1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
// Boost string_algo library classification.hpp header file ---------------------------//
// Copyright Pavol Droba 2002-2003.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/ for updates, documentation, and revision history.
#ifndef BOOST_STRING_CLASSIFICATION_DETAIL_HPP
#define BOOST_STRING_CLASSIFICATION_DETAIL_HPP
#include <boost/algorithm/string/config.hpp>
#include <algorithm>
#include <functional>
#include <locale>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/algorithm/string/predicate_facade.hpp>
#include <boost/type_traits/remove_const.hpp>
namespace boost {
namespace algorithm {
namespace detail {
// classification functors -----------------------------------------------//
// is_classified functor
struct is_classifiedF :
public predicate_facade<is_classifiedF>
{
// Boost.ResultOf support
typedef bool result_type;
// Constructor from a locale
is_classifiedF(std::ctype_base::mask Type, std::locale const & Loc = std::locale()) :
m_Type(Type), m_Locale(Loc) {}
// Operation
template<typename CharT>
bool operator()( CharT Ch ) const
{
return std::use_facet< std::ctype<CharT> >(m_Locale).is( m_Type, Ch );
}
#if defined(__BORLANDC__) && (__BORLANDC__ >= 0x560) && (__BORLANDC__ <= 0x582) && !defined(_USE_OLD_RW_STL)
template<>
bool operator()( char const Ch ) const
{
return std::use_facet< std::ctype<char> >(m_Locale).is( m_Type, Ch );
}
#endif
private:
std::ctype_base::mask m_Type;
std::locale m_Locale;
};
// is_any_of functor
/*
returns true if the value is from the specified set
*/
template<typename CharT>
struct is_any_ofF :
public predicate_facade<is_any_ofF<CharT> >
{
private:
// set cannot operate on const value-type
typedef typename ::boost::remove_const<CharT>::type set_value_type;
public:
// Boost.ResultOf support
typedef bool result_type;
// Constructor
template<typename RangeT>
is_any_ofF( const RangeT& Range ) : m_Size(0)
{
// Prepare storage
m_Storage.m_dynSet=0;
std::size_t Size=::boost::distance(Range);
m_Size=Size;
set_value_type* Storage=0;
if(use_fixed_storage(m_Size))
{
// Use fixed storage
Storage=&m_Storage.m_fixSet[0];
}
else
{
// Use dynamic storage
m_Storage.m_dynSet=new set_value_type[m_Size];
Storage=m_Storage.m_dynSet;
}
// Use fixed storage
::std::copy(::boost::begin(Range), ::boost::end(Range), Storage);
::std::sort(Storage, Storage+m_Size);
}
// Copy constructor
is_any_ofF(const is_any_ofF& Other) : m_Size(Other.m_Size)
{
// Prepare storage
m_Storage.m_dynSet=0;
const set_value_type* SrcStorage=0;
set_value_type* DestStorage=0;
if(use_fixed_storage(m_Size))
{
// Use fixed storage
DestStorage=&m_Storage.m_fixSet[0];
SrcStorage=&Other.m_Storage.m_fixSet[0];
}
else
{
// Use dynamic storage
m_Storage.m_dynSet=new set_value_type[m_Size];
DestStorage=m_Storage.m_dynSet;
SrcStorage=Other.m_Storage.m_dynSet;
}
// Use fixed storage
::std::memcpy(DestStorage, SrcStorage, sizeof(set_value_type)*m_Size);
}
// Destructor
~is_any_ofF()
{
if(!use_fixed_storage(m_Size) && m_Storage.m_dynSet!=0)
{
delete [] m_Storage.m_dynSet;
}
}
// Assignment
is_any_ofF& operator=(const is_any_ofF& Other)
{
// Handle self assignment
if(this==&Other) return *this;
// Prepare storage
const set_value_type* SrcStorage;
set_value_type* DestStorage;
if(use_fixed_storage(Other.m_Size))
{
// Use fixed storage
DestStorage=&m_Storage.m_fixSet[0];
SrcStorage=&Other.m_Storage.m_fixSet[0];
// Delete old storage if was present
if(!use_fixed_storage(m_Size) && m_Storage.m_dynSet!=0)
{
delete [] m_Storage.m_dynSet;
}
// Set new size
m_Size=Other.m_Size;
}
else
{
// Other uses dynamic storage
SrcStorage=Other.m_Storage.m_dynSet;
// Check what kind of storage are we using right now
if(use_fixed_storage(m_Size))
{
// Using fixed storage, allocate new
set_value_type* pTemp=new set_value_type[Other.m_Size];
DestStorage=pTemp;
m_Storage.m_dynSet=pTemp;
m_Size=Other.m_Size;
}
else
{
// Using dynamic storage, check if can reuse
if(m_Storage.m_dynSet!=0 && m_Size>=Other.m_Size && m_Size<Other.m_Size*2)
{
// Reuse the current storage
DestStorage=m_Storage.m_dynSet;
m_Size=Other.m_Size;
}
else
{
// Allocate the new one
set_value_type* pTemp=new set_value_type[Other.m_Size];
DestStorage=pTemp;
// Delete old storage if necessary
if(m_Storage.m_dynSet!=0)
{
delete [] m_Storage.m_dynSet;
}
// Store the new storage
m_Storage.m_dynSet=pTemp;
// Set new size
m_Size=Other.m_Size;
}
}
}
// Copy the data
::std::memcpy(DestStorage, SrcStorage, sizeof(set_value_type)*m_Size);
return *this;
}
// Operation
template<typename Char2T>
bool operator()( Char2T Ch ) const
{
const set_value_type* Storage=
(use_fixed_storage(m_Size))
? &m_Storage.m_fixSet[0]
: m_Storage.m_dynSet;
return ::std::binary_search(Storage, Storage+m_Size, Ch);
}
private:
// check if the size is eligible for fixed storage
static bool use_fixed_storage(std::size_t size)
{
return size<=sizeof(set_value_type*)*2;
}
private:
// storage
// The actual used storage is selected on the type
union
{
set_value_type* m_dynSet;
set_value_type m_fixSet[sizeof(set_value_type*)*2];
}
m_Storage;
// storage size
::std::size_t m_Size;
};
// is_from_range functor
/*
returns true if the value is from the specified range.
(i.e. x>=From && x>=To)
*/
template<typename CharT>
struct is_from_rangeF :
public predicate_facade< is_from_rangeF<CharT> >
{
// Boost.ResultOf support
typedef bool result_type;
// Constructor
is_from_rangeF( CharT From, CharT To ) : m_From(From), m_To(To) {}
// Operation
template<typename Char2T>
bool operator()( Char2T Ch ) const
{
return ( m_From <= Ch ) && ( Ch <= m_To );
}
private:
CharT m_From;
CharT m_To;
};
// class_and composition predicate
template<typename Pred1T, typename Pred2T>
struct pred_andF :
public predicate_facade< pred_andF<Pred1T,Pred2T> >
{
public:
// Boost.ResultOf support
typedef bool result_type;
// Constructor
pred_andF( Pred1T Pred1, Pred2T Pred2 ) :
m_Pred1(Pred1), m_Pred2(Pred2) {}
// Operation
template<typename CharT>
bool operator()( CharT Ch ) const
{
return m_Pred1(Ch) && m_Pred2(Ch);
}
private:
Pred1T m_Pred1;
Pred2T m_Pred2;
};
// class_or composition predicate
template<typename Pred1T, typename Pred2T>
struct pred_orF :
public predicate_facade< pred_orF<Pred1T,Pred2T> >
{
public:
// Boost.ResultOf support
typedef bool result_type;
// Constructor
pred_orF( Pred1T Pred1, Pred2T Pred2 ) :
m_Pred1(Pred1), m_Pred2(Pred2) {}
// Operation
template<typename CharT>
bool operator()( CharT Ch ) const
{
return m_Pred1(Ch) || m_Pred2(Ch);
}
private:
Pred1T m_Pred1;
Pred2T m_Pred2;
};
// class_not composition predicate
template< typename PredT >
struct pred_notF :
public predicate_facade< pred_notF<PredT> >
{
public:
// Boost.ResultOf support
typedef bool result_type;
// Constructor
pred_notF( PredT Pred ) : m_Pred(Pred) {}
// Operation
template<typename CharT>
bool operator()( CharT Ch ) const
{
return !m_Pred(Ch);
}
private:
PredT m_Pred;
};
} // namespace detail
} // namespace algorithm
} // namespace boost
#endif // BOOST_STRING_CLASSIFICATION_DETAIL_HPP
|