// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard. // Copyright (C) 2005-2011 Daniel James // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED #define BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED #if defined(_MSC_VER) && (_MSC_VER >= 1020) # pragma once #endif #include #include namespace boost { namespace unordered { namespace detail { template struct grouped_node; template struct grouped_ptr_node; template struct grouped_table_impl; template struct grouped_node : boost::unordered::detail::value_base { typedef typename ::boost::unordered::detail::rebind_wrap< A, grouped_node >::type::pointer link_pointer; link_pointer next_; link_pointer group_prev_; std::size_t hash_; grouped_node() : next_(), group_prev_(), hash_(0) {} void init(link_pointer self) { group_prev_ = self; } private: grouped_node& operator=(grouped_node const&); }; template struct grouped_ptr_node : boost::unordered::detail::value_base, boost::unordered::detail::ptr_bucket { typedef boost::unordered::detail::ptr_bucket bucket_base; typedef ptr_bucket* link_pointer; link_pointer group_prev_; std::size_t hash_; grouped_ptr_node() : bucket_base(), group_prev_(0), hash_(0) {} void init(link_pointer self) { group_prev_ = self; } private: grouped_ptr_node& operator=(grouped_ptr_node const&); }; // If the allocator uses raw pointers use grouped_ptr_node // Otherwise use grouped_node. template struct pick_grouped_node2 { typedef boost::unordered::detail::grouped_node node; typedef typename boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap::type >::pointer node_pointer; typedef boost::unordered::detail::bucket bucket; typedef node_pointer link_pointer; }; template struct pick_grouped_node2*, boost::unordered::detail::ptr_bucket*> { typedef boost::unordered::detail::grouped_ptr_node node; typedef boost::unordered::detail::ptr_bucket bucket; typedef bucket* link_pointer; }; template struct pick_grouped_node { typedef boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap >::type > tentative_node_traits; typedef boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap::type > tentative_bucket_traits; typedef pick_grouped_node2 pick; typedef typename pick::node node; typedef typename pick::bucket bucket; typedef typename pick::link_pointer link_pointer; }; template struct multiset { typedef boost::unordered::detail::multiset types; typedef A allocator; typedef T value_type; typedef H hasher; typedef P key_equal; typedef T key_type; typedef boost::unordered::detail::allocator_traits traits; typedef boost::unordered::detail::pick_grouped_node pick; typedef typename pick::node node; typedef typename pick::bucket bucket; typedef typename pick::link_pointer link_pointer; typedef boost::unordered::detail::grouped_table_impl table; typedef boost::unordered::detail::set_extractor extractor; typedef boost::unordered::detail::pick_policy::type policy; }; template struct multimap { typedef boost::unordered::detail::multimap types; typedef A allocator; typedef std::pair value_type; typedef H hasher; typedef P key_equal; typedef K key_type; typedef boost::unordered::detail::allocator_traits traits; typedef boost::unordered::detail::pick_grouped_node pick; typedef typename pick::node node; typedef typename pick::bucket bucket; typedef typename pick::link_pointer link_pointer; typedef boost::unordered::detail::grouped_table_impl table; typedef boost::unordered::detail::map_extractor extractor; typedef boost::unordered::detail::pick_policy::type policy; }; template struct grouped_table_impl : boost::unordered::detail::table { typedef boost::unordered::detail::table table; typedef typename table::value_type value_type; typedef typename table::bucket bucket; typedef typename table::policy policy; typedef typename table::node_pointer node_pointer; typedef typename table::node_allocator node_allocator; typedef typename table::node_allocator_traits node_allocator_traits; typedef typename table::bucket_pointer bucket_pointer; typedef typename table::link_pointer link_pointer; typedef typename table::previous_pointer previous_pointer; typedef typename table::hasher hasher; typedef typename table::key_equal key_equal; typedef typename table::key_type key_type; typedef typename table::node_constructor node_constructor; typedef typename table::extractor extractor; typedef typename table::iterator iterator; typedef typename table::c_iterator c_iterator; // Constructors grouped_table_impl(std::size_t n, hasher const& hf, key_equal const& eq, node_allocator const& a) : table(n, hf, eq, a) {} grouped_table_impl(grouped_table_impl const& x) : table(x, node_allocator_traits:: select_on_container_copy_construction(x.node_alloc())) { this->init(x); } grouped_table_impl(grouped_table_impl const& x, node_allocator const& a) : table(x, a) { this->init(x); } grouped_table_impl(grouped_table_impl& x, boost::unordered::detail::move_tag m) : table(x, m) {} grouped_table_impl(grouped_table_impl& x, node_allocator const& a, boost::unordered::detail::move_tag m) : table(x, a, m) { this->move_init(x); } // Accessors template iterator find_node_impl( std::size_t key_hash, Key const& k, Pred const& eq) const { std::size_t bucket_index = policy::to_bucket(this->bucket_count_, key_hash); iterator n = this->begin(bucket_index); for (;;) { if (!n.node_) return n; std::size_t node_hash = n.node_->hash_; if (key_hash == node_hash) { if (eq(k, this->get_key(*n))) return n; } else { if (policy::to_bucket(this->bucket_count_, node_hash) != bucket_index) return iterator(); } n = iterator(static_cast( static_cast(n.node_->group_prev_)->next_)); } } std::size_t count(key_type const& k) const { iterator n = this->find_node(k); if (!n.node_) return 0; std::size_t x = 0; node_pointer it = n.node_; do { it = static_cast(it->group_prev_); ++x; } while(it != n.node_); return x; } std::pair equal_range(key_type const& k) const { iterator n = this->find_node(k); return std::make_pair( n, n.node_ ? iterator( static_cast( static_cast(n.node_->group_prev_)->next_ )) : n); } // Equality bool equals(grouped_table_impl const& other) const { if(this->size_ != other.size_) return false; for(iterator n1 = this->begin(); n1.node_;) { iterator n2 = other.find_matching_node(n1); if (!n2.node_) return false; iterator end1(static_cast( static_cast(n1.node_->group_prev_)->next_)); iterator end2(static_cast( static_cast(n2.node_->group_prev_)->next_)); if (!group_equals(n1, end1, n2, end2)) return false; n1 = end1; } return true; } #if !defined(BOOST_UNORDERED_DEPRECATED_EQUALITY) static bool group_equals(iterator n1, iterator end1, iterator n2, iterator end2) { for(;;) { if (*n1 != *n2) break; ++n1; ++n2; if (n1 == end1) return n2 == end2; if (n2 == end2) return false; } for(iterator n1a = n1, n2a = n2;;) { ++n1a; ++n2a; if (n1a == end1) { if (n2a == end2) break; else return false; } if (n2a == end2) return false; } iterator start = n1; for(;n1 != end1; ++n1) { value_type const& v = *n1; if (find(start, n1, v)) continue; std::size_t matches = count_equal(n2, end2, v); if (!matches) return false; iterator next = n1; ++next; if (matches != 1 + count_equal(next, end1, v)) return false; } return true; } static bool find(iterator n, iterator end, value_type const& v) { for(;n != end; ++n) if (*n == v) return true; return false; } static std::size_t count_equal(iterator n, iterator end, value_type const& v) { std::size_t count = 0; for(;n != end; ++n) if (*n == v) ++count; return count; } #else static bool group_equals(iterator n1, iterator end1, iterator n2, iterator end2) { for(;;) { if(!extractor::compare_mapped(*n1, *n2)) return false; ++n1; ++n2; if (n1 == end1) return n2 == end2; if (n2 == end2) return false; } } #endif // Emplace/Insert static inline void add_after_node( node_pointer n, node_pointer pos) { n->next_ = static_cast(pos->group_prev_)->next_; n->group_prev_ = pos->group_prev_; static_cast(pos->group_prev_)->next_ = static_cast(n); pos->group_prev_ = static_cast(n); } inline iterator add_node( node_constructor& a, std::size_t key_hash, iterator pos) { node_pointer n = a.release(); n->hash_ = key_hash; if (pos.node_) { this->add_after_node(n, pos.node_); if (n->next_) { std::size_t next_bucket = policy::to_bucket( this->bucket_count_, static_cast(n->next_)->hash_); if (next_bucket != policy::to_bucket(this->bucket_count_, key_hash)) { this->get_bucket(next_bucket)->next_ = n; } } } else { bucket_pointer b = this->get_bucket( policy::to_bucket(this->bucket_count_, key_hash)); if (!b->next_) { previous_pointer start_node = this->get_previous_start(); if (start_node->next_) { this->get_bucket(policy::to_bucket(this->bucket_count_, static_cast(start_node->next_)->hash_ ))->next_ = n; } b->next_ = start_node; n->next_ = start_node->next_; start_node->next_ = static_cast(n); } else { n->next_ = b->next_->next_; b->next_->next_ = static_cast(n); } } ++this->size_; return iterator(n); } iterator emplace_impl(node_constructor& a) { key_type const& k = this->get_key(a.value()); std::size_t key_hash = this->hash(k); iterator position = this->find_node(key_hash, k); // reserve has basic exception safety if the hash function // throws, strong otherwise. this->reserve_for_insert(this->size_ + 1); return this->add_node(a, key_hash, position); } void emplace_impl_no_rehash(node_constructor& a) { key_type const& k = this->get_key(a.value()); std::size_t key_hash = this->hash(k); this->add_node(a, key_hash, this->find_node(key_hash, k)); } #if defined(BOOST_NO_RVALUE_REFERENCES) # if defined(BOOST_NO_VARIADIC_TEMPLATES) iterator emplace(boost::unordered::detail::emplace_args1< boost::unordered::detail::please_ignore_this_overload> const&) { BOOST_ASSERT(false); return iterator(); } # else iterator emplace( boost::unordered::detail::please_ignore_this_overload const&) { BOOST_ASSERT(false); return iterator(); } # endif #endif template iterator emplace(BOOST_UNORDERED_EMPLACE_ARGS) { node_constructor a(this->node_alloc()); a.construct_with_value(BOOST_UNORDERED_EMPLACE_FORWARD); return iterator(emplace_impl(a)); } //////////////////////////////////////////////////////////////////////// // Insert range methods // if hash function throws, or inserting > 1 element, basic exception // safety. Strong otherwise template typename boost::unordered::detail::enable_if_forward::type insert_range(I i, I j) { if(i == j) return; std::size_t distance = boost::unordered::detail::distance(i, j); if(distance == 1) { node_constructor a(this->node_alloc()); a.construct_with_value2(*i); emplace_impl(a); } else { // Only require basic exception safety here this->reserve_for_insert(this->size_ + distance); node_constructor a(this->node_alloc()); for (; i != j; ++i) { a.construct_with_value2(*i); emplace_impl_no_rehash(a); } } } template typename boost::unordered::detail::disable_if_forward::type insert_range(I i, I j) { node_constructor a(this->node_alloc()); for (; i != j; ++i) { a.construct_with_value2(*i); emplace_impl(a); } } //////////////////////////////////////////////////////////////////////// // Erase // // no throw std::size_t erase_key(key_type const& k) { if(!this->size_) return 0; std::size_t key_hash = this->hash(k); std::size_t bucket_index = policy::to_bucket(this->bucket_count_, key_hash); bucket_pointer this_bucket = this->get_bucket(bucket_index); previous_pointer prev = this_bucket->next_; if (!prev) return 0; for (;;) { if (!prev->next_) return 0; std::size_t node_hash = static_cast(prev->next_)->hash_; if (policy::to_bucket(this->bucket_count_, node_hash) != bucket_index) return 0; if (node_hash == key_hash && this->key_eq()(k, this->get_key( static_cast(prev->next_)->value()))) break; prev = static_cast( static_cast(prev->next_)->group_prev_); } node_pointer pos = static_cast(prev->next_); link_pointer end1 = static_cast(pos->group_prev_)->next_; node_pointer end = static_cast(end1); prev->next_ = end1; this->fix_buckets(this_bucket, prev, end); return this->delete_nodes(c_iterator(pos), c_iterator(end)); } iterator erase(c_iterator r) { BOOST_ASSERT(r.node_); iterator next(r.node_); ++next; bucket_pointer this_bucket = this->get_bucket( policy::to_bucket(this->bucket_count_, r.node_->hash_)); previous_pointer prev = unlink_node(*this_bucket, r.node_); this->fix_buckets(this_bucket, prev, next.node_); this->delete_node(r); return next; } iterator erase_range(c_iterator r1, c_iterator r2) { if (r1 == r2) return iterator(r2.node_); std::size_t bucket_index = policy::to_bucket(this->bucket_count_, r1.node_->hash_); previous_pointer prev = unlink_nodes( *this->get_bucket(bucket_index), r1.node_, r2.node_); this->fix_buckets_range(bucket_index, prev, r1.node_, r2.node_); this->delete_nodes(r1, r2); return iterator(r2.node_); } static previous_pointer unlink_node(bucket& b, node_pointer n) { node_pointer next = static_cast(n->next_); previous_pointer prev = static_cast(n->group_prev_); if(prev->next_ != n) { // The node is at the beginning of a group. // Find the previous node pointer: prev = b.next_; while(prev->next_ != n) { prev = static_cast( static_cast(prev->next_)->group_prev_); } // Remove from group if (next && next->group_prev_ == static_cast(n)) { next->group_prev_ = n->group_prev_; } } else if (next && next->group_prev_ == static_cast(n)) { // The deleted node is not at the end of the group, so // change the link from the next node. next->group_prev_ = n->group_prev_; } else { // The deleted node is at the end of the group, so the // first node in the group is pointing to it. // Find that to change its pointer. node_pointer x = static_cast(n->group_prev_); while(x->group_prev_ != static_cast(n)) { x = static_cast(x->group_prev_); } x->group_prev_ = n->group_prev_; } prev->next_ = static_cast(next); return prev; } static previous_pointer unlink_nodes(bucket& b, node_pointer begin, node_pointer end) { previous_pointer prev = static_cast( begin->group_prev_); if(prev->next_ != static_cast(begin)) { // The node is at the beginning of a group. // Find the previous node pointer: prev = b.next_; while(prev->next_ != static_cast(begin)) prev = static_cast( static_cast(prev->next_)->group_prev_); if (end) split_group(end); } else { node_pointer group1 = split_group(begin); if (end) { node_pointer group2 = split_group(end); if(begin == group2) { link_pointer end1 = group1->group_prev_; link_pointer end2 = end->group_prev_; group1->group_prev_ = end2; end->group_prev_ = end1; } } } prev->next_ = static_cast(end); return prev; } // Break a ciruclar list into two, with split as the beginning // of the second group (if split is at the beginning then don't // split). static node_pointer split_group(node_pointer split) { // Find first node in group. node_pointer first = split; while (static_cast(first->group_prev_)->next_ == static_cast(first)) first = static_cast(first->group_prev_); if(first == split) return split; link_pointer last = first->group_prev_; first->group_prev_ = split->group_prev_; split->group_prev_ = last; return first; } //////////////////////////////////////////////////////////////////////// // fill_buckets template static void fill_buckets(iterator n, table& dst, NodeCreator& creator) { previous_pointer prev = dst.get_previous_start(); while (n.node_) { std::size_t key_hash = n.node_->hash_; iterator group_end( static_cast( static_cast(n.node_->group_prev_)->next_ )); node_pointer first_node = creator.create(*n); node_pointer end = first_node; first_node->hash_ = key_hash; prev->next_ = static_cast(first_node); ++dst.size_; for (++n; n != group_end; ++n) { end = creator.create(*n); end->hash_ = key_hash; add_after_node(end, first_node); ++dst.size_; } prev = place_in_bucket(dst, prev, end); } } // strong otherwise exception safety void rehash_impl(std::size_t num_buckets) { BOOST_ASSERT(this->buckets_); this->create_buckets(num_buckets); previous_pointer prev = this->get_previous_start(); while (prev->next_) prev = place_in_bucket(*this, prev, static_cast( static_cast(prev->next_)->group_prev_)); } // Iterate through the nodes placing them in the correct buckets. // pre: prev->next_ is not null. static previous_pointer place_in_bucket(table& dst, previous_pointer prev, node_pointer end) { bucket_pointer b = dst.get_bucket(policy::to_bucket( dst.bucket_count_, end->hash_)); if (!b->next_) { b->next_ = static_cast(prev); return static_cast(end); } else { link_pointer next = end->next_; end->next_ = b->next_->next_; b->next_->next_ = prev->next_; prev->next_ = next; return prev; } } }; }}} #endif