocator a, BOOST_THREAD_RV_REF(F) f) { typedef typename Allocator::template rebind<detail::task_object<R,F> >::other A2; A2 a2(a); typedef thread_detail::allocator_destructor<A2> D; task = task_ptr(::new(a2.allocate(1)) detail::task_object<R,F>(boost::move(f)), D(a2, 1) ); future_obtained = false; } #endif //BOOST_NO_CXX11_RVALUE_REFERENCES #endif // BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS ~packaged_task() { if(task) { task->owner_destroyed(); } } // assignment packaged_task(BOOST_THREAD_RV_REF(packaged_task) other) BOOST_NOEXCEPT : future_obtained(BOOST_THREAD_RV(other).future_obtained) { task.swap(BOOST_THREAD_RV(other).task); BOOST_THREAD_RV(other).future_obtained=false; } packaged_task& operator=(BOOST_THREAD_RV_REF(packaged_task) other) BOOST_NOEXCEPT { packaged_task temp(static_cast<BOOST_THREAD_RV_REF(packaged_task)>(other)); swap(temp); return *this; } void reset() { if (!valid()) throw future_error(system::make_error_code(future_errc::no_state)); task->reset(); future_obtained=false; } void swap(packaged_task& other) BOOST_NOEXCEPT { task.swap(other.task); std::swap(future_obtained,other.future_obtained); } bool valid() const BOOST_NOEXCEPT { return task.get()!=0; } // result retrieval BOOST_THREAD_FUTURE<R> get_future() { if(!task) { boost::throw_exception(task_moved()); } else if(!future_obtained) { future_obtained=true; return BOOST_THREAD_FUTURE<R>(task); } else { boost::throw_exception(future_already_retrieved()); } return BOOST_THREAD_FUTURE<R>(); } // execution void operator()() { if(!task) { boost::throw_exception(task_moved()); } task->run(); } template<typename F> void set_wait_callback(F f) { task->set_wait_callback(f,this); } }; #if defined BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS namespace container { template <class R, class Alloc> struct uses_allocator<packaged_task<R>, Alloc> : public true_type {}; } #endif BOOST_THREAD_DCL_MOVABLE_BEG(T) packaged_task<T> BOOST_THREAD_DCL_MOVABLE_END template <class R> BOOST_THREAD_FUTURE<R> async(launch policy, R(*f)()) { if (int(policy) & int(launch::async)) { packaged_task<R> pt( f ); BOOST_THREAD_FUTURE<R> ret = pt.get_future(); boost::thread( boost::move(pt) ).detach(); return ::boost::move(ret); } else if (int(policy) & int(launch::deferred)) { packaged_task<R> pt( f ); BOOST_THREAD_FUTURE<R> ret = pt.get_future(); return ::boost::move(ret); } else { BOOST_THREAD_FUTURE<R> ret; return ::boost::move(ret); } } template <class R> BOOST_THREAD_FUTURE<R> async(R(*f)()) { return async(launch::any, f); } #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES template <class F> BOOST_THREAD_FUTURE<typename boost::result_of<typename decay<F>::type()>::type> async(launch policy, BOOST_THREAD_FWD_REF(F) f) { typedef typename boost::result_of<typename decay<F>::type()>::type R; if (int(policy) & int(launch::async)) { packaged_task<R> pt( boost::forward<F>(f) ); BOOST_THREAD_FUTURE<R> ret = pt.get_future(); boost::thread( boost::move(pt) ).detach(); return ::boost::move(ret); } else if (int(policy) & int(launch::deferred)) { packaged_task<R> pt( boost::forward<F>(f) ); BOOST_THREAD_FUTURE<R> ret = pt.get_future(); return ::boost::move(ret); } else { BOOST_THREAD_FUTURE<R> ret; return ::boost::move(ret); } } template <class F> BOOST_THREAD_FUTURE<typename boost::result_of<F()>::type> async(BOOST_THREAD_RV_REF(F) f) { return async(launch::any, boost::forward<F>(f)); } #else // template <class F> // BOOST_THREAD_FUTURE<typename boost::result_of<typename decay<F>::type()>::type> // async(launch policy, F const& f) // { // typedef typename boost::result_of<typename decay<F>::type()>::type R; // if (int(policy) & int(launch::async)) // { // packaged_task<R> pt( f ); // // BOOST_THREAD_FUTURE<R> ret = pt.get_future(); // boost::thread( boost::move(pt) ).detach(); // return ::boost::move(ret); // } // else if (int(policy) & int(launch::deferred)) // { // packaged_task<R> pt( f ); // // BOOST_THREAD_FUTURE<R> ret = pt.get_future(); // return ::boost::move(ret); // } else { // BOOST_THREAD_FUTURE<R> ret; // return ::boost::move(ret); // } // } // template <class F> // BOOST_THREAD_FUTURE<typename boost::result_of<F()>::type> // async(F const& f) // { // return async(launch::any, f); // } template <class F> BOOST_THREAD_FUTURE<typename boost::result_of<typename decay<F>::type()>::type> async(launch policy, BOOST_THREAD_FWD_REF(F) f) { typedef typename boost::result_of<typename decay<F>::type()>::type R; if (int(policy) & int(launch::async)) { packaged_task<R> pt( boost::forward<F>(f) ); BOOST_THREAD_FUTURE<R> ret = pt.get_future(); boost::thread( boost::move(pt) ).detach(); return ::boost::move(ret); } else if (int(policy) & int(launch::deferred)) { packaged_task<R> pt( boost::forward<F>(f) ); BOOST_THREAD_FUTURE<R> ret = pt.get_future(); return ::boost::move(ret); } else { BOOST_THREAD_FUTURE<R> ret; return ::boost::move(ret); } } template <class F> BOOST_THREAD_FUTURE<typename boost::result_of<F()>::type> async(BOOST_THREAD_FWD_REF(F) f) { return async(launch::any, boost::forward<F>(f)); } #endif } #endif // BOOST_NO_EXCEPTION #endif // header