summaryrefslogtreecommitdiffstats
blob: 9f2cbeec92ccb6fb17e7da0b7d8db14616eb874d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
/*
 *
 * Copyright (c) 2004
 * John Maddock
 *
 * Use, modification and distribution are subject to the 
 * Boost Software License, Version 1.0. (See accompanying file 
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 *
 */

 /*
  *   LOCATION:    see http://www.boost.org for most recent version.
  *   FILE         basic_regex_creator.cpp
  *   VERSION      see <boost/version.hpp>
  *   DESCRIPTION: Declares template class basic_regex_creator which fills in
  *                the data members of a regex_data object.
  */

#ifndef BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP
#define BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP

#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable: 4103)
#endif
#ifdef BOOST_HAS_ABI_HEADERS
#  include BOOST_ABI_PREFIX
#endif
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif

#ifdef BOOST_MSVC
#  pragma warning(push)
#  pragma warning(disable: 4800)
#endif

namespace boost{

namespace re_detail{

template <class charT>
struct digraph : public std::pair<charT, charT>
{
   digraph() : std::pair<charT, charT>(0, 0){}
   digraph(charT c1) : std::pair<charT, charT>(c1, 0){}
   digraph(charT c1, charT c2) : std::pair<charT, charT>(c1, c2)
   {}
#if !BOOST_WORKAROUND(BOOST_MSVC, < 1300)
   digraph(const digraph<charT>& d) : std::pair<charT, charT>(d.first, d.second){}
#endif
   template <class Seq>
   digraph(const Seq& s) : std::pair<charT, charT>()
   {
      BOOST_ASSERT(s.size() <= 2);
      BOOST_ASSERT(s.size());
      this->first = s[0];
      this->second = (s.size() > 1) ? s[1] : 0;
   }
};

template <class charT, class traits>
class basic_char_set
{
public:
   typedef digraph<charT>                   digraph_type;
   typedef typename traits::string_type     string_type;
   typedef typename traits::char_class_type mask_type;

   basic_char_set()
   {
      m_negate = false;
      m_has_digraphs = false;
      m_classes = 0;
      m_negated_classes = 0;
      m_empty = true;
   }

   void add_single(const digraph_type& s)
   {
      m_singles.insert(m_singles.end(), s);
      if(s.second)
         m_has_digraphs = true;
      m_empty = false;
   }
   void add_range(const digraph_type& first, const digraph_type& end)
   {
      m_ranges.insert(m_ranges.end(), first);
      m_ranges.insert(m_ranges.end(), end);
      if(first.second)
      {
         m_has_digraphs = true;
         add_single(first);
      }
      if(end.second)
      {
         m_has_digraphs = true;
         add_single(end);
      }
      m_empty = false;
   }
   void add_class(mask_type m)
   {
      m_classes |= m;
      m_empty = false;
   }
   void add_negated_class(mask_type m)
   {
      m_negated_classes |= m;
      m_empty = false;
   }
   void add_equivalent(const digraph_type& s)
   {
      m_equivalents.insert(m_equivalents.end(), s);
      if(s.second)
      {
         m_has_digraphs = true;
         add_single(s);
      }
      m_empty = false;
   }
   void negate()
   { 
      m_negate = true;
      //m_empty = false;
   }

   //
   // accessor functions:
   //
   bool has_digraphs()const
   {
      return m_has_digraphs;
   }
   bool is_negated()const
   {
      return m_negate;
   }
   typedef typename std::vector<digraph_type>::const_iterator  list_iterator;
   list_iterator singles_begin()const
   {
      return m_singles.begin();
   }
   list_iterator singles_end()const
   {
      return m_singles.end();
   }
   list_iterator ranges_begin()const
   {
      return m_ranges.begin();
   }
   list_iterator ranges_end()const
   {
      return m_ranges.end();
   }
   list_iterator equivalents_begin()const
   {
      return m_equivalents.begin();
   }
   list_iterator equivalents_end()const
   {
      return m_equivalents.end();
   }
   mask_type classes()const
   {
      return m_classes;
   }
   mask_type negated_classes()const
   {
      return m_negated_classes;
   }
   bool empty()const
   {
      return m_empty;
   }
private:
   std::vector<digraph_type> m_singles;         // a list of single characters to match
   std::vector<digraph_type> m_ranges;          // a list of end points of our ranges
   bool                      m_negate;          // true if the set is to be negated
   bool                      m_has_digraphs;    // true if we have digraphs present
   mask_type                 m_classes;         // character classes to match
   mask_type                 m_negated_classes; // negated character classes to match
   bool                      m_empty;           // whether we've added anything yet
   std::vector<digraph_type> m_equivalents;     // a list of equivalence classes
};
   
template <class charT, class traits>
class basic_regex_creator
{
public:
   basic_regex_creator(regex_data<charT, traits>* data);
   std::ptrdiff_t getoffset(void* addr)
   {
      return getoffset(addr, m_pdata->m_data.data());
   }
   std::ptrdiff_t getoffset(const void* addr, const void* base)
   {
      return static_cast<const char*>(addr) - static_cast<const char*>(base);
   }
   re_syntax_base* getaddress(std::ptrdiff_t off)
   {
      return getaddress(off, m_pdata->m_data.data());
   }
   re_syntax_base* getaddress(std::ptrdiff_t off, void* base)
   {
      return static_cast<re_syntax_base*>(static_cast<void*>(static_cast<char*>(base) + off));
   }
   void init(unsigned l_flags)
   {
      m_pdata->m_flags = l_flags;
      m_icase = l_flags & regex_constants::icase;
   }
   regbase::flag_type flags()
   {
      return m_pdata->m_flags;
   }
   void flags(regbase::flag_type f)
   {
      m_pdata->m_flags = f;
      if(m_icase != static_cast<bool>(f & regbase::icase))
      {
         m_icase = static_cast<bool>(f & regbase::icase);
      }
   }
   re_syntax_base* append_state(syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
   re_syntax_base* insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
   re_literal* append_literal(charT c);
   re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set);
   re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::false_*);
   re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::true_*);
   void finalize(const charT* p1, const charT* p2);
protected:
   regex_data<charT, traits>*    m_pdata;              // pointer to the basic_regex_data struct we are filling in
   const ::boost::regex_traits_wrapper<traits>&  
                                 m_traits;             // convenience reference to traits class
   re_syntax_base*               m_last_state;         // the last state we added
   bool                          m_icase;              // true for case insensitive matches
   unsigned                      m_repeater_id;        // the state_id of the next repeater
   bool                          m_has_backrefs;       // true if there are actually any backrefs
   unsigned                      m_backrefs;           // bitmask of permitted backrefs
   boost::uintmax_t              m_bad_repeats;        // bitmask of repeats we can't deduce a startmap for;
   typename traits::char_class_type m_word_mask;       // mask used to determine if a character is a word character
   typename traits::char_class_type m_mask_space;      // mask used to determine if a character is a word character
   typename traits::char_class_type m_lower_mask;       // mask used to determine if a character is a lowercase character
   typename traits::char_class_type m_upper_mask;      // mask used to determine if a character is an uppercase character
   typename traits::char_class_type m_alpha_mask;      // mask used to determine if a character is an alphabetic character
private:
   basic_regex_creator& operator=(const basic_regex_creator&);
   basic_regex_creator(const basic_regex_creator&);

   void fixup_pointers(re_syntax_base* state);
   void create_startmaps(re_syntax_base* state);
   int calculate_backstep(re_syntax_base* state);
   void create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask);
   unsigned get_restart_type(re_syntax_base* state);
   void set_all_masks(unsigned char* bits, unsigned char);
   bool is_bad_repeat(re_syntax_base* pt);
   void set_bad_repeat(re_syntax_base* pt);
   syntax_element_type get_repeat_type(re_syntax_base* state);
   void probe_leading_repeat(re_syntax_base* state);
};

template <class charT, class traits>
basic_regex_creator<charT, traits>::basic_regex_creator(regex_data<charT, traits>* data)
   : m_pdata(data), m_traits(*(data->m_ptraits)), m_last_state(0), m_repeater_id(0), m_has_backrefs(false), m_backrefs(0)
{
   m_pdata->m_data.clear();
   m_pdata->m_status = ::boost::regex_constants::error_ok;
   static const charT w = 'w';
   static const charT s = 's';
   static const charT l[5] = { 'l', 'o', 'w', 'e', 'r', };
   static const charT u[5] = { 'u', 'p', 'p', 'e', 'r', };
   static const charT a[5] = { 'a', 'l', 'p', 'h', 'a', };
   m_word_mask = m_traits.lookup_classname(&w, &w +1);
   m_mask_space = m_traits.lookup_classname(&s, &s +1);
   m_lower_mask = m_traits.lookup_classname(l, l + 5);
   m_upper_mask = m_traits.lookup_classname(u, u + 5);
   m_alpha_mask = m_traits.lookup_classname(a, a + 5);
   m_pdata->m_word_mask = m_word_mask;
   BOOST_ASSERT(m_word_mask != 0); 
   BOOST_ASSERT(m_mask_space != 0); 
   BOOST_ASSERT(m_lower_mask != 0); 
   BOOST_ASSERT(m_upper_mask != 0); 
   BOOST_ASSERT(m_alpha_mask != 0); 
}

template <class charT, class traits>
re_syntax_base* basic_regex_creator<charT, traits>::append_state(syntax_element_type t, std::size_t s)
{
   // if the state is a backref then make a note of it:
   if(t == syntax_element_backref)
      this->m_has_backrefs = true;
   // append a new state, start by aligning our last one:
   m_pdata->m_data.align();
   // set the offset to the next state in our last one:
   if(m_last_state)
      m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
   // now actually extent our data:
   m_last_state = static_cast<re_syntax_base*>(m_pdata->m_data.extend(s));
   // fill in boilerplate options in the new state:
   m_last_state->next.i = 0;
   m_last_state->type = t;
   return m_last_state;
}

template <class charT, class traits>
re_syntax_base* basic_regex_creator<charT, traits>::insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s)
{
   // append a new state, start by aligning our last one:
   m_pdata->m_data.align();
   // set the offset to the next state in our last one:
   if(m_last_state)
      m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
   // remember the last state position:
   std::ptrdiff_t off = getoffset(m_last_state) + s;
   // now actually insert our data:
   re_syntax_base* new_state = static_cast<re_syntax_base*>(m_pdata->m_data.insert(pos, s));
   // fill in boilerplate options in the new state:
   new_state->next.i = s;
   new_state->type = t;
   m_last_state = getaddress(off);
   return new_state;
}

template <class charT, class traits>
re_literal* basic_regex_creator<charT, traits>::append_literal(charT c)
{
   re_literal* result;
   // start by seeing if we have an existing re_literal we can extend:
   if((0 == m_last_state) || (m_last_state->type != syntax_element_literal))
   {
      // no existing re_literal, create a new one:
      result = static_cast<re_literal*>(append_state(syntax_element_literal, sizeof(re_literal) + sizeof(charT)));
      result->length = 1;
      *static_cast<charT*>(static_cast<void*>(result+1)) = m_traits.translate(c, m_icase);
   }
   else
   {
      // we have an existing re_literal, extend it:
      std::ptrdiff_t off = getoffset(m_last_state);
      m_pdata->m_data.extend(sizeof(charT));
      m_last_state = result = static_cast<re_literal*>(getaddress(off));
      charT* characters = static_cast<charT*>(static_cast<void*>(result+1));
      characters[result->length] = m_traits.translate(c, m_icase);
      ++(result->length);
   }
   return result;
}

template <class charT, class traits>
inline re_syntax_base* basic_regex_creator<charT, traits>::append_set(
   const basic_char_set<charT, traits>& char_set)
{
   typedef mpl::bool_< (sizeof(charT) == 1) > truth_type;
   return char_set.has_digraphs() 
      ? append_set(char_set, static_cast<mpl::false_*>(0))
      : append_set(char_set, static_cast<truth_type*>(0));
}

template <class charT, class traits>
re_syntax_base* basic_regex_creator<charT, traits>::append_set(
   const basic_char_set<charT, traits>& char_set, mpl::false_*)
{
   typedef typename traits::string_type string_type;
   typedef typename basic_char_set<charT, traits>::list_iterator item_iterator;
   typedef typename traits::char_class_type mask_type;
   
   re_set_long<mask_type>* result = static_cast<re_set_long<mask_type>*>(append_state(syntax_element_long_set, sizeof(re_set_long<mask_type>)));
   //
   // fill in the basics:
   //
   result->csingles = static_cast<unsigned int>(::boost::re_detail::distance(char_set.singles_begin(), char_set.singles_end()));
   result->cranges = static_cast<unsigned int>(::boost::re_detail::distance(char_set.ranges_begin(), char_set.ranges_end())) / 2;
   result->cequivalents = static_cast<unsigned int>(::boost::re_detail::distance(char_set.equivalents_begin(), char_set.equivalents_end()));
   result->cclasses = char_set.classes();
   result->cnclasses = char_set.negated_classes();
   if(flags() & regbase::icase)
   {
      // adjust classes as needed:
      if(((result->cclasses & m_lower_mask) == m_lower_mask) || ((result->cclasses & m_upper_mask) == m_upper_mask))
         result->cclasses |= m_alpha_mask;
      if(((result->cnclasses & m_lower_mask) == m_lower_mask) || ((result->cnclasses & m_upper_mask) == m_upper_mask))
         result->cnclasses |= m_alpha_mask;
   }

   result->isnot = char_set.is_negated();
   result->singleton = !char_set.has_digraphs();
   //
   // remember where the state is for later:
   //
   std::ptrdiff_t offset = getoffset(result);
   //
   // now extend with all the singles:
   //
   item_iterator first, last;
   first = char_set.singles_begin();
   last = char_set.singles_end();
   while(first != last)
   {
      charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (first->second ? 3 : 2)));
      p[0] = m_traits.translate(first->first, m_icase);
      if(first->second)
      {
         p[1] = m_traits.translate(first->second, m_icase);
         p[2] = 0;
      }
      else
         p[1] = 0;
      ++first;
   }
   //
   // now extend with all the ranges:
   //
   first = char_set.ranges_begin();
   last = char_set.ranges_end();
   while(first != last)
   {
      // first grab the endpoints of the range:
      digraph<charT> c1 = *first;
      c1.first = this->m_traits.translate(c1.first, this->m_icase);
      c1.second = this->m_traits.translate(c1.second, this->m_icase);
      ++first;
      digraph<charT> c2 = *first;
      c2.first = this->m_traits.translate(c2.first, this->m_icase);
      c2.second = this->m_traits.translate(c2.second, this->m_icase);
      ++first;
      string_type s1, s2;
      // different actions now depending upon whether collation is turned on:
      if(flags() & regex_constants::collate)
      {
         // we need to transform our range into sort keys:
#if BOOST_WORKAROUND(__GNUC__, < 3)
         string_type in(3, charT(0));
         in[0] = c1.first;
         in[1] = c1.second;
         s1 = this->m_traits.transform(in.c_str(), (in[1] ? in.c_str()+2 : in.c_str()+1));
         in[0] = c2.first;
         in[1] = c2.second;
         s2 = this->m_traits.transform(in.c_str(), (in[1] ? in.c_str()+2 : in.c_str()+1));
#else
         charT a1[3] = { c1.first, c1.second, charT(0), };
         charT a2[3] = { c2.first, c2.second, charT(0), };
         s1 = this->m_traits.transform(a1, (a1[1] ? a1+2 : a1+1));
         s2 = this->m_traits.transform(a2, (a2[1] ? a2+2 : a2+1));
#endif
         if(s1.size() == 0)
            s1 = string_type(1, charT(0));
         if(s2.size() == 0)
            s2 = string_type(1, charT(0));
      }
      else
      {
         if(c1.second)
         {
            s1.insert(s1.end(), c1.first);
            s1.insert(s1.end(), c1.second);
         }
         else
            s1 = string_type(1, c1.first);
         if(c2.second)
         {
            s2.insert(s2.end(), c2.first);
            s2.insert(s2.end(), c2.second);
         }
         else
            s2.insert(s2.end(), c2.first);
      }
      if(s1 > s2)
      {
         // Oops error:
         return 0;
      }
      charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s1.size() + s2.size() + 2) ) );
      re_detail::copy(s1.begin(), s1.end(), p);
      p[s1.size()] = charT(0);
      p += s1.size() + 1;
      re_detail::copy(s2.begin(), s2.end(), p);
      p[s2.size()] = charT(0);
   }
   //
   // now process the equivalence classes:
   //
   first = char_set.equivalents_begin();
   last = char_set.equivalents_end();
   while(first != last)
   {
      string_type s;
      if(first->second)
      {
#if BOOST_WORKAROUND(__GNUC__, < 3)
         string_type in(3, charT(0));
         in[0] = first->first;
         in[1] = first->second;
         s = m_traits.transform_primary(in.c_str(), in.c_str()+2);
#else
         charT cs[3] = { first->first, first->second, charT(0), };
         s = m_traits.transform_primary(cs, cs+2);
#endif
      }
      else
         s = m_traits.transform_primary(&first->first, &first->first+1);
      if(s.empty())
         return 0;  // invalid or unsupported equivalence class
      charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s.size()+1) ) );
      re_detail::copy(s.begin(), s.end(), p);
      p[s.size()] = charT(0);
      ++first;
   }
   //
   // finally reset the address of our last state:
   //
   m_last_state = result = static_cast<re_set_long<mask_type>*>(getaddress(offset));
   return result;
}

namespace{

template<class T>
inline bool char_less(T t1, T t2)
{
   return t1 < t2;
}
template<>
inline bool char_less<char>(char t1, char t2)
{
   return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2);
}
template<>
inline bool char_less<signed char>(signed char t1, signed char t2)
{
   return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2);
}
}

template <class charT, class traits>
re_syntax_base* basic_regex_creator<charT, traits>::append_set(
   const basic_char_set<charT, traits>& char_set, mpl::true_*)
{
   typedef typename traits::string_type string_type;
   typedef typename basic_char_set<charT, traits>::list_iterator item_iterator;
   
   re_set* result = static_cast<re_set*>(append_state(syntax_element_set, sizeof(re_set)));
   bool negate = char_set.is_negated();
   std::memset(result->_map, 0, sizeof(result->_map));
   //
   // handle singles first:
   //
   item_iterator first, last;
   first = char_set.singles_begin();
   last = char_set.singles_end();
   while(first != last)
   {
      for(unsigned int i = 0; i < (1 << CHAR_BIT); ++i)
      {
         if(this->m_traits.translate(static_cast<charT>(i), this->m_icase)
            == this->m_traits.translate(first->first, this->m_icase))
            result->_map[i] = true;
      }
      ++first;
   }
   //
   // OK now handle ranges:
   //
   first = char_set.ranges_begin();
   last = char_set.ranges_end();
   while(first != last)
   {
      // first grab the endpoints of the range:
      charT c1 = this->m_traits.translate(first->first, this->m_icase);
      ++first;
      charT c2 = this->m_traits.translate(first->first, this->m_icase);
      ++first;
      // different actions now depending upon whether collation is turned on:
      if(flags() & regex_constants::collate)
      {
         // we need to transform our range into sort keys:
         charT c3[2] = { c1, charT(0), };
         string_type s1 = this->m_traits.transform(c3, c3+1);
         c3[0] = c2;
         string_type s2 = this->m_traits.transform(c3, c3+1);
         if(s1 > s2)
         {
            // Oops error:
            return 0;
         }
         BOOST_ASSERT(c3[1] == charT(0));
         for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
         {
            c3[0] = static_cast<charT>(i);
            string_type s3 = this->m_traits.transform(c3, c3 +1);
            if((s1 <= s3) && (s3 <= s2))
               result->_map[i] = true;
         }
      }
      else
      {
         if(char_less<charT>(c2, c1))
         {
            // Oops error:
            return 0;
         }
         // everything in range matches:
         std::memset(result->_map + static_cast<unsigned char>(c1), true, 1 + static_cast<unsigned char>(c2) - static_cast<unsigned char>(c1));
      }
   }
   //
   // and now the classes:
   //
   typedef typename traits::char_class_type mask_type;
   mask_type m = char_set.classes();
   if(flags() & regbase::icase)
   {
      // adjust m as needed:
      if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask))
         m |= m_alpha_mask;
   }
   if(m != 0)
   {
      for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
      {
         if(this->m_traits.isctype(static_cast<charT>(i), m))
            result->_map[i] = true;
      }
   }
   //
   // and now the negated classes:
   //
   m = char_set.negated_classes();
   if(flags() & regbase::icase)
   {
      // adjust m as needed:
      if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask))
         m |= m_alpha_mask;
   }
   if(m != 0)
   {
      for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
      {
         if(0 == this->m_traits.isctype(static_cast<charT>(i), m))
            result->_map[i] = true;
      }
   }
   //
   // now process the equivalence classes:
   //
   first = char_set.equivalents_begin();
   last = char_set.equivalents_end();
   while(first != last)
   {
      string_type s;
      BOOST_ASSERT(static_cast<charT>(0) == first->second);
      s = m_traits.transform_primary(&first->first, &first->first+1);
      if(s.empty())
         return 0;  // invalid or unsupported equivalence class
      for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
      {
         charT c[2] = { (static_cast<charT>(i)), charT(0), };
         string_type s2 = this->m_traits.transform_primary(c, c+1);
         if(s == s2)
            result->_map[i] = true;
      }
      ++first;
   }
   if(negate)
   {
      for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
      {
         result->_map[i] = !(result->_map[i]);
      }
   }
   return result;
}

template <class charT, class traits>
void basic_regex_creator<charT, traits>::finalize(const charT* p1, const charT* p2)
{
   // we've added all the states we need, now finish things off.
   // start by adding a terminating state:
   append_state(syntax_element_match);
   // extend storage to store original expression:
   std::ptrdiff_t len = p2 - p1;
   m_pdata->m_expression_len = len;
   charT* ps = static_cast<charT*>(m_pdata->m_data.extend(sizeof(charT) * (1 + (p2 - p1))));
   m_pdata->m_expression = ps;
   re_detail::copy(p1, p2, ps);
   ps[p2 - p1] = 0;
   // fill in our other data...
   // successful parsing implies a zero status:
   m_pdata->m_status = 0;
   // get the first state of the machine:
   m_pdata->m_first_state = static_cast<re_syntax_base*>(m_pdata->m_data.data());
   // fixup pointers in the machine:
   fixup_pointers(m_pdata->m_first_state);
   // create nested startmaps:
   create_startmaps(m_pdata->m_first_state);
   // create main startmap:
   std::memset(m_pdata->m_startmap, 0, sizeof(m_pdata->m_startmap));
   m_pdata->m_can_be_null = 0;

   m_bad_repeats = 0;
   create_startmap(m_pdata->m_first_state, m_pdata->m_startmap, &(m_pdata->m_can_be_null), mask_all);
   // get the restart type:
   m_pdata->m_restart_type = get_restart_type(m_pdata->m_first_state);
   // optimise a leading repeat if there is one:
   probe_leading_repeat(m_pdata->m_first_state);
}

template <class charT, class traits>
void basic_regex_creator<charT, traits>::fixup_pointers(re_syntax_base* state)
{
   while(state)
   {
      switch(state->type)
      {
      case syntax_element_rep:
      case syntax_element_dot_rep:
      case syntax_element_char_rep:
      case syntax_element_short_set_rep:
      case syntax_element_long_set_rep:
         // set the state_id of this repeat:
         static_cast<re_repeat*>(state)->state_id = m_repeater_id++;
         // fall through:
      case syntax_element_alt:
         std::memset(static_cast<re_alt*>(state)->_map, 0, sizeof(static_cast<re_alt*>(state)->_map));
         static_cast<re_alt*>(state)->can_be_null = 0;
         // fall through:
      case syntax_element_jump:
         static_cast<re_jump*>(state)->alt.p = getaddress(static_cast<re_jump*>(state)->alt.i, state);
         // fall through again:
      default:
         if(state->next.i)
            state->next.p = getaddress(state->next.i, state);
         else
            state->next.p = 0;
      }
      state = state->next.p;
   }
}

template <class charT, class traits>
void basic_regex_creator<charT, traits>::create_startmaps(re_syntax_base* state)
{
   // non-recursive implementation:
   // create the last map in the machine first, so that earlier maps
   // can make use of the result...
   //
   // This was originally a recursive implementation, but that caused stack
   // overflows with complex expressions on small stacks (think COM+).

   // start by saving the case setting:
   bool l_icase = m_icase;
   std::vector<std::pair<bool, re_syntax_base*> > v;

   while(state)
   {
      switch(state->type)
      {
      case syntax_element_toggle_case:
         // we need to track case changes here:
         m_icase = static_cast<re_case*>(state)->icase;
         state = state->next.p;
         continue;
      case syntax_element_alt:
      case syntax_element_rep:
      case syntax_element_dot_rep:
      case syntax_element_char_rep:
      case syntax_element_short_set_rep:
      case syntax_element_long_set_rep:
         // just push the state onto our stack for now:
         v.push_back(std::pair<bool, re_syntax_base*>(m_icase, state));
         state = state->next.p;
         break;
      case syntax_element_backstep:
         // we need to calculate how big the backstep is:
         static_cast<re_brace*>(state)->index
            = this->calculate_backstep(state->next.p);
         if(static_cast<re_brace*>(state)->index < 0)
         {
            // Oops error:
            if(0 == this->m_pdata->m_status) // update the error code if not already set
               this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
            //
            // clear the expression, we should be empty:
            //
            this->m_pdata->m_expression = 0;
            this->m_pdata->m_expression_len = 0;
            //
            // and throw if required:
            //
            if(0 == (this->flags() & regex_constants::no_except))
            {
               std::string message = this->m_pdata->m_ptraits->error_string(boost::regex_constants::error_bad_pattern);
               boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
               e.raise();
            }
         }
         // fall through:
      default:
         state = state->next.p;
      }
   }
   // now work through our list, building all the maps as we go:
   while(v.size())
   {
      const std::pair<bool, re_syntax_base*>& p = v.back();
      m_icase = p.first;
      state = p.second;
      v.pop_back();

      // Build maps:
      m_bad_repeats = 0;
      create_startmap(state->next.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_take);
      m_bad_repeats = 0;
      create_startmap(static_cast<re_alt*>(state)->alt.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_skip);
      // adjust the type of the state to allow for faster matching:
      state->type = this->get_repeat_type(state);
   }
   // restore case sensitivity:
   m_icase = l_icase;
}

template <class charT, class traits>
int basic_regex_creator<charT, traits>::calculate_backstep(re_syntax_base* state)
{
   typedef typename traits::char_class_type mask_type;
   int result = 0;
   while(state)
   {
      switch(state->type)
      {
      case syntax_element_startmark:
         if((static_cast<re_brace*>(state)->index == -1)
            || (static_cast<re_brace*>(state)->index == -2))
         {
            state = static_cast<re_jump*>(state->next.p)->alt.p->next.p;
            continue;
         }
         else if(static_cast<re_brace*>(state)->index == -3)
         {
            state = state->next.p->next.p;
            continue;
         }
         break;
      case syntax_element_endmark:
         if((static_cast<re_brace*>(state)->index == -1)
            || (static_cast<re_brace*>(state)->index == -2))
            return result;
         break;
      case syntax_element_literal:
         result += static_cast<re_literal*>(state)->length;
         break;
      case syntax_element_wild:
      case syntax_element_set:
         result += 1;
         break;
      case syntax_element_dot_rep:
      case syntax_element_char_rep:
      case syntax_element_short_set_rep:
      case syntax_element_backref:
      case syntax_element_rep:
      case syntax_element_combining:
      case syntax_element_long_set_rep:
      case syntax_element_backstep:
         {
            re_repeat* rep = static_cast<re_repeat *>(state);
            // adjust the type of the state to allow for faster matching:
            state->type = this->get_repeat_type(state);
            if((state->type == syntax_element_dot_rep) 
               || (state->type == syntax_element_char_rep)
               || (state->type == syntax_element_short_set_rep))
            {
               if(rep->max != rep->min)
                  return -1;
               result += static_cast<int>(rep->min);
               state = rep->alt.p;
               continue;
            }
            else if((state->type == syntax_element_long_set_rep)) 
            {
               BOOST_ASSERT(rep->next.p->type == syntax_element_long_set);
               if(static_cast<re_set_long<mask_type>*>(rep->next.p)->singleton == 0)
                  return -1;
               if(rep->max != rep->min)
                  return -1;
               result += static_cast<int>(rep->min);
               state = rep->alt.p;
               continue;
            }
         }
         return -1;
      case syntax_element_long_set:
         if(static_cast<re_set_long<mask_type>*>(state)->singleton == 0)
            return -1;
         result += 1;
         break;
      case syntax_element_jump:
         state = static_cast<re_jump*>(state)->alt.p;
         continue;
      default:
         break;
      }
      state = state->next.p;
   }
   return -1;
}

template <class charT, class traits>
void basic_regex_creator<charT, traits>::create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask)
{
   int not_last_jump = 1;

   // track case sensitivity:
   bool l_icase = m_icase;

   while(state)
   {
      switch(state->type)
      {
      case syntax_element_toggle_case:
         l_icase = static_cast<re_case*>(state)->icase;
         state = state->next.p;
         break;
      case syntax_element_literal:
      {
         // don't set anything in *pnull, set each element in l_map
         // that could match the first character in the literal:
         if(l_map)
         {
            l_map[0] |= mask_init;
            charT first_char = *static_cast<charT*>(static_cast<void*>(static_cast<re_literal*>(state) + 1));
            for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
            {
               if(m_traits.translate(static_cast<charT>(i), l_icase) == first_char)
                  l_map[i] |= mask;
            }
         }
         return;
      }
      case syntax_element_end_line:
      {
         // next character must be a line separator (if there is one):
         if(l_map)
         {
            l_map[0] |= mask_init;
            l_map['\n'] |= mask;
            l_map['\r'] |= mask;
            l_map['\f'] |= mask;
            l_map[0x85] |= mask;
         }
         // now figure out if we can match a NULL string at this point:
         if(pnull)
            create_startmap(state->next.p, 0, pnull, mask);
         return;
      }
      case syntax_element_backref:
         // can be null, and any character can match:
         if(pnull)
            *pnull |= mask;
         // fall through:
      case syntax_element_wild:
      {
         // can't be null, any character can match:
         set_all_masks(l_map, mask);
         return;
      }
      case syntax_element_match:
      {
         // must be null, any character can match:
         set_all_masks(l_map, mask);
         if(pnull)
            *pnull |= mask;
         return;
      }
      case syntax_element_word_start:
      {
         // recurse, then AND with all the word characters:
         create_startmap(state->next.p, l_map, pnull, mask);
         if(l_map)
         {
            l_map[0] |= mask_init;
            for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
            {
               if(!m_traits.isctype(static_cast<charT>(i), m_word_mask))
                  l_map[i] &= static_cast<unsigned char>(~mask);
            }
         }
         return;
      }
      case syntax_element_word_end:
      {
         // recurse, then AND with all the word characters:
         create_startmap(state->next.p, l_map, pnull, mask);
         if(l_map)
         {
            l_map[0] |= mask_init;
            for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
            {
               if(m_traits.isctype(static_cast<charT>(i), m_word_mask))
                  l_map[i] &= static_cast<unsigned char>(~mask);
            }
         }
         return;
      }
      case syntax_element_buffer_end:
      {
         // we *must be null* :
         if(pnull)
            *pnull |= mask;
         return;
      }
      case syntax_element_long_set:
         if(l_map)
         {
            typedef typename traits::char_class_type mask_type;
            if(static_cast<re_set_long<mask_type>*>(state)->singleton)
            {
               l_map[0] |= mask_init;
               for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
               {
                  charT c = static_cast<charT>(i);
                  if(&c != re_is_set_member(&c, &c + 1, static_cast<re_set_long<mask_type>*>(state), *m_pdata, m_icase))
                     l_map[i] |= mask;
               }
            }
            else
               set_all_masks(l_map, mask);
         }
         return;
      case syntax_element_set:
         if(l_map)
         {
            l_map[0] |= mask_init;
            for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
            {
               if(static_cast<re_set*>(state)->_map[
                  static_cast<unsigned char>(m_traits.translate(static_cast<charT>(i), l_icase))])
                  l_map[i] |= mask;
            }
         }
         return;
      case syntax_element_jump:
         // take the jump:
         state = static_cast<re_alt*>(state)->alt.p;
         not_last_jump = -1;
         break;
      case syntax_element_alt:
      case syntax_element_rep:
      case syntax_element_dot_rep:
      case syntax_element_char_rep:
      case syntax_element_short_set_rep:
      case syntax_element_long_set_rep:
         {
            re_alt* rep = static_cast<re_alt*>(state);
            if(rep->_map[0] & mask_init)
            {
               if(l_map)
               {
                  // copy previous results:
                  l_map[0] |= mask_init;
                  for(unsigned int i = 0; i <= UCHAR_MAX; ++i)
                  {
                     if(rep->_map[i] & mask_any)
                        l_map[i] |= mask;
                  }
               }
               if(pnull)
               {
                  if(rep->can_be_null & mask_any)
                     *pnull |= mask;
               }
            }
            else
            {
               // we haven't created a startmap for this alternative yet
               // so take the union of the two options:
               if(is_bad_repeat(state))
               {
                  set_all_masks(l_map, mask);
                  if(pnull)
                     *pnull |= mask;
                  return;
               }
               set_bad_repeat(state);
               create_startmap(state->next.p, l_map, pnull, mask);
               if((state->type == syntax_element_alt)
                  || (static_cast<re_repeat*>(state)->min == 0)
                  || (not_last_jump == 0))
                  create_startmap(rep->alt.p, l_map, pnull, mask);
            }
         }
         return;
      case syntax_element_soft_buffer_end:
         // match newline or null:
         if(l_map)
         {
            l_map[0] |= mask_init;
            l_map['\n'] |= mask;
            l_map['\r'] |= mask;
         }
         if(pnull)
            *pnull |= mask;
         return;
      case syntax_element_endmark:
         // need to handle independent subs as a special case:
         if(static_cast<re_brace*>(state)->index < 0)
         {
            // can be null, any character can match:
            set_all_masks(l_map, mask);
            if(pnull)
               *pnull |= mask;
            return;
         }
         else
         {
            state = state->next.p;
            break;
         }

      case syntax_element_startmark:
         // need to handle independent subs as a special case:
         if(static_cast<re_brace*>(state)->index == -3)
         {
            state = state->next.p->next.p;
            break;
         }
         // otherwise fall through:
      default:
         state = state->next.p;
      }
      ++not_last_jump;
   }
}

template <class charT, class traits>
unsigned basic_regex_creator<charT, traits>::get_restart_type(re_syntax_base* state)
{
   //
   // find out how the machine starts, so we can optimise the search:
   //
   while(state)
   {
      switch(state->type)
      {
      case syntax_element_startmark:
      case syntax_element_endmark:
         state = state->next.p;
         continue;
      case syntax_element_start_line:
         return regbase::restart_line;
      case syntax_element_word_start:
         return regbase::restart_word;
      case syntax_element_buffer_start:
         return regbase::restart_buf;
      case syntax_element_restart_continue:
         return regbase::restart_continue;
      default:
         state = 0;
         continue;
      }
   }
   return regbase::restart_any;
}

template <class charT, class traits>
void basic_regex_creator<charT, traits>::set_all_masks(unsigned char* bits, unsigned char mask)
{
   //
   // set mask in all of bits elements, 
   // if bits[0] has mask_init not set then we can 
   // optimise this to a call to memset:
   //
   if(bits)
   {
      if(bits[0] == 0)
         (std::memset)(bits, mask, 1u << CHAR_BIT);
      else
      {
         for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
            bits[i] |= mask;
      }
      bits[0] |= mask_init;
   }
}

template <class charT, class traits>
bool basic_regex_creator<charT, traits>::is_bad_repeat(re_syntax_base* pt)
{
   switch(pt->type)
   {
   case syntax_element_rep:
   case syntax_element_dot_rep:
   case syntax_element_char_rep:
   case syntax_element_short_set_rep:
   case syntax_element_long_set_rep:
      {
         unsigned state_id = static_cast<re_repeat*>(pt)->state_id;
         if(state_id > sizeof(m_bad_repeats) * CHAR_BIT)
            return true;  // run out of bits, assume we can't traverse this one.
         static const boost::uintmax_t one = 1uL;
         return m_bad_repeats & (one << state_id);
      }
   default:
      return false;
   }
}

template <class charT, class traits>
void basic_regex_creator<charT, traits>::set_bad_repeat(re_syntax_base* pt)
{
   switch(pt->type)
   {
   case syntax_element_rep:
   case syntax_element_dot_rep:
   case syntax_element_char_rep:
   case syntax_element_short_set_rep:
   case syntax_element_long_set_rep:
      {
         unsigned state_id = static_cast<re_repeat*>(pt)->state_id;
         static const boost::uintmax_t one = 1uL;
         if(state_id <= sizeof(m_bad_repeats) * CHAR_BIT)
            m_bad_repeats |= (one << state_id);
      }
   default:
      break;
   }
}

template <class charT, class traits>
syntax_element_type basic_regex_creator<charT, traits>::get_repeat_type(re_syntax_base* state)
{
   typedef typename traits::char_class_type mask_type;
   if(state->type == syntax_element_rep)
   {
      // check to see if we are repeating a single state:
      if(state->next.p->next.p->next.p == static_cast<re_alt*>(state)->alt.p)
      {
         switch(state->next.p->type)
         {
         case re_detail::syntax_element_wild:
            return re_detail::syntax_element_dot_rep;
         case re_detail::syntax_element_literal:
            return re_detail::syntax_element_char_rep;
         case re_detail::syntax_element_set:
            return re_detail::syntax_element_short_set_rep;
         case re_detail::syntax_element_long_set:
            if(static_cast<re_detail::re_set_long<mask_type>*>(state->next.p)->singleton)
               return re_detail::syntax_element_long_set_rep;
            break;
         default:
            break;
         }
      }
   }
   return state->type;
}

template <class charT, class traits>
void basic_regex_creator<charT, traits>::probe_leading_repeat(re_syntax_base* state)
{
   // enumerate our states, and see if we have a leading repeat 
   // for which failed search restarts can be optimised;
   do
   {
      switch(state->type)
      {
      case syntax_element_startmark:
         if(static_cast<re_brace*>(state)->index >= 0)
         {
            state = state->next.p;
            continue;
         }
         if((static_cast<re_brace*>(state)->index == -1)
            || (static_cast<re_brace*>(state)->index == -2))
         {
            // skip past the zero width assertion:
            state = static_cast<const re_jump*>(state->next.p)->alt.p->next.p;
            continue;
         }
         if(static_cast<re_brace*>(state)->index == -3)
         {
            // Have to skip the leading jump state:
            state = state->next.p->next.p;
            continue;
         }
         return;
      case syntax_element_endmark:
      case syntax_element_start_line:
      case syntax_element_end_line:
      case syntax_element_word_boundary:
      case syntax_element_within_word:
      case syntax_element_word_start:
      case syntax_element_word_end:
      case syntax_element_buffer_start:
      case syntax_element_buffer_end:
      case syntax_element_restart_continue:
         state = state->next.p;
         break;
      case syntax_element_dot_rep:
      case syntax_element_char_rep:
      case syntax_element_short_set_rep:
      case syntax_element_long_set_rep:
         if(this->m_has_backrefs == 0)
            static_cast<re_repeat*>(state)->leading = true;
         // fall through:
      default:
         return;
      }
   }while(state);
}


} // namespace re_detail

} // namespace boost

#ifdef BOOST_MSVC
#  pragma warning(pop)
#endif

#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable: 4103)
#endif
#ifdef BOOST_HAS_ABI_HEADERS
#  include BOOST_ABI_SUFFIX
#endif
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif

#endif