1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
/*
* Copyright (c) 2010 Remko Tronçon
* Licensed under the GNU General Public License v3.
* See Documentation/Licenses/GPLv3.txt for more information.
*/
#include <Swiften/SASL/SCRAMSHA1ClientAuthenticator.h>
#include <cassert>
#include <map>
#include <boost/lexical_cast.hpp>
#include <Swiften/StringCodecs/SHA1.h>
#include <Swiften/StringCodecs/Base64.h>
#include <Swiften/StringCodecs/HMAC_SHA1.h>
#include <Swiften/StringCodecs/PBKDF2.h>
#include <Swiften/IDN/IDNConverter.h>
#include <Swiften/Base/Concat.h>
namespace Swift {
static std::string escape(const std::string& s) {
std::string result;
for (size_t i = 0; i < s.size(); ++i) {
if (s[i] == ',') {
result += "=2C";
}
else if (s[i] == '=') {
result += "=3D";
}
else {
result += s[i];
}
}
return result;
}
SCRAMSHA1ClientAuthenticator::SCRAMSHA1ClientAuthenticator(const std::string& nonce, bool useChannelBinding, IDNConverter* idnConverter) : ClientAuthenticator(useChannelBinding ? "SCRAM-SHA-1-PLUS" : "SCRAM-SHA-1"), step(Initial), clientnonce(nonce), useChannelBinding(useChannelBinding), idnConverter(idnConverter) {
}
boost::optional<SafeByteArray> SCRAMSHA1ClientAuthenticator::getResponse() const {
if (step == Initial) {
return createSafeByteArray(concat(getGS2Header(), getInitialBareClientMessage()));
}
else if (step == Proof) {
ByteArray clientKey = HMAC_SHA1()(saltedPassword, createByteArray("Client Key"));
ByteArray storedKey = SHA1::getHash(clientKey);
ByteArray clientSignature = HMAC_SHA1()(createSafeByteArray(storedKey), authMessage);
ByteArray clientProof = clientKey;
for (unsigned int i = 0; i < clientProof.size(); ++i) {
clientProof[i] ^= clientSignature[i];
}
ByteArray result = concat(getFinalMessageWithoutProof(), createByteArray(",p="), createByteArray(Base64::encode(clientProof)));
return createSafeByteArray(result);
}
else {
return boost::optional<SafeByteArray>();
}
}
bool SCRAMSHA1ClientAuthenticator::setChallenge(const boost::optional<ByteArray>& challenge) {
if (step == Initial) {
if (!challenge) {
return false;
}
initialServerMessage = *challenge;
std::map<char, std::string> keys = parseMap(byteArrayToString(initialServerMessage));
// Extract the salt
ByteArray salt = Base64::decode(keys['s']);
// Extract the server nonce
std::string clientServerNonce = keys['r'];
if (clientServerNonce.size() <= clientnonce.size()) {
return false;
}
std::string receivedClientNonce = clientServerNonce.substr(0, clientnonce.size());
if (receivedClientNonce != clientnonce) {
return false;
}
serverNonce = createByteArray(clientServerNonce.substr(clientnonce.size(), clientServerNonce.npos));
// Extract the number of iterations
int iterations = 0;
try {
iterations = boost::lexical_cast<int>(keys['i']);
}
catch (const boost::bad_lexical_cast&) {
return false;
}
if (iterations <= 0) {
return false;
}
// Compute all the values needed for the server signature
try {
saltedPassword = PBKDF2::encode<HMAC_SHA1>(idnConverter->getStringPrepared(getPassword(), IDNConverter::SASLPrep), salt, iterations);
}
catch (const std::exception&) {
}
authMessage = concat(getInitialBareClientMessage(), createByteArray(","), initialServerMessage, createByteArray(","), getFinalMessageWithoutProof());
ByteArray serverKey = HMAC_SHA1()(saltedPassword, createByteArray("Server Key"));
serverSignature = HMAC_SHA1()(serverKey, authMessage);
step = Proof;
return true;
}
else if (step == Proof) {
ByteArray result = concat(createByteArray("v="), createByteArray(Base64::encode(serverSignature)));
step = Final;
return challenge && challenge == result;
}
else {
return true;
}
}
std::map<char, std::string> SCRAMSHA1ClientAuthenticator::parseMap(const std::string& s) {
std::map<char, std::string> result;
if (s.size() > 0) {
char key = 0;
std::string value;
size_t i = 0;
bool expectKey = true;
while (i < s.size()) {
if (expectKey) {
key = s[i];
expectKey = false;
i++;
}
else if (s[i] == ',') {
result[key] = value;
value = "";
expectKey = true;
}
else {
value += s[i];
}
i++;
}
result[key] = value;
}
return result;
}
ByteArray SCRAMSHA1ClientAuthenticator::getInitialBareClientMessage() const {
std::string authenticationID;
try {
authenticationID = idnConverter->getStringPrepared(getAuthenticationID(), IDNConverter::SASLPrep);
}
catch (const std::exception&) {
}
return createByteArray(std::string("n=" + escape(authenticationID) + ",r=" + clientnonce));
}
ByteArray SCRAMSHA1ClientAuthenticator::getGS2Header() const {
ByteArray channelBindingHeader(createByteArray("n"));
if (tlsChannelBindingData) {
if (useChannelBinding) {
channelBindingHeader = createByteArray("p=tls-unique");
}
else {
channelBindingHeader = createByteArray("y");
}
}
return concat(channelBindingHeader, createByteArray(","), (getAuthorizationID().empty() ? ByteArray() : createByteArray("a=" + escape(getAuthorizationID()))), createByteArray(","));
}
void SCRAMSHA1ClientAuthenticator::setTLSChannelBindingData(const ByteArray& channelBindingData) {
this->tlsChannelBindingData = channelBindingData;
}
ByteArray SCRAMSHA1ClientAuthenticator::getFinalMessageWithoutProof() const {
ByteArray channelBindData;
if (useChannelBinding && tlsChannelBindingData) {
channelBindData = *tlsChannelBindingData;
}
return concat(createByteArray("c=" + Base64::encode(concat(getGS2Header(), channelBindData)) + ",r=" + clientnonce), serverNonce);
}
}
|