summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorRemko Tronçon <git@el-tramo.be>2012-12-23 13:16:26 (GMT)
committerRemko Tronçon <git@el-tramo.be>2012-12-23 14:43:26 (GMT)
commit491ddd570a752cf9bda85933bed0c6942e39b1f9 (patch)
tree10c25c1be8cc08d0497df1dccd56a10fbb30beee /3rdParty/Boost/src/boost/math/special_functions
parentda7d7a0ca71b80281aa9ff2526290b61ccb0cc60 (diff)
downloadswift-contrib-491ddd570a752cf9bda85933bed0c6942e39b1f9.zip
swift-contrib-491ddd570a752cf9bda85933bed0c6942e39b1f9.tar.bz2
Update Boost to 1.52.0.
Change-Id: I1e56bea2600bf2ed9c5b3aba8c4f9d2a0f350e77
Diffstat (limited to '3rdParty/Boost/src/boost/math/special_functions')
-rw-r--r--3rdParty/Boost/src/boost/math/special_functions/detail/fp_traits.hpp570
-rw-r--r--3rdParty/Boost/src/boost/math/special_functions/detail/round_fwd.hpp80
-rw-r--r--3rdParty/Boost/src/boost/math/special_functions/fpclassify.hpp537
-rw-r--r--3rdParty/Boost/src/boost/math/special_functions/math_fwd.hpp1296
-rw-r--r--3rdParty/Boost/src/boost/math/special_functions/sign.hpp145
5 files changed, 2628 insertions, 0 deletions
diff --git a/3rdParty/Boost/src/boost/math/special_functions/detail/fp_traits.hpp b/3rdParty/Boost/src/boost/math/special_functions/detail/fp_traits.hpp
new file mode 100644
index 0000000..50c034d
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/special_functions/detail/fp_traits.hpp
@@ -0,0 +1,570 @@
+// fp_traits.hpp
+
+#ifndef BOOST_MATH_FP_TRAITS_HPP
+#define BOOST_MATH_FP_TRAITS_HPP
+
+// Copyright (c) 2006 Johan Rade
+
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+/*
+To support old compilers, care has been taken to avoid partial template
+specialization and meta function forwarding.
+With these techniques, the code could be simplified.
+*/
+
+#if defined(__vms) && defined(__DECCXX) && !__IEEE_FLOAT
+// The VAX floating point formats are used (for float and double)
+# define BOOST_FPCLASSIFY_VAX_FORMAT
+#endif
+
+#include <cstring>
+
+#include <boost/assert.hpp>
+#include <boost/cstdint.hpp>
+#include <boost/detail/endian.hpp>
+#include <boost/static_assert.hpp>
+#include <boost/type_traits/is_floating_point.hpp>
+
+#ifdef BOOST_NO_STDC_NAMESPACE
+ namespace std{ using ::memcpy; }
+#endif
+
+#ifndef FP_NORMAL
+
+#define FP_ZERO 0
+#define FP_NORMAL 1
+#define FP_INFINITE 2
+#define FP_NAN 3
+#define FP_SUBNORMAL 4
+
+#else
+
+#define BOOST_HAS_FPCLASSIFY
+
+#ifndef fpclassify
+# if (defined(__GLIBCPP__) || defined(__GLIBCXX__)) \
+ && defined(_GLIBCXX_USE_C99_MATH) \
+ && !(defined(_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC) \
+ && (_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC != 0))
+# ifdef _STLP_VENDOR_CSTD
+# if _STLPORT_VERSION >= 0x520
+# define BOOST_FPCLASSIFY_PREFIX ::__std_alias::
+# else
+# define BOOST_FPCLASSIFY_PREFIX ::_STLP_VENDOR_CSTD::
+# endif
+# else
+# define BOOST_FPCLASSIFY_PREFIX ::std::
+# endif
+# else
+# undef BOOST_HAS_FPCLASSIFY
+# define BOOST_FPCLASSIFY_PREFIX
+# endif
+#elif (defined(__HP_aCC) && !defined(__hppa))
+// aCC 6 appears to do "#define fpclassify fpclassify" which messes us up a bit!
+# define BOOST_FPCLASSIFY_PREFIX ::
+#else
+# define BOOST_FPCLASSIFY_PREFIX
+#endif
+
+#ifdef __MINGW32__
+# undef BOOST_HAS_FPCLASSIFY
+#endif
+
+#endif
+
+
+//------------------------------------------------------------------------------
+
+namespace boost {
+namespace math {
+namespace detail {
+
+//------------------------------------------------------------------------------
+
+/*
+The following classes are used to tag the different methods that are used
+for floating point classification
+*/
+
+struct native_tag {};
+template <bool has_limits>
+struct generic_tag {};
+struct ieee_tag {};
+struct ieee_copy_all_bits_tag : public ieee_tag {};
+struct ieee_copy_leading_bits_tag : public ieee_tag {};
+
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+//
+// These helper functions are used only when numeric_limits<>
+// members are not compile time constants:
+//
+inline bool is_generic_tag_false(const generic_tag<false>*)
+{
+ return true;
+}
+inline bool is_generic_tag_false(const void*)
+{
+ return false;
+}
+#endif
+
+//------------------------------------------------------------------------------
+
+/*
+Most processors support three different floating point precisions:
+single precision (32 bits), double precision (64 bits)
+and extended double precision (80 - 128 bits, depending on the processor)
+
+Note that the C++ type long double can be implemented
+both as double precision and extended double precision.
+*/
+
+struct unknown_precision{};
+struct single_precision {};
+struct double_precision {};
+struct extended_double_precision {};
+
+// native_tag version --------------------------------------------------------------
+
+template<class T> struct fp_traits_native
+{
+ typedef native_tag method;
+};
+
+// generic_tag version -------------------------------------------------------------
+
+template<class T, class U> struct fp_traits_non_native
+{
+#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ typedef generic_tag<std::numeric_limits<T>::is_specialized> method;
+#else
+ typedef generic_tag<false> method;
+#endif
+};
+
+// ieee_tag versions ---------------------------------------------------------------
+
+/*
+These specializations of fp_traits_non_native contain information needed
+to "parse" the binary representation of a floating point number.
+
+Typedef members:
+
+ bits -- the target type when copying the leading bytes of a floating
+ point number. It is a typedef for uint32_t or uint64_t.
+
+ method -- tells us whether all bytes are copied or not.
+ It is a typedef for ieee_copy_all_bits_tag or ieee_copy_leading_bits_tag.
+
+Static data members:
+
+ sign, exponent, flag, significand -- bit masks that give the meaning of the
+ bits in the leading bytes.
+
+Static function members:
+
+ get_bits(), set_bits() -- provide access to the leading bytes.
+
+*/
+
+// ieee_tag version, float (32 bits) -----------------------------------------------
+
+#ifndef BOOST_FPCLASSIFY_VAX_FORMAT
+
+template<> struct fp_traits_non_native<float, single_precision>
+{
+ typedef ieee_copy_all_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7f800000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00000000);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x007fffff);
+
+ typedef uint32_t bits;
+ static void get_bits(float x, uint32_t& a) { std::memcpy(&a, &x, 4); }
+ static void set_bits(float& x, uint32_t a) { std::memcpy(&x, &a, 4); }
+};
+
+// ieee_tag version, double (64 bits) ----------------------------------------------
+
+#if defined(BOOST_NO_INT64_T) || defined(BOOST_NO_INCLASS_MEMBER_INITIALIZATION) \
+ || defined(__BORLANDC__) || defined(__CODEGEAR__)
+
+template<> struct fp_traits_non_native<double, double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7ff00000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x000fffff);
+
+ typedef uint32_t bits;
+
+ static void get_bits(double x, uint32_t& a)
+ {
+ std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
+ }
+
+ static void set_bits(double& x, uint32_t a)
+ {
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
+ }
+
+private:
+
+#if defined(BOOST_BIG_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 0);
+#elif defined(BOOST_LITTLE_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 4);
+#else
+ BOOST_STATIC_ASSERT(false);
+#endif
+};
+
+//..............................................................................
+
+#else
+
+template<> struct fp_traits_non_native<double, double_precision>
+{
+ typedef ieee_copy_all_bits_tag method;
+
+ static const uint64_t sign = ((uint64_t)0x80000000u) << 32;
+ static const uint64_t exponent = ((uint64_t)0x7ff00000) << 32;
+ static const uint64_t flag = 0;
+ static const uint64_t significand
+ = (((uint64_t)0x000fffff) << 32) + ((uint64_t)0xffffffffu);
+
+ typedef uint64_t bits;
+ static void get_bits(double x, uint64_t& a) { std::memcpy(&a, &x, 8); }
+ static void set_bits(double& x, uint64_t a) { std::memcpy(&x, &a, 8); }
+};
+
+#endif
+
+#endif // #ifndef BOOST_FPCLASSIFY_VAX_FORMAT
+
+// long double (64 bits) -------------------------------------------------------
+
+#if defined(BOOST_NO_INT64_T) || defined(BOOST_NO_INCLASS_MEMBER_INITIALIZATION)\
+ || defined(__BORLANDC__) || defined(__CODEGEAR__)
+
+template<> struct fp_traits_non_native<long double, double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7ff00000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x000fffff);
+
+ typedef uint32_t bits;
+
+ static void get_bits(long double x, uint32_t& a)
+ {
+ std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
+ }
+
+ static void set_bits(long double& x, uint32_t a)
+ {
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
+ }
+
+private:
+
+#if defined(BOOST_BIG_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 0);
+#elif defined(BOOST_LITTLE_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 4);
+#else
+ BOOST_STATIC_ASSERT(false);
+#endif
+};
+
+//..............................................................................
+
+#else
+
+template<> struct fp_traits_non_native<long double, double_precision>
+{
+ typedef ieee_copy_all_bits_tag method;
+
+ static const uint64_t sign = (uint64_t)0x80000000u << 32;
+ static const uint64_t exponent = (uint64_t)0x7ff00000 << 32;
+ static const uint64_t flag = 0;
+ static const uint64_t significand
+ = ((uint64_t)0x000fffff << 32) + (uint64_t)0xffffffffu;
+
+ typedef uint64_t bits;
+ static void get_bits(long double x, uint64_t& a) { std::memcpy(&a, &x, 8); }
+ static void set_bits(long double& x, uint64_t a) { std::memcpy(&x, &a, 8); }
+};
+
+#endif
+
+
+// long double (>64 bits), x86 and x64 -----------------------------------------
+
+#if defined(__i386) || defined(__i386__) || defined(_M_IX86) \
+ || defined(__amd64) || defined(__amd64__) || defined(_M_AMD64) \
+ || defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)
+
+// Intel extended double precision format (80 bits)
+
+template<>
+struct fp_traits_non_native<long double, extended_double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7fff0000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00008000);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x00007fff);
+
+ typedef uint32_t bits;
+
+ static void get_bits(long double x, uint32_t& a)
+ {
+ std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + 6, 4);
+ }
+
+ static void set_bits(long double& x, uint32_t a)
+ {
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + 6, &a, 4);
+ }
+};
+
+
+// long double (>64 bits), Itanium ---------------------------------------------
+
+#elif defined(__ia64) || defined(__ia64__) || defined(_M_IA64)
+
+// The floating point format is unknown at compile time
+// No template specialization is provided.
+// The generic_tag definition is used.
+
+// The Itanium supports both
+// the Intel extended double precision format (80 bits) and
+// the IEEE extended double precision format with 15 exponent bits (128 bits).
+
+
+// long double (>64 bits), PowerPC ---------------------------------------------
+
+#elif defined(__powerpc) || defined(__powerpc__) || defined(__POWERPC__) \
+ || defined(__ppc) || defined(__ppc__) || defined(__PPC__)
+
+// PowerPC extended double precision format (128 bits)
+
+template<>
+struct fp_traits_non_native<long double, extended_double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7ff00000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00000000);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x000fffff);
+
+ typedef uint32_t bits;
+
+ static void get_bits(long double x, uint32_t& a)
+ {
+ std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
+ }
+
+ static void set_bits(long double& x, uint32_t a)
+ {
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
+ }
+
+private:
+
+#if defined(BOOST_BIG_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 0);
+#elif defined(BOOST_LITTLE_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 12);
+#else
+ BOOST_STATIC_ASSERT(false);
+#endif
+};
+
+
+// long double (>64 bits), Motorola 68K ----------------------------------------
+
+#elif defined(__m68k) || defined(__m68k__) \
+ || defined(__mc68000) || defined(__mc68000__) \
+
+// Motorola extended double precision format (96 bits)
+
+// It is the same format as the Intel extended double precision format,
+// except that 1) it is big-endian, 2) the 3rd and 4th byte are padding, and
+// 3) the flag bit is not set for infinity
+
+template<>
+struct fp_traits_non_native<long double, extended_double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7fff0000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00008000);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x00007fff);
+
+ // copy 1st, 2nd, 5th and 6th byte. 3rd and 4th byte are padding.
+
+ typedef uint32_t bits;
+
+ static void get_bits(long double x, uint32_t& a)
+ {
+ std::memcpy(&a, &x, 2);
+ std::memcpy(reinterpret_cast<unsigned char*>(&a) + 2,
+ reinterpret_cast<const unsigned char*>(&x) + 4, 2);
+ }
+
+ static void set_bits(long double& x, uint32_t a)
+ {
+ std::memcpy(&x, &a, 2);
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + 4,
+ reinterpret_cast<const unsigned char*>(&a) + 2, 2);
+ }
+};
+
+
+// long double (>64 bits), All other processors --------------------------------
+
+#else
+
+// IEEE extended double precision format with 15 exponent bits (128 bits)
+
+template<>
+struct fp_traits_non_native<long double, extended_double_precision>
+{
+ typedef ieee_copy_leading_bits_tag method;
+
+ BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
+ BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7fff0000);
+ BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00000000);
+ BOOST_STATIC_CONSTANT(uint32_t, significand = 0x0000ffff);
+
+ typedef uint32_t bits;
+
+ static void get_bits(long double x, uint32_t& a)
+ {
+ std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
+ }
+
+ static void set_bits(long double& x, uint32_t a)
+ {
+ std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
+ }
+
+private:
+
+#if defined(BOOST_BIG_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 0);
+#elif defined(BOOST_LITTLE_ENDIAN)
+ BOOST_STATIC_CONSTANT(int, offset_ = 12);
+#else
+ BOOST_STATIC_ASSERT(false);
+#endif
+};
+
+#endif
+
+//------------------------------------------------------------------------------
+
+// size_to_precision is a type switch for converting a C++ floating point type
+// to the corresponding precision type.
+
+template<int n, bool fp> struct size_to_precision
+{
+ typedef unknown_precision type;
+};
+
+template<> struct size_to_precision<4, true>
+{
+ typedef single_precision type;
+};
+
+template<> struct size_to_precision<8, true>
+{
+ typedef double_precision type;
+};
+
+template<> struct size_to_precision<10, true>
+{
+ typedef extended_double_precision type;
+};
+
+template<> struct size_to_precision<12, true>
+{
+ typedef extended_double_precision type;
+};
+
+template<> struct size_to_precision<16, true>
+{
+ typedef extended_double_precision type;
+};
+
+//------------------------------------------------------------------------------
+//
+// Figure out whether to use native classification functions based on
+// whether T is a built in floating point type or not:
+//
+template <class T>
+struct select_native
+{
+ typedef BOOST_DEDUCED_TYPENAME size_to_precision<sizeof(T), ::boost::is_floating_point<T>::value>::type precision;
+ typedef fp_traits_non_native<T, precision> type;
+};
+template<>
+struct select_native<float>
+{
+ typedef fp_traits_native<float> type;
+};
+template<>
+struct select_native<double>
+{
+ typedef fp_traits_native<double> type;
+};
+template<>
+struct select_native<long double>
+{
+ typedef fp_traits_native<long double> type;
+};
+
+//------------------------------------------------------------------------------
+
+// fp_traits is a type switch that selects the right fp_traits_non_native
+
+#if (defined(BOOST_MATH_USE_C99) && !(defined(__GNUC__) && (__GNUC__ < 4))) \
+ && !defined(__hpux) \
+ && !defined(__DECCXX)\
+ && !defined(__osf__) \
+ && !defined(__SGI_STL_PORT) && !defined(_STLPORT_VERSION)\
+ && !defined(BOOST_MATH_DISABLE_STD_FPCLASSIFY)
+# define BOOST_MATH_USE_STD_FPCLASSIFY
+#endif
+
+template<class T> struct fp_traits
+{
+ typedef BOOST_DEDUCED_TYPENAME size_to_precision<sizeof(T), ::boost::is_floating_point<T>::value>::type precision;
+#if defined(BOOST_MATH_USE_STD_FPCLASSIFY) && !defined(BOOST_MATH_DISABLE_STD_FPCLASSIFY)
+ typedef typename select_native<T>::type type;
+#else
+ typedef fp_traits_non_native<T, precision> type;
+#endif
+ typedef fp_traits_non_native<T, precision> sign_change_type;
+};
+
+//------------------------------------------------------------------------------
+
+} // namespace detail
+} // namespace math
+} // namespace boost
+
+#endif
diff --git a/3rdParty/Boost/src/boost/math/special_functions/detail/round_fwd.hpp b/3rdParty/Boost/src/boost/math/special_functions/detail/round_fwd.hpp
new file mode 100644
index 0000000..952259a
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/special_functions/detail/round_fwd.hpp
@@ -0,0 +1,80 @@
+// Copyright John Maddock 2008.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_SPECIAL_ROUND_FWD_HPP
+#define BOOST_MATH_SPECIAL_ROUND_FWD_HPP
+
+#include <boost/config.hpp>
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+namespace boost
+{
+ namespace math
+ {
+
+ template <class T, class Policy>
+ T trunc(const T& v, const Policy& pol);
+ template <class T>
+ T trunc(const T& v);
+ template <class T, class Policy>
+ int itrunc(const T& v, const Policy& pol);
+ template <class T>
+ int itrunc(const T& v);
+ template <class T, class Policy>
+ long ltrunc(const T& v, const Policy& pol);
+ template <class T>
+ long ltrunc(const T& v);
+#ifdef BOOST_HAS_LONG_LONG
+ template <class T, class Policy>
+ boost::long_long_type lltrunc(const T& v, const Policy& pol);
+ template <class T>
+ boost::long_long_type lltrunc(const T& v);
+#endif
+ template <class T, class Policy>
+ T round(const T& v, const Policy& pol);
+ template <class T>
+ T round(const T& v);
+ template <class T, class Policy>
+ int iround(const T& v, const Policy& pol);
+ template <class T>
+ int iround(const T& v);
+ template <class T, class Policy>
+ long lround(const T& v, const Policy& pol);
+ template <class T>
+ long lround(const T& v);
+#ifdef BOOST_HAS_LONG_LONG
+ template <class T, class Policy>
+ boost::long_long_type llround(const T& v, const Policy& pol);
+ template <class T>
+ boost::long_long_type llround(const T& v);
+#endif
+ template <class T, class Policy>
+ T modf(const T& v, T* ipart, const Policy& pol);
+ template <class T>
+ T modf(const T& v, T* ipart);
+ template <class T, class Policy>
+ T modf(const T& v, int* ipart, const Policy& pol);
+ template <class T>
+ T modf(const T& v, int* ipart);
+ template <class T, class Policy>
+ T modf(const T& v, long* ipart, const Policy& pol);
+ template <class T>
+ T modf(const T& v, long* ipart);
+#ifdef BOOST_HAS_LONG_LONG
+ template <class T, class Policy>
+ T modf(const T& v, boost::long_long_type* ipart, const Policy& pol);
+ template <class T>
+ T modf(const T& v, boost::long_long_type* ipart);
+#endif
+
+ }
+}
+#endif // BOOST_MATH_SPECIAL_ROUND_FWD_HPP
+
diff --git a/3rdParty/Boost/src/boost/math/special_functions/fpclassify.hpp b/3rdParty/Boost/src/boost/math/special_functions/fpclassify.hpp
new file mode 100644
index 0000000..6f92d18
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/special_functions/fpclassify.hpp
@@ -0,0 +1,537 @@
+// Copyright John Maddock 2005-2008.
+// Copyright (c) 2006-2008 Johan Rade
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_FPCLASSIFY_HPP
+#define BOOST_MATH_FPCLASSIFY_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+#include <math.h>
+#include <boost/config/no_tr1/cmath.hpp>
+#include <boost/limits.hpp>
+#include <boost/math/tools/real_cast.hpp>
+#include <boost/type_traits/is_floating_point.hpp>
+#include <boost/math/special_functions/math_fwd.hpp>
+#include <boost/math/special_functions/detail/fp_traits.hpp>
+/*!
+ \file fpclassify.hpp
+ \brief Classify floating-point value as normal, subnormal, zero, infinite, or NaN.
+ \version 1.0
+ \author John Maddock
+ */
+
+/*
+
+1. If the platform is C99 compliant, then the native floating point
+classification functions are used. However, note that we must only
+define the functions which call std::fpclassify etc if that function
+really does exist: otherwise a compiler may reject the code even though
+the template is never instantiated.
+
+2. If the platform is not C99 compliant, and the binary format for
+a floating point type (float, double or long double) can be determined
+at compile time, then the following algorithm is used:
+
+ If all exponent bits, the flag bit (if there is one),
+ and all significand bits are 0, then the number is zero.
+
+ If all exponent bits and the flag bit (if there is one) are 0,
+ and at least one significand bit is 1, then the number is subnormal.
+
+ If all exponent bits are 1 and all significand bits are 0,
+ then the number is infinity.
+
+ If all exponent bits are 1 and at least one significand bit is 1,
+ then the number is a not-a-number.
+
+ Otherwise the number is normal.
+
+ This algorithm works for the IEEE 754 representation,
+ and also for several non IEEE 754 formats.
+
+ Most formats have the structure
+ sign bit + exponent bits + significand bits.
+
+ A few have the structure
+ sign bit + exponent bits + flag bit + significand bits.
+ The flag bit is 0 for zero and subnormal numbers,
+ and 1 for normal numbers and NaN.
+ It is 0 (Motorola 68K) or 1 (Intel) for infinity.
+
+ To get the bits, the four or eight most significant bytes are copied
+ into an uint32_t or uint64_t and bit masks are applied.
+ This covers all the exponent bits and the flag bit (if there is one),
+ but not always all the significand bits.
+ Some of the functions below have two implementations,
+ depending on whether all the significand bits are copied or not.
+
+3. If the platform is not C99 compliant, and the binary format for
+a floating point type (float, double or long double) can not be determined
+at compile time, then comparison with std::numeric_limits values
+is used.
+
+*/
+
+#if defined(_MSC_VER) || defined(__BORLANDC__)
+#include <float.h>
+#endif
+
+#ifdef BOOST_NO_STDC_NAMESPACE
+ namespace std{ using ::abs; using ::fabs; }
+#endif
+
+namespace boost{
+
+//
+// This must not be located in any namespace under boost::math
+// otherwise we can get into an infinite loop if isnan is
+// a #define for "isnan" !
+//
+namespace math_detail{
+
+template <class T>
+inline bool is_nan_helper(T t, const boost::true_type&)
+{
+#ifdef isnan
+ return isnan(t);
+#elif defined(BOOST_MATH_DISABLE_STD_FPCLASSIFY) || !defined(BOOST_HAS_FPCLASSIFY)
+ return false;
+#else // BOOST_HAS_FPCLASSIFY
+ return (BOOST_FPCLASSIFY_PREFIX fpclassify(t) == (int)FP_NAN);
+#endif
+}
+
+template <class T>
+inline bool is_nan_helper(T, const boost::false_type&)
+{
+ return false;
+}
+
+}
+
+namespace math{
+
+namespace detail{
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+template <class T>
+inline int fpclassify_imp BOOST_NO_MACRO_EXPAND(T t, const native_tag&)
+{
+ return (std::fpclassify)(t);
+}
+#endif
+
+template <class T>
+inline int fpclassify_imp BOOST_NO_MACRO_EXPAND(T t, const generic_tag<true>&)
+{
+ BOOST_MATH_INSTRUMENT_VARIABLE(t);
+
+ // whenever possible check for Nan's first:
+#if defined(BOOST_HAS_FPCLASSIFY) && !defined(BOOST_MATH_DISABLE_STD_FPCLASSIFY)
+ if(::boost::math_detail::is_nan_helper(t, ::boost::is_floating_point<T>()))
+ return FP_NAN;
+#elif defined(isnan)
+ if(boost::math_detail::is_nan_helper(t, ::boost::is_floating_point<T>()))
+ return FP_NAN;
+#elif defined(_MSC_VER) || defined(__BORLANDC__)
+ if(::_isnan(boost::math::tools::real_cast<double>(t)))
+ return FP_NAN;
+#endif
+ // std::fabs broken on a few systems especially for long long!!!!
+ T at = (t < T(0)) ? -t : t;
+
+ // Use a process of exclusion to figure out
+ // what kind of type we have, this relies on
+ // IEEE conforming reals that will treat
+ // Nan's as unordered. Some compilers
+ // don't do this once optimisations are
+ // turned on, hence the check for nan's above.
+ if(at <= (std::numeric_limits<T>::max)())
+ {
+ if(at >= (std::numeric_limits<T>::min)())
+ return FP_NORMAL;
+ return (at != 0) ? FP_SUBNORMAL : FP_ZERO;
+ }
+ else if(at > (std::numeric_limits<T>::max)())
+ return FP_INFINITE;
+ return FP_NAN;
+}
+
+template <class T>
+inline int fpclassify_imp BOOST_NO_MACRO_EXPAND(T t, const generic_tag<false>&)
+{
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized)
+ return fpclassify_imp(t, generic_tag<true>());
+#endif
+ //
+ // An unknown type with no numeric_limits support,
+ // so what are we supposed to do we do here?
+ //
+ BOOST_MATH_INSTRUMENT_VARIABLE(t);
+
+ return t == 0 ? FP_ZERO : FP_NORMAL;
+}
+
+template<class T>
+int fpclassify_imp BOOST_NO_MACRO_EXPAND(T x, ieee_copy_all_bits_tag)
+{
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_MATH_INSTRUMENT_VARIABLE(x);
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ BOOST_MATH_INSTRUMENT_VARIABLE(a);
+ a &= traits::exponent | traits::flag | traits::significand;
+ BOOST_MATH_INSTRUMENT_VARIABLE((traits::exponent | traits::flag | traits::significand));
+ BOOST_MATH_INSTRUMENT_VARIABLE(a);
+
+ if(a <= traits::significand) {
+ if(a == 0)
+ return FP_ZERO;
+ else
+ return FP_SUBNORMAL;
+ }
+
+ if(a < traits::exponent) return FP_NORMAL;
+
+ a &= traits::significand;
+ if(a == 0) return FP_INFINITE;
+
+ return FP_NAN;
+}
+
+template<class T>
+int fpclassify_imp BOOST_NO_MACRO_EXPAND(T x, ieee_copy_leading_bits_tag)
+{
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_MATH_INSTRUMENT_VARIABLE(x);
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent | traits::flag | traits::significand;
+
+ if(a <= traits::significand) {
+ if(x == 0)
+ return FP_ZERO;
+ else
+ return FP_SUBNORMAL;
+ }
+
+ if(a < traits::exponent) return FP_NORMAL;
+
+ a &= traits::significand;
+ traits::set_bits(x,a);
+ if(x == 0) return FP_INFINITE;
+
+ return FP_NAN;
+}
+
+#if defined(BOOST_MATH_USE_STD_FPCLASSIFY) && defined(BOOST_MATH_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY)
+template <>
+inline int fpclassify_imp<long double> BOOST_NO_MACRO_EXPAND(long double t, const native_tag&)
+{
+ return boost::math::detail::fpclassify_imp(t, generic_tag<true>());
+}
+#endif
+
+} // namespace detail
+
+template <class T>
+inline int fpclassify BOOST_NO_MACRO_EXPAND(T t)
+{
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename tools::promote_args<T>::type value_type;
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized && detail::is_generic_tag_false(static_cast<method*>(0)))
+ return detail::fpclassify_imp(static_cast<value_type>(t), detail::generic_tag<true>());
+ return detail::fpclassify_imp(static_cast<value_type>(t), method());
+#else
+ return detail::fpclassify_imp(static_cast<value_type>(t), method());
+#endif
+}
+
+namespace detail {
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+ template<class T>
+ inline bool isfinite_impl(T x, native_tag const&)
+ {
+ return (std::isfinite)(x);
+ }
+#endif
+
+ template<class T>
+ inline bool isfinite_impl(T x, generic_tag<true> const&)
+ {
+ return x >= -(std::numeric_limits<T>::max)()
+ && x <= (std::numeric_limits<T>::max)();
+ }
+
+ template<class T>
+ inline bool isfinite_impl(T x, generic_tag<false> const&)
+ {
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized)
+ return isfinite_impl(x, generic_tag<true>());
+#endif
+ (void)x; // warning supression.
+ return true;
+ }
+
+ template<class T>
+ inline bool isfinite_impl(T x, ieee_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME detail::fp_traits<T>::type traits;
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent;
+ return a != traits::exponent;
+ }
+
+#if defined(BOOST_MATH_USE_STD_FPCLASSIFY) && defined(BOOST_MATH_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY)
+template <>
+inline bool isfinite_impl<long double> BOOST_NO_MACRO_EXPAND(long double t, const native_tag&)
+{
+ return boost::math::detail::isfinite_impl(t, generic_tag<true>());
+}
+#endif
+
+}
+
+template<class T>
+inline bool (isfinite)(T x)
+{ //!< \brief return true if floating-point type t is finite.
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+ typedef typename tools::promote_args<T>::type value_type;
+ return detail::isfinite_impl(static_cast<value_type>(x), method());
+}
+
+//------------------------------------------------------------------------------
+
+namespace detail {
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+ template<class T>
+ inline bool isnormal_impl(T x, native_tag const&)
+ {
+ return (std::isnormal)(x);
+ }
+#endif
+
+ template<class T>
+ inline bool isnormal_impl(T x, generic_tag<true> const&)
+ {
+ if(x < 0) x = -x;
+ return x >= (std::numeric_limits<T>::min)()
+ && x <= (std::numeric_limits<T>::max)();
+ }
+
+ template<class T>
+ inline bool isnormal_impl(T x, generic_tag<false> const&)
+ {
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized)
+ return isnormal_impl(x, generic_tag<true>());
+#endif
+ return !(x == 0);
+ }
+
+ template<class T>
+ inline bool isnormal_impl(T x, ieee_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME detail::fp_traits<T>::type traits;
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent | traits::flag;
+ return (a != 0) && (a < traits::exponent);
+ }
+
+#if defined(BOOST_MATH_USE_STD_FPCLASSIFY) && defined(BOOST_MATH_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY)
+template <>
+inline bool isnormal_impl<long double> BOOST_NO_MACRO_EXPAND(long double t, const native_tag&)
+{
+ return boost::math::detail::isnormal_impl(t, generic_tag<true>());
+}
+#endif
+
+}
+
+template<class T>
+inline bool (isnormal)(T x)
+{
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+ typedef typename tools::promote_args<T>::type value_type;
+ return detail::isnormal_impl(static_cast<value_type>(x), method());
+}
+
+//------------------------------------------------------------------------------
+
+namespace detail {
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+ template<class T>
+ inline bool isinf_impl(T x, native_tag const&)
+ {
+ return (std::isinf)(x);
+ }
+#endif
+
+ template<class T>
+ inline bool isinf_impl(T x, generic_tag<true> const&)
+ {
+ (void)x; // in case the compiler thinks that x is unused because std::numeric_limits<T>::has_infinity is false
+ return std::numeric_limits<T>::has_infinity
+ && ( x == std::numeric_limits<T>::infinity()
+ || x == -std::numeric_limits<T>::infinity());
+ }
+
+ template<class T>
+ inline bool isinf_impl(T x, generic_tag<false> const&)
+ {
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized)
+ return isinf_impl(x, generic_tag<true>());
+#endif
+ (void)x; // warning supression.
+ return false;
+ }
+
+ template<class T>
+ inline bool isinf_impl(T x, ieee_copy_all_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent | traits::significand;
+ return a == traits::exponent;
+ }
+
+ template<class T>
+ inline bool isinf_impl(T x, ieee_copy_leading_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent | traits::significand;
+ if(a != traits::exponent)
+ return false;
+
+ traits::set_bits(x,0);
+ return x == 0;
+ }
+
+#if defined(BOOST_MATH_USE_STD_FPCLASSIFY) && defined(BOOST_MATH_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY)
+template <>
+inline bool isinf_impl<long double> BOOST_NO_MACRO_EXPAND(long double t, const native_tag&)
+{
+ return boost::math::detail::isinf_impl(t, generic_tag<true>());
+}
+#endif
+
+} // namespace detail
+
+template<class T>
+inline bool (isinf)(T x)
+{
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+ typedef typename tools::promote_args<T>::type value_type;
+ return detail::isinf_impl(static_cast<value_type>(x), method());
+}
+
+//------------------------------------------------------------------------------
+
+namespace detail {
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+ template<class T>
+ inline bool isnan_impl(T x, native_tag const&)
+ {
+ return (std::isnan)(x);
+ }
+#endif
+
+ template<class T>
+ inline bool isnan_impl(T x, generic_tag<true> const&)
+ {
+ return std::numeric_limits<T>::has_infinity
+ ? !(x <= std::numeric_limits<T>::infinity())
+ : x != x;
+ }
+
+ template<class T>
+ inline bool isnan_impl(T x, generic_tag<false> const&)
+ {
+#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+ if(std::numeric_limits<T>::is_specialized)
+ return isnan_impl(x, generic_tag<true>());
+#endif
+ (void)x; // warning supression
+ return false;
+ }
+
+ template<class T>
+ inline bool isnan_impl(T x, ieee_copy_all_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a &= traits::exponent | traits::significand;
+ return a > traits::exponent;
+ }
+
+ template<class T>
+ inline bool isnan_impl(T x, ieee_copy_leading_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+
+ a &= traits::exponent | traits::significand;
+ if(a < traits::exponent)
+ return false;
+
+ a &= traits::significand;
+ traits::set_bits(x,a);
+ return x != 0;
+ }
+
+} // namespace detail
+
+template<class T> bool (isnan)(T x)
+{ //!< \brief return true if floating-point type t is NaN (Not A Number).
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+ return detail::isnan_impl(x, method());
+}
+
+#ifdef isnan
+template <> inline bool isnan BOOST_NO_MACRO_EXPAND<float>(float t){ return ::boost::math_detail::is_nan_helper(t, boost::true_type()); }
+template <> inline bool isnan BOOST_NO_MACRO_EXPAND<double>(double t){ return ::boost::math_detail::is_nan_helper(t, boost::true_type()); }
+template <> inline bool isnan BOOST_NO_MACRO_EXPAND<long double>(long double t){ return ::boost::math_detail::is_nan_helper(t, boost::true_type()); }
+#endif
+
+} // namespace math
+} // namespace boost
+
+#endif // BOOST_MATH_FPCLASSIFY_HPP
+
diff --git a/3rdParty/Boost/src/boost/math/special_functions/math_fwd.hpp b/3rdParty/Boost/src/boost/math/special_functions/math_fwd.hpp
new file mode 100644
index 0000000..6669e3f
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/special_functions/math_fwd.hpp
@@ -0,0 +1,1296 @@
+// math_fwd.hpp
+
+// TODO revise completely for new distribution classes.
+
+// Copyright Paul A. Bristow 2006.
+// Copyright John Maddock 2006.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// Omnibus list of forward declarations of math special functions.
+
+// IT = Integer type.
+// RT = Real type (built-in floating-point types, float, double, long double) & User Defined Types
+// AT = Integer or Real type
+
+#ifndef BOOST_MATH_SPECIAL_MATH_FWD_HPP
+#define BOOST_MATH_SPECIAL_MATH_FWD_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+#include <boost/math/special_functions/detail/round_fwd.hpp>
+#include <boost/math/tools/promotion.hpp> // for argument promotion.
+#include <boost/math/policies/policy.hpp>
+#include <boost/mpl/comparison.hpp>
+#include <boost/config/no_tr1/complex.hpp>
+
+#define BOOST_NO_MACRO_EXPAND /**/
+
+namespace boost
+{
+ namespace math
+ { // Math functions (in roughly alphabetic order).
+
+ // Beta functions.
+ template <class RT1, class RT2>
+ typename tools::promote_args<RT1, RT2>::type
+ beta(RT1 a, RT2 b); // Beta function (2 arguments).
+
+ template <class RT1, class RT2, class A>
+ typename tools::promote_args<RT1, RT2, A>::type
+ beta(RT1 a, RT2 b, A x); // Beta function (3 arguments).
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ beta(RT1 a, RT2 b, RT3 x, const Policy& pol); // Beta function (3 arguments).
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ betac(RT1 a, RT2 b, RT3 x);
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ betac(RT1 a, RT2 b, RT3 x, const Policy& pol);
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta(RT1 a, RT2 b, RT3 x); // Incomplete beta function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta(RT1 a, RT2 b, RT3 x, const Policy& pol); // Incomplete beta function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac(RT1 a, RT2 b, RT3 x); // Incomplete beta complement function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac(RT1 a, RT2 b, RT3 x, const Policy& pol); // Incomplete beta complement function.
+
+ template <class T1, class T2, class T3, class T4>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ibeta_inv(T1 a, T2 b, T3 p, T4* py);
+
+ template <class T1, class T2, class T3, class T4, class Policy>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ibeta_inv(T1 a, T2 b, T3 p, T4* py, const Policy& pol);
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_inv(RT1 a, RT2 b, RT3 p); // Incomplete beta inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_inv(RT1 a, RT2 b, RT3 p, const Policy&); // Incomplete beta inverse function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_inva(RT1 a, RT2 b, RT3 p); // Incomplete beta inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_inva(RT1 a, RT2 b, RT3 p, const Policy&); // Incomplete beta inverse function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_invb(RT1 a, RT2 b, RT3 p); // Incomplete beta inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_invb(RT1 a, RT2 b, RT3 p, const Policy&); // Incomplete beta inverse function.
+
+ template <class T1, class T2, class T3, class T4>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ibetac_inv(T1 a, T2 b, T3 q, T4* py);
+
+ template <class T1, class T2, class T3, class T4, class Policy>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ibetac_inv(T1 a, T2 b, T3 q, T4* py, const Policy& pol);
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_inv(RT1 a, RT2 b, RT3 q); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_inv(RT1 a, RT2 b, RT3 q, const Policy&); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_inva(RT1 a, RT2 b, RT3 q); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_inva(RT1 a, RT2 b, RT3 q, const Policy&); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_invb(RT1 a, RT2 b, RT3 q); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibetac_invb(RT1 a, RT2 b, RT3 q, const Policy&); // Incomplete beta complement inverse function.
+
+ template <class RT1, class RT2, class RT3>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_derivative(RT1 a, RT2 b, RT3 x); // derivative of incomplete beta
+
+ template <class RT1, class RT2, class RT3, class Policy>
+ typename tools::promote_args<RT1, RT2, RT3>::type
+ ibeta_derivative(RT1 a, RT2 b, RT3 x, const Policy& pol); // derivative of incomplete beta
+
+ // erf & erfc error functions.
+ template <class RT> // Error function.
+ typename tools::promote_args<RT>::type erf(RT z);
+ template <class RT, class Policy> // Error function.
+ typename tools::promote_args<RT>::type erf(RT z, const Policy&);
+
+ template <class RT>// Error function complement.
+ typename tools::promote_args<RT>::type erfc(RT z);
+ template <class RT, class Policy>// Error function complement.
+ typename tools::promote_args<RT>::type erfc(RT z, const Policy&);
+
+ template <class RT>// Error function inverse.
+ typename tools::promote_args<RT>::type erf_inv(RT z);
+ template <class RT, class Policy>// Error function inverse.
+ typename tools::promote_args<RT>::type erf_inv(RT z, const Policy& pol);
+
+ template <class RT>// Error function complement inverse.
+ typename tools::promote_args<RT>::type erfc_inv(RT z);
+ template <class RT, class Policy>// Error function complement inverse.
+ typename tools::promote_args<RT>::type erfc_inv(RT z, const Policy& pol);
+
+ // Polynomials:
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1);
+
+ template <class T>
+ typename tools::promote_args<T>::type
+ legendre_p(int l, T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type
+ legendre_p(int l, T x, const Policy& pol);
+
+ template <class T>
+ typename tools::promote_args<T>::type
+ legendre_q(unsigned l, T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type
+ legendre_q(unsigned l, T x, const Policy& pol);
+
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1);
+
+ template <class T>
+ typename tools::promote_args<T>::type
+ legendre_p(int l, int m, T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type
+ legendre_p(int l, int m, T x, const Policy& pol);
+
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1);
+
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ laguerre_next(unsigned n, unsigned l, T1 x, T2 Pl, T3 Plm1);
+
+ template <class T>
+ typename tools::promote_args<T>::type
+ laguerre(unsigned n, T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type
+ laguerre(unsigned n, unsigned m, T x, const Policy& pol);
+
+ template <class T1, class T2>
+ struct laguerre_result
+ {
+ typedef typename mpl::if_<
+ policies::is_policy<T2>,
+ typename tools::promote_args<T1>::type,
+ typename tools::promote_args<T2>::type
+ >::type type;
+ };
+
+ template <class T1, class T2>
+ typename laguerre_result<T1, T2>::type
+ laguerre(unsigned n, T1 m, T2 x);
+
+ template <class T>
+ typename tools::promote_args<T>::type
+ hermite(unsigned n, T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type
+ hermite(unsigned n, T x, const Policy& pol);
+
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ hermite_next(unsigned n, T1 x, T2 Hn, T3 Hnm1);
+
+ template <class T1, class T2>
+ std::complex<typename tools::promote_args<T1, T2>::type>
+ spherical_harmonic(unsigned n, int m, T1 theta, T2 phi);
+
+ template <class T1, class T2, class Policy>
+ std::complex<typename tools::promote_args<T1, T2>::type>
+ spherical_harmonic(unsigned n, int m, T1 theta, T2 phi, const Policy& pol);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type
+ spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type
+ spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi, const Policy& pol);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type
+ spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type
+ spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi, const Policy& pol);
+
+ // Elliptic integrals:
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ ellint_rf(T1 x, T2 y, T3 z);
+
+ template <class T1, class T2, class T3, class Policy>
+ typename tools::promote_args<T1, T2, T3>::type
+ ellint_rf(T1 x, T2 y, T3 z, const Policy& pol);
+
+ template <class T1, class T2, class T3>
+ typename tools::promote_args<T1, T2, T3>::type
+ ellint_rd(T1 x, T2 y, T3 z);
+
+ template <class T1, class T2, class T3, class Policy>
+ typename tools::promote_args<T1, T2, T3>::type
+ ellint_rd(T1 x, T2 y, T3 z, const Policy& pol);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type
+ ellint_rc(T1 x, T2 y);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type
+ ellint_rc(T1 x, T2 y, const Policy& pol);
+
+ template <class T1, class T2, class T3, class T4>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ellint_rj(T1 x, T2 y, T3 z, T4 p);
+
+ template <class T1, class T2, class T3, class T4, class Policy>
+ typename tools::promote_args<T1, T2, T3, T4>::type
+ ellint_rj(T1 x, T2 y, T3 z, T4 p, const Policy& pol);
+
+ template <typename T>
+ typename tools::promote_args<T>::type ellint_2(T k);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi, const Policy& pol);
+
+ template <typename T>
+ typename tools::promote_args<T>::type ellint_1(T k);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol);
+
+ namespace detail{
+
+ template <class T, class U, class V>
+ struct ellint_3_result
+ {
+ typedef typename mpl::if_<
+ policies::is_policy<V>,
+ typename tools::promote_args<T, U>::type,
+ typename tools::promote_args<T, U, V>::type
+ >::type type;
+ };
+
+ } // namespace detail
+
+
+ template <class T1, class T2, class T3>
+ typename detail::ellint_3_result<T1, T2, T3>::type ellint_3(T1 k, T2 v, T3 phi);
+
+ template <class T1, class T2, class T3, class Policy>
+ typename tools::promote_args<T1, T2, T3>::type ellint_3(T1 k, T2 v, T3 phi, const Policy& pol);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type ellint_3(T1 k, T2 v);
+
+ // Factorial functions.
+ // Note: not for integral types, at present.
+ template <class RT>
+ struct max_factorial;
+ template <class RT>
+ RT factorial(unsigned int);
+ template <class RT, class Policy>
+ RT factorial(unsigned int, const Policy& pol);
+ template <class RT>
+ RT unchecked_factorial(unsigned int BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(RT));
+ template <class RT>
+ RT double_factorial(unsigned i);
+ template <class RT, class Policy>
+ RT double_factorial(unsigned i, const Policy& pol);
+
+ template <class RT>
+ typename tools::promote_args<RT>::type falling_factorial(RT x, unsigned n);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type falling_factorial(RT x, unsigned n, const Policy& pol);
+
+ template <class RT>
+ typename tools::promote_args<RT>::type rising_factorial(RT x, int n);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type rising_factorial(RT x, int n, const Policy& pol);
+
+ // Gamma functions.
+ template <class RT>
+ typename tools::promote_args<RT>::type tgamma(RT z);
+
+ template <class RT>
+ typename tools::promote_args<RT>::type tgamma1pm1(RT z);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type tgamma1pm1(RT z, const Policy& pol);
+
+ template <class RT1, class RT2>
+ typename tools::promote_args<RT1, RT2>::type tgamma(RT1 a, RT2 z);
+
+ template <class RT1, class RT2, class Policy>
+ typename tools::promote_args<RT1, RT2>::type tgamma(RT1 a, RT2 z, const Policy& pol);
+
+ template <class RT>
+ typename tools::promote_args<RT>::type lgamma(RT z, int* sign);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type lgamma(RT z, int* sign, const Policy& pol);
+
+ template <class RT>
+ typename tools::promote_args<RT>::type lgamma(RT x);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type lgamma(RT x, const Policy& pol);
+
+ template <class RT1, class RT2>
+ typename tools::promote_args<RT1, RT2>::type tgamma_lower(RT1 a, RT2 z);
+
+ template <class RT1, class RT2, class Policy>
+ typename tools::promote_args<RT1, RT2>::type tgamma_lower(RT1 a, RT2 z, const Policy&);
+
+ template <class RT1, class RT2>
+ typename tools::promote_args<RT1, RT2>::type gamma_q(RT1 a, RT2 z);
+
+ template <class RT1, class RT2, class Policy>
+ typename tools::promote_args<RT1, RT2>::type gamma_q(RT1 a, RT2 z, const Policy&);
+
+ template <class RT1, class RT2>
+ typename tools::promote_args<RT1, RT2>::type gamma_p(RT1 a, RT2 z);
+
+ template <class RT1, class RT2, class Policy>
+ typename tools::promote_args<RT1, RT2>::type gamma_p(RT1 a, RT2 z, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type tgamma_delta_ratio(T1 z, T2 delta);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type tgamma_delta_ratio(T1 z, T2 delta, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type tgamma_ratio(T1 a, T2 b);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type tgamma_ratio(T1 a, T2 b, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type gamma_p_derivative(T1 a, T2 x);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type gamma_p_derivative(T1 a, T2 x, const Policy&);
+
+ // gamma inverse.
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type gamma_p_inv(T1 a, T2 p);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type gamma_p_inva(T1 a, T2 p, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type gamma_p_inva(T1 a, T2 p);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type gamma_p_inv(T1 a, T2 p, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type gamma_q_inv(T1 a, T2 q);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type gamma_q_inv(T1 a, T2 q, const Policy&);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type gamma_q_inva(T1 a, T2 q);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type gamma_q_inva(T1 a, T2 q, const Policy&);
+
+ // digamma:
+ template <class T>
+ typename tools::promote_args<T>::type digamma(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type digamma(T x, const Policy&);
+
+ // Hypotenuse function sqrt(x ^ 2 + y ^ 2).
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type
+ hypot(T1 x, T2 y);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type
+ hypot(T1 x, T2 y, const Policy&);
+
+ // cbrt - cube root.
+ template <class RT>
+ typename tools::promote_args<RT>::type cbrt(RT z);
+
+ template <class RT, class Policy>
+ typename tools::promote_args<RT>::type cbrt(RT z, const Policy&);
+
+ // log1p is log(x + 1)
+ template <class T>
+ typename tools::promote_args<T>::type log1p(T);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type log1p(T, const Policy&);
+
+ // log1pmx is log(x + 1) - x
+ template <class T>
+ typename tools::promote_args<T>::type log1pmx(T);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type log1pmx(T, const Policy&);
+
+ // Exp (x) minus 1 functions.
+ template <class T>
+ typename tools::promote_args<T>::type expm1(T);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type expm1(T, const Policy&);
+
+ // Power - 1
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type
+ powm1(const T1 a, const T2 z);
+
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type
+ powm1(const T1 a, const T2 z, const Policy&);
+
+ // sqrt(1+x) - 1
+ template <class T>
+ typename tools::promote_args<T>::type sqrt1pm1(const T& val);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type sqrt1pm1(const T& val, const Policy&);
+
+ // sinus cardinals:
+ template <class T>
+ typename tools::promote_args<T>::type sinc_pi(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type sinc_pi(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type sinhc_pi(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type sinhc_pi(T x, const Policy&);
+
+ // inverse hyperbolics:
+ template<typename T>
+ typename tools::promote_args<T>::type asinh(T x);
+
+ template<typename T, class Policy>
+ typename tools::promote_args<T>::type asinh(T x, const Policy&);
+
+ template<typename T>
+ typename tools::promote_args<T>::type acosh(T x);
+
+ template<typename T, class Policy>
+ typename tools::promote_args<T>::type acosh(T x, const Policy&);
+
+ template<typename T>
+ typename tools::promote_args<T>::type atanh(T x);
+
+ template<typename T, class Policy>
+ typename tools::promote_args<T>::type atanh(T x, const Policy&);
+
+ namespace detail{
+
+ typedef mpl::int_<0> bessel_no_int_tag; // No integer optimisation possible.
+ typedef mpl::int_<1> bessel_maybe_int_tag; // Maybe integer optimisation.
+ typedef mpl::int_<2> bessel_int_tag; // Definite integer optimistaion.
+
+ template <class T1, class T2, class Policy>
+ struct bessel_traits
+ {
+ typedef typename tools::promote_args<
+ T1, T2
+ >::type result_type;
+
+ typedef typename policies::precision<result_type, Policy>::type precision_type;
+
+ typedef typename mpl::if_<
+ mpl::or_<
+ mpl::less_equal<precision_type, mpl::int_<0> >,
+ mpl::greater<precision_type, mpl::int_<64> > >,
+ bessel_no_int_tag,
+ typename mpl::if_<
+ is_integral<T1>,
+ bessel_int_tag,
+ bessel_maybe_int_tag
+ >::type
+ >::type optimisation_tag;
+ };
+ } // detail
+
+ // Bessel functions:
+ template <class T1, class T2, class Policy>
+ typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_bessel_j(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_bessel_j(T1 v, T2 x);
+
+ template <class T, class Policy>
+ typename detail::bessel_traits<T, T, Policy>::result_type sph_bessel(unsigned v, T x, const Policy& pol);
+
+ template <class T>
+ typename detail::bessel_traits<T, T, policies::policy<> >::result_type sph_bessel(unsigned v, T x);
+
+ template <class T1, class T2, class Policy>
+ typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_bessel_i(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_bessel_i(T1 v, T2 x);
+
+ template <class T1, class T2, class Policy>
+ typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_bessel_k(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_bessel_k(T1 v, T2 x);
+
+ template <class T1, class T2, class Policy>
+ typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_neumann(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_neumann(T1 v, T2 x);
+
+ template <class T, class Policy>
+ typename detail::bessel_traits<T, T, Policy>::result_type sph_neumann(unsigned v, T x, const Policy& pol);
+
+ template <class T>
+ typename detail::bessel_traits<T, T, policies::policy<> >::result_type sph_neumann(unsigned v, T x);
+
+ template <class T1, class T2, class Policy>
+ std::complex<typename detail::bessel_traits<T1, T2, Policy>::result_type> cyl_hankel_1(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ std::complex<typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type> cyl_hankel_1(T1 v, T2 x);
+
+ template <class T1, class T2, class Policy>
+ std::complex<typename detail::bessel_traits<T1, T2, Policy>::result_type> cyl_hankel_2(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ std::complex<typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type> cyl_hankel_2(T1 v, T2 x);
+
+ template <class T1, class T2, class Policy>
+ std::complex<typename detail::bessel_traits<T1, T2, Policy>::result_type> sph_hankel_1(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ std::complex<typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type> sph_hankel_1(T1 v, T2 x);
+
+ template <class T1, class T2, class Policy>
+ std::complex<typename detail::bessel_traits<T1, T2, Policy>::result_type> sph_hankel_2(T1 v, T2 x, const Policy& pol);
+
+ template <class T1, class T2>
+ std::complex<typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type> sph_hankel_2(T1 v, T2 x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type airy_ai(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type airy_ai(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type airy_bi(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type airy_bi(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type airy_ai_prime(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type airy_ai_prime(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type airy_bi_prime(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type airy_bi_prime(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type sin_pi(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type sin_pi(T x);
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type cos_pi(T x, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type cos_pi(T x);
+
+ template <class T>
+ int fpclassify BOOST_NO_MACRO_EXPAND(T t);
+
+ template <class T>
+ bool isfinite BOOST_NO_MACRO_EXPAND(T z);
+
+ template <class T>
+ bool isinf BOOST_NO_MACRO_EXPAND(T t);
+
+ template <class T>
+ bool isnan BOOST_NO_MACRO_EXPAND(T t);
+
+ template <class T>
+ bool isnormal BOOST_NO_MACRO_EXPAND(T t);
+
+ template<class T>
+ int signbit BOOST_NO_MACRO_EXPAND(T x);
+
+ template <class T>
+ int sign BOOST_NO_MACRO_EXPAND(const T& z);
+
+ template <class T>
+ T copysign BOOST_NO_MACRO_EXPAND(const T& x, const T& y);
+
+ template <class T>
+ T changesign BOOST_NO_MACRO_EXPAND(const T& z);
+
+ // Exponential integrals:
+ namespace detail{
+
+ template <class T, class U>
+ struct expint_result
+ {
+ typedef typename mpl::if_<
+ policies::is_policy<U>,
+ typename tools::promote_args<T>::type,
+ typename tools::promote_args<U>::type
+ >::type type;
+ };
+
+ } // namespace detail
+
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type expint(unsigned n, T z, const Policy&);
+
+ template <class T, class U>
+ typename detail::expint_result<T, U>::type expint(T const z, U const u);
+
+ template <class T>
+ typename tools::promote_args<T>::type expint(T z);
+
+ // Zeta:
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type zeta(T s, const Policy&);
+
+ // Owen's T function:
+ template <class T1, class T2, class Policy>
+ typename tools::promote_args<T1, T2>::type owens_t(T1 h, T2 a, const Policy& pol);
+
+ template <class T1, class T2>
+ typename tools::promote_args<T1, T2>::type owens_t(T1 h, T2 a);
+
+ // Jacobi Functions:
+ template <class T, class Policy>
+ typename tools::promote_args<T>::type jacobi_elliptic(T k, T theta, T* pcn, T* pdn, const Policy&);
+
+ template <class T>
+ typename tools::promote_args<T>::type jacobi_elliptic(T k, T theta, T* pcn = 0, T* pdn = 0);
+
+ template <class U, class T, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_sn(U k, T theta, const Policy& pol);
+
+ template <class U, class T>
+ typename tools::promote_args<T, U>::type jacobi_sn(U k, T theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_cn(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_cn(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_dn(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_dn(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_cd(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_cd(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_dc(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_dc(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_ns(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_ns(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_sd(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_sd(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_ds(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_ds(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_nc(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_nc(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_nd(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_nd(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_sc(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_sc(T k, U theta);
+
+ template <class T, class U, class Policy>
+ typename tools::promote_args<T, U>::type jacobi_cs(T k, U theta, const Policy& pol);
+
+ template <class T, class U>
+ typename tools::promote_args<T, U>::type jacobi_cs(T k, U theta);
+
+
+ template <class T>
+ typename tools::promote_args<T>::type zeta(T s);
+
+ // pow:
+ template <int N, typename T, class Policy>
+ typename tools::promote_args<T>::type pow(T base, const Policy& policy);
+
+ template <int N, typename T>
+ typename tools::promote_args<T>::type pow(T base);
+
+ // next:
+ template <class T, class Policy>
+ T nextafter(const T&, const T&, const Policy&);
+ template <class T>
+ T nextafter(const T&, const T&);
+ template <class T, class Policy>
+ T float_next(const T&, const Policy&);
+ template <class T>
+ T float_next(const T&);
+ template <class T, class Policy>
+ T float_prior(const T&, const Policy&);
+ template <class T>
+ T float_prior(const T&);
+ template <class T, class Policy>
+ T float_distance(const T&, const T&, const Policy&);
+ template <class T>
+ T float_distance(const T&, const T&);
+
+ } // namespace math
+} // namespace boost
+
+#ifdef BOOST_HAS_LONG_LONG
+#define BOOST_MATH_DETAIL_LL_FUNC(Policy)\
+ \
+ template <class T>\
+ inline T modf(const T& v, boost::long_long_type* ipart){ using boost::math::modf; return modf(v, ipart, Policy()); }\
+ \
+ template <class T>\
+ inline boost::long_long_type lltrunc(const T& v){ using boost::math::lltrunc; return lltrunc(v, Policy()); }\
+ \
+ template <class T>\
+ inline boost::long_long_type llround(const T& v){ using boost::math::llround; return llround(v, Policy()); }\
+
+#else
+#define BOOST_MATH_DETAIL_LL_FUNC(Policy)
+#endif
+
+#define BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(Policy)\
+ \
+ BOOST_MATH_DETAIL_LL_FUNC(Policy)\
+ \
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type \
+ beta(RT1 a, RT2 b) { return ::boost::math::beta(a, b, Policy()); }\
+\
+ template <class RT1, class RT2, class A>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, A>::type \
+ beta(RT1 a, RT2 b, A x){ return ::boost::math::beta(a, b, x, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ betac(RT1 a, RT2 b, RT3 x) { return ::boost::math::betac(a, b, x, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibeta(RT1 a, RT2 b, RT3 x){ return ::boost::math::ibeta(a, b, x, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibetac(RT1 a, RT2 b, RT3 x){ return ::boost::math::ibetac(a, b, x, Policy()); }\
+\
+ template <class T1, class T2, class T3, class T4>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3, T4>::type \
+ ibeta_inv(T1 a, T2 b, T3 p, T4* py){ return ::boost::math::ibeta_inv(a, b, p, py, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibeta_inv(RT1 a, RT2 b, RT3 p){ return ::boost::math::ibeta_inv(a, b, p, Policy()); }\
+\
+ template <class T1, class T2, class T3, class T4>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3, T4>::type \
+ ibetac_inv(T1 a, T2 b, T3 q, T4* py){ return ::boost::math::ibetac_inv(a, b, q, py, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibeta_inva(RT1 a, RT2 b, RT3 p){ return ::boost::math::ibeta_inva(a, b, p, Policy()); }\
+\
+ template <class T1, class T2, class T3>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3>::type \
+ ibetac_inva(T1 a, T2 b, T3 q){ return ::boost::math::ibetac_inva(a, b, q, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibeta_invb(RT1 a, RT2 b, RT3 p){ return ::boost::math::ibeta_invb(a, b, p, Policy()); }\
+\
+ template <class T1, class T2, class T3>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3>::type \
+ ibetac_invb(T1 a, T2 b, T3 q){ return ::boost::math::ibetac_invb(a, b, q, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibetac_inv(RT1 a, RT2 b, RT3 q){ return ::boost::math::ibetac_inv(a, b, q, Policy()); }\
+\
+ template <class RT1, class RT2, class RT3>\
+ inline typename boost::math::tools::promote_args<RT1, RT2, RT3>::type \
+ ibeta_derivative(RT1 a, RT2 b, RT3 x){ return ::boost::math::ibeta_derivative(a, b, x, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type erf(RT z) { return ::boost::math::erf(z, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type erfc(RT z){ return ::boost::math::erfc(z, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type erf_inv(RT z) { return ::boost::math::erf_inv(z, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type erfc_inv(RT z){ return ::boost::math::erfc_inv(z, Policy()); }\
+\
+ using boost::math::legendre_next;\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type \
+ legendre_p(int l, T x){ return ::boost::math::legendre_p(l, x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type \
+ legendre_q(unsigned l, T x){ return ::boost::math::legendre_q(l, x, Policy()); }\
+\
+ using ::boost::math::legendre_next;\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type \
+ legendre_p(int l, int m, T x){ return ::boost::math::legendre_p(l, m, x, Policy()); }\
+\
+ using ::boost::math::laguerre_next;\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type \
+ laguerre(unsigned n, T x){ return ::boost::math::laguerre(n, x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::laguerre_result<T1, T2>::type \
+ laguerre(unsigned n, T1 m, T2 x) { return ::boost::math::laguerre(n, m, x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type \
+ hermite(unsigned n, T x){ return ::boost::math::hermite(n, x, Policy()); }\
+\
+ using boost::math::hermite_next;\
+\
+ template <class T1, class T2>\
+ inline std::complex<typename boost::math::tools::promote_args<T1, T2>::type> \
+ spherical_harmonic(unsigned n, int m, T1 theta, T2 phi){ return boost::math::spherical_harmonic(n, m, theta, phi, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi){ return ::boost::math::spherical_harmonic_r(n, m, theta, phi, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi){ return boost::math::spherical_harmonic_i(n, m, theta, phi, Policy()); }\
+\
+ template <class T1, class T2, class Policy>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi, const Policy& pol);\
+\
+ template <class T1, class T2, class T3>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3>::type \
+ ellint_rf(T1 x, T2 y, T3 z){ return ::boost::math::ellint_rf(x, y, z, Policy()); }\
+\
+ template <class T1, class T2, class T3>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3>::type \
+ ellint_rd(T1 x, T2 y, T3 z){ return ::boost::math::ellint_rd(x, y, z, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ ellint_rc(T1 x, T2 y){ return ::boost::math::ellint_rc(x, y, Policy()); }\
+\
+ template <class T1, class T2, class T3, class T4>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3, T4>::type \
+ ellint_rj(T1 x, T2 y, T3 z, T4 p){ return boost::math::ellint_rj(x, y, z, p, Policy()); }\
+\
+ template <typename T>\
+ inline typename boost::math::tools::promote_args<T>::type ellint_2(T k){ return boost::math::ellint_2(k, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi){ return boost::math::ellint_2(k, phi, Policy()); }\
+\
+ template <typename T>\
+ inline typename boost::math::tools::promote_args<T>::type ellint_1(T k){ return boost::math::ellint_1(k, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi){ return boost::math::ellint_1(k, phi, Policy()); }\
+\
+ template <class T1, class T2, class T3>\
+ inline typename boost::math::tools::promote_args<T1, T2, T3>::type ellint_3(T1 k, T2 v, T3 phi){ return boost::math::ellint_3(k, v, phi, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type ellint_3(T1 k, T2 v){ return boost::math::ellint_3(k, v, Policy()); }\
+\
+ using boost::math::max_factorial;\
+ template <class RT>\
+ inline RT factorial(unsigned int i) { return boost::math::factorial<RT>(i, Policy()); }\
+ using boost::math::unchecked_factorial;\
+ template <class RT>\
+ inline RT double_factorial(unsigned i){ return boost::math::double_factorial<RT>(i, Policy()); }\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type falling_factorial(RT x, unsigned n){ return boost::math::falling_factorial(x, n, Policy()); }\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type rising_factorial(RT x, unsigned n){ return boost::math::rising_factorial(x, n, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type tgamma(RT z){ return boost::math::tgamma(z, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type tgamma1pm1(RT z){ return boost::math::tgamma1pm1(z, Policy()); }\
+\
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type tgamma(RT1 a, RT2 z){ return boost::math::tgamma(a, z, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type lgamma(RT z, int* sign){ return boost::math::lgamma(z, sign, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type lgamma(RT x){ return boost::math::lgamma(x, Policy()); }\
+\
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type tgamma_lower(RT1 a, RT2 z){ return boost::math::tgamma_lower(a, z, Policy()); }\
+\
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type gamma_q(RT1 a, RT2 z){ return boost::math::gamma_q(a, z, Policy()); }\
+\
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type gamma_p(RT1 a, RT2 z){ return boost::math::gamma_p(a, z, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type tgamma_delta_ratio(T1 z, T2 delta){ return boost::math::tgamma_delta_ratio(z, delta, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type tgamma_ratio(T1 a, T2 b) { return boost::math::tgamma_ratio(a, b, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type gamma_p_derivative(T1 a, T2 x){ return boost::math::gamma_p_derivative(a, x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type gamma_p_inv(T1 a, T2 p){ return boost::math::gamma_p_inv(a, p, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type gamma_p_inva(T1 a, T2 p){ return boost::math::gamma_p_inva(a, p, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type gamma_q_inv(T1 a, T2 q){ return boost::math::gamma_q_inv(a, q, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type gamma_q_inva(T1 a, T2 q){ return boost::math::gamma_q_inva(a, q, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type digamma(T x){ return boost::math::digamma(x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ hypot(T1 x, T2 y){ return boost::math::hypot(x, y, Policy()); }\
+\
+ template <class RT>\
+ inline typename boost::math::tools::promote_args<RT>::type cbrt(RT z){ return boost::math::cbrt(z, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type log1p(T x){ return boost::math::log1p(x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type log1pmx(T x){ return boost::math::log1pmx(x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type expm1(T x){ return boost::math::expm1(x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::tools::promote_args<T1, T2>::type \
+ powm1(const T1 a, const T2 z){ return boost::math::powm1(a, z, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type sqrt1pm1(const T& val){ return boost::math::sqrt1pm1(val, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type sinc_pi(T x){ return boost::math::sinc_pi(x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type sinhc_pi(T x){ return boost::math::sinhc_pi(x, Policy()); }\
+\
+ template<typename T>\
+ inline typename boost::math::tools::promote_args<T>::type asinh(const T x){ return boost::math::asinh(x, Policy()); }\
+\
+ template<typename T>\
+ inline typename boost::math::tools::promote_args<T>::type acosh(const T x){ return boost::math::acosh(x, Policy()); }\
+\
+ template<typename T>\
+ inline typename boost::math::tools::promote_args<T>::type atanh(const T x){ return boost::math::atanh(x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type cyl_bessel_j(T1 v, T2 x)\
+ { return boost::math::cyl_bessel_j(v, x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::detail::bessel_traits<T, T, Policy >::result_type sph_bessel(unsigned v, T x)\
+ { return boost::math::sph_bessel(v, x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type \
+ cyl_bessel_i(T1 v, T2 x) { return boost::math::cyl_bessel_i(v, x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type \
+ cyl_bessel_k(T1 v, T2 x) { return boost::math::cyl_bessel_k(v, x, Policy()); }\
+\
+ template <class T1, class T2>\
+ inline typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type \
+ cyl_neumann(T1 v, T2 x){ return boost::math::cyl_neumann(v, x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::detail::bessel_traits<T, T, Policy >::result_type \
+ sph_neumann(unsigned v, T x){ return boost::math::sph_neumann(v, x, Policy()); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type sin_pi(T x){ return boost::math::sin_pi(x); }\
+\
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type cos_pi(T x){ return boost::math::cos_pi(x); }\
+\
+ using boost::math::fpclassify;\
+ using boost::math::isfinite;\
+ using boost::math::isinf;\
+ using boost::math::isnan;\
+ using boost::math::isnormal;\
+ using boost::math::signbit;\
+ using boost::math::sign;\
+ using boost::math::copysign;\
+ using boost::math::changesign;\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T,U>::type expint(T const& z, U const& u)\
+ { return boost::math::expint(z, u, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type expint(T z){ return boost::math::expint(z, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type zeta(T s){ return boost::math::zeta(s, Policy()); }\
+ \
+ template <class T>\
+ inline T round(const T& v){ using boost::math::round; return round(v, Policy()); }\
+ \
+ template <class T>\
+ inline int iround(const T& v){ using boost::math::iround; return iround(v, Policy()); }\
+ \
+ template <class T>\
+ inline long lround(const T& v){ using boost::math::lround; return lround(v, Policy()); }\
+ \
+ template <class T>\
+ inline T trunc(const T& v){ using boost::math::trunc; return trunc(v, Policy()); }\
+ \
+ template <class T>\
+ inline int itrunc(const T& v){ using boost::math::itrunc; return itrunc(v, Policy()); }\
+ \
+ template <class T>\
+ inline long ltrunc(const T& v){ using boost::math::ltrunc; return ltrunc(v, Policy()); }\
+ \
+ template <class T>\
+ inline T modf(const T& v, T* ipart){ using boost::math::modf; return modf(v, ipart, Policy()); }\
+ \
+ template <class T>\
+ inline T modf(const T& v, int* ipart){ using boost::math::modf; return modf(v, ipart, Policy()); }\
+ \
+ template <class T>\
+ inline T modf(const T& v, long* ipart){ using boost::math::modf; return modf(v, ipart, Policy()); }\
+ \
+ template <int N, class T>\
+ inline typename boost::math::tools::promote_args<T>::type pow(T v){ return boost::math::pow<N>(v, Policy()); }\
+ \
+ template <class T> T nextafter(const T& a, const T& b){ return boost::math::nextafter(a, b, Policy()); }\
+ template <class T> T float_next(const T& a){ return boost::math::float_next(a, Policy()); }\
+ template <class T> T float_prior(const T& a){ return boost::math::float_prior(a, Policy()); }\
+ template <class T> T float_distance(const T& a, const T& b){ return boost::math::float_distance(a, b, Policy()); }\
+ \
+ template <class RT1, class RT2>\
+ inline typename boost::math::tools::promote_args<RT1, RT2>::type owens_t(RT1 a, RT2 z){ return boost::math::owens_t(a, z, Policy()); }\
+ \
+ template <class T1, class T2>\
+ inline std::complex<typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type> cyl_hankel_1(T1 v, T2 x)\
+ { return boost::math::cyl_hankel_1(v, x, Policy()); }\
+ \
+ template <class T1, class T2>\
+ inline std::complex<typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type> cyl_hankel_2(T1 v, T2 x)\
+ { return boost::math::cyl_hankel_2(v, x, Policy()); }\
+ \
+ template <class T1, class T2>\
+ inline std::complex<typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type> sph_hankel_1(T1 v, T2 x)\
+ { return boost::math::sph_hankel_1(v, x, Policy()); }\
+ \
+ template <class T1, class T2>\
+ inline std::complex<typename boost::math::detail::bessel_traits<T1, T2, Policy >::result_type> sph_hankel_2(T1 v, T2 x)\
+ { return boost::math::sph_hankel_2(v, x, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type jacobi_elliptic(T k, T theta, T* pcn, T* pdn)\
+ { return boost::math::jacobi_elliptic(k, theta, pcn, pdn, Policy()); }\
+ \
+ template <class U, class T>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_sn(U k, T theta)\
+ { return boost::math::jacobi_sn(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_cn(T k, U theta)\
+ { return boost::math::jacobi_cn(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_dn(T k, U theta)\
+ { return boost::math::jacobi_dn(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_cd(T k, U theta)\
+ { return boost::math::jacobi_cd(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_dc(T k, U theta)\
+ { return boost::math::jacobi_dc(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_ns(T k, U theta)\
+ { return boost::math::jacobi_ns(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_sd(T k, U theta)\
+ { return boost::math::jacobi_sd(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_ds(T k, U theta)\
+ { return boost::math::jacobi_ds(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_nc(T k, U theta)\
+ { return boost::math::jacobi_nc(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_nd(T k, U theta)\
+ { return boost::math::jacobi_nd(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_sc(T k, U theta)\
+ { return boost::math::jacobi_sc(k, theta, Policy()); }\
+ \
+ template <class T, class U>\
+ inline typename boost::math::tools::promote_args<T, U>::type jacobi_cs(T k, U theta)\
+ { return boost::math::jacobi_cs(k, theta, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type airy_ai(T x)\
+ { return boost::math::airy_ai(x, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type airy_bi(T x)\
+ { return boost::math::airy_bi(x, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type airy_ai_prime(T x)\
+ { return boost::math::airy_ai_prime(x, Policy()); }\
+ \
+ template <class T>\
+ inline typename boost::math::tools::promote_args<T>::type airy_bi_prime(T x)\
+ { return boost::math::airy_bi_prime(x, Policy()); }\
+ \
+
+
+
+
+
+#endif // BOOST_MATH_SPECIAL_MATH_FWD_HPP
+
+
diff --git a/3rdParty/Boost/src/boost/math/special_functions/sign.hpp b/3rdParty/Boost/src/boost/math/special_functions/sign.hpp
new file mode 100644
index 0000000..6de88b2
--- /dev/null
+++ b/3rdParty/Boost/src/boost/math/special_functions/sign.hpp
@@ -0,0 +1,145 @@
+// (C) Copyright John Maddock 2006.
+// (C) Copyright Johan Rade 2006.
+// (C) Copyright Paul A. Bristow 2011 (added changesign).
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_TOOLS_SIGN_HPP
+#define BOOST_MATH_TOOLS_SIGN_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+#include <boost/math/tools/config.hpp>
+#include <boost/math/special_functions/math_fwd.hpp>
+#include <boost/math/special_functions/detail/fp_traits.hpp>
+
+namespace boost{ namespace math{
+
+namespace detail {
+
+ // signbit
+
+#ifdef BOOST_MATH_USE_STD_FPCLASSIFY
+ template<class T>
+ inline int signbit_impl(T x, native_tag const&)
+ {
+ return (std::signbit)(x);
+ }
+#endif
+
+ template<class T>
+ inline int signbit_impl(T x, generic_tag<true> const&)
+ {
+ return x < 0;
+ }
+
+ template<class T>
+ inline int signbit_impl(T x, generic_tag<false> const&)
+ {
+ return x < 0;
+ }
+
+ template<class T>
+ inline int signbit_impl(T x, ieee_copy_all_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ return a & traits::sign ? 1 : 0;
+ }
+
+ template<class T>
+ inline int signbit_impl(T x, ieee_copy_leading_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+
+ return a & traits::sign ? 1 : 0;
+ }
+
+ // Changesign
+
+ template<class T>
+ inline T (changesign_impl)(T x, generic_tag<true> const&)
+ {
+ return -x;
+ }
+
+ template<class T>
+ inline T (changesign_impl)(T x, generic_tag<false> const&)
+ {
+ return -x;
+ }
+
+
+ template<class T>
+ inline T changesign_impl(T x, ieee_copy_all_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::sign_change_type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a ^= traits::sign;
+ traits::set_bits(x,a);
+ return x;
+ }
+
+ template<class T>
+ inline T (changesign_impl)(T x, ieee_copy_leading_bits_tag const&)
+ {
+ typedef BOOST_DEDUCED_TYPENAME fp_traits<T>::sign_change_type traits;
+
+ BOOST_DEDUCED_TYPENAME traits::bits a;
+ traits::get_bits(x,a);
+ a ^= traits::sign;
+ traits::set_bits(x,a);
+ return x;
+ }
+
+
+} // namespace detail
+
+template<class T> int (signbit)(T x)
+{
+ typedef typename detail::fp_traits<T>::type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+ return detail::signbit_impl(x, method());
+}
+
+template <class T>
+inline int sign BOOST_NO_MACRO_EXPAND(const T& z)
+{
+ return (z == 0) ? 0 : (boost::math::signbit)(z) ? -1 : 1;
+}
+
+template<class T> T (changesign)(const T& x)
+{ //!< \brief return unchanged binary pattern of x, except for change of sign bit.
+ typedef typename detail::fp_traits<T>::sign_change_type traits;
+ typedef typename traits::method method;
+ typedef typename boost::is_floating_point<T>::type fp_tag;
+
+ return detail::changesign_impl(x, method());
+}
+
+template <class T>
+inline T copysign BOOST_NO_MACRO_EXPAND(const T& x, const T& y)
+{
+ BOOST_MATH_STD_USING
+ return (boost::math::signbit)(x) != (boost::math::signbit)(y) ? (boost::math::changesign)(x) : x;
+}
+
+} // namespace math
+} // namespace boost
+
+
+#endif // BOOST_MATH_TOOLS_SIGN_HPP
+
+