1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
|
// fp_traits.hpp
#ifndef BOOST_MATH_FP_TRAITS_HPP
#define BOOST_MATH_FP_TRAITS_HPP
// Copyright (c) 2006 Johan Rade
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
/*
To support old compilers, care has been taken to avoid partial template
specialization and meta function forwarding.
With these techniques, the code could be simplified.
*/
#if defined(__vms) && defined(__DECCXX) && !__IEEE_FLOAT
// The VAX floating point formats are used (for float and double)
# define BOOST_FPCLASSIFY_VAX_FORMAT
#endif
#include <cstring>
#include <boost/assert.hpp>
#include <boost/cstdint.hpp>
#include <boost/detail/endian.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#ifdef BOOST_NO_STDC_NAMESPACE
namespace std{ using ::memcpy; }
#endif
#ifndef FP_NORMAL
#define FP_ZERO 0
#define FP_NORMAL 1
#define FP_INFINITE 2
#define FP_NAN 3
#define FP_SUBNORMAL 4
#else
#define BOOST_HAS_FPCLASSIFY
#ifndef fpclassify
# if (defined(__GLIBCPP__) || defined(__GLIBCXX__)) \
&& defined(_GLIBCXX_USE_C99_MATH) \
&& !(defined(_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC) \
&& (_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC != 0))
# ifdef _STLP_VENDOR_CSTD
# if _STLPORT_VERSION >= 0x520
# define BOOST_FPCLASSIFY_PREFIX ::__std_alias::
# else
# define BOOST_FPCLASSIFY_PREFIX ::_STLP_VENDOR_CSTD::
# endif
# else
# define BOOST_FPCLASSIFY_PREFIX ::std::
# endif
# else
# undef BOOST_HAS_FPCLASSIFY
# define BOOST_FPCLASSIFY_PREFIX
# endif
#elif (defined(__HP_aCC) && !defined(__hppa))
// aCC 6 appears to do "#define fpclassify fpclassify" which messes us up a bit!
# define BOOST_FPCLASSIFY_PREFIX ::
#else
# define BOOST_FPCLASSIFY_PREFIX
#endif
#ifdef __MINGW32__
# undef BOOST_HAS_FPCLASSIFY
#endif
#endif
//------------------------------------------------------------------------------
namespace boost {
namespace math {
namespace detail {
//------------------------------------------------------------------------------
/*
The following classes are used to tag the different methods that are used
for floating point classification
*/
struct native_tag {};
template <bool has_limits>
struct generic_tag {};
struct ieee_tag {};
struct ieee_copy_all_bits_tag : public ieee_tag {};
struct ieee_copy_leading_bits_tag : public ieee_tag {};
#ifdef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
//
// These helper functions are used only when numeric_limits<>
// members are not compile time constants:
//
inline bool is_generic_tag_false(const generic_tag<false>*)
{
return true;
}
inline bool is_generic_tag_false(const void*)
{
return false;
}
#endif
//------------------------------------------------------------------------------
/*
Most processors support three different floating point precisions:
single precision (32 bits), double precision (64 bits)
and extended double precision (80 - 128 bits, depending on the processor)
Note that the C++ type long double can be implemented
both as double precision and extended double precision.
*/
struct unknown_precision{};
struct single_precision {};
struct double_precision {};
struct extended_double_precision {};
// native_tag version --------------------------------------------------------------
template<class T> struct fp_traits_native
{
typedef native_tag method;
};
// generic_tag version -------------------------------------------------------------
template<class T, class U> struct fp_traits_non_native
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
typedef generic_tag<std::numeric_limits<T>::is_specialized> method;
#else
typedef generic_tag<false> method;
#endif
};
// ieee_tag versions ---------------------------------------------------------------
/*
These specializations of fp_traits_non_native contain information needed
to "parse" the binary representation of a floating point number.
Typedef members:
bits -- the target type when copying the leading bytes of a floating
point number. It is a typedef for uint32_t or uint64_t.
method -- tells us whether all bytes are copied or not.
It is a typedef for ieee_copy_all_bits_tag or ieee_copy_leading_bits_tag.
Static data members:
sign, exponent, flag, significand -- bit masks that give the meaning of the
bits in the leading bytes.
Static function members:
get_bits(), set_bits() -- provide access to the leading bytes.
*/
// ieee_tag version, float (32 bits) -----------------------------------------------
#ifndef BOOST_FPCLASSIFY_VAX_FORMAT
template<> struct fp_traits_non_native<float, single_precision>
{
typedef ieee_copy_all_bits_tag method;
BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7f800000);
BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00000000);
BOOST_STATIC_CONSTANT(uint32_t, significand = 0x007fffff);
typedef uint32_t bits;
static void get_bits(float x, uint32_t& a) { std::memcpy(&a, &x, 4); }
static void set_bits(float& x, uint32_t a) { std::memcpy(&x, &a, 4); }
};
// ieee_tag version, double (64 bits) ----------------------------------------------
#if defined(BOOST_NO_INT64_T) || defined(BOOST_NO_INCLASS_MEMBER_INITIALIZATION) \
|| defined(__BORLANDC__) || defined(__CODEGEAR__)
template<> struct fp_traits_non_native<double, double_precision>
{
typedef ieee_copy_leading_bits_tag method;
BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7ff00000);
BOOST_STATIC_CONSTANT(uint32_t, flag = 0);
BOOST_STATIC_CONSTANT(uint32_t, significand = 0x000fffff);
typedef uint32_t bits;
static void get_bits(double x, uint32_t& a)
{
std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
}
static void set_bits(double& x, uint32_t a)
{
std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
}
private:
#if defined(BOOST_BIG_ENDIAN)
BOOST_STATIC_CONSTANT(int, offset_ = 0);
#elif defined(BOOST_LITTLE_ENDIAN)
BOOST_STATIC_CONSTANT(int, offset_ = 4);
#else
BOOST_STATIC_ASSERT(false);
#endif
};
//..............................................................................
#else
template<> struct fp_traits_non_native<double, double_precision>
{
typedef ieee_copy_all_bits_tag method;
static const uint64_t sign = ((uint64_t)0x80000000u) << 32;
static const uint64_t exponent = ((uint64_t)0x7ff00000) << 32;
static const uint64_t flag = 0;
static const uint64_t significand
= (((uint64_t)0x000fffff) << 32) + ((uint64_t)0xffffffffu);
typedef uint64_t bits;
static void get_bits(double x, uint64_t& a) { std::memcpy(&a, &x, 8); }
static void set_bits(double& x, uint64_t a) { std::memcpy(&x, &a, 8); }
};
#endif
#endif // #ifndef BOOST_FPCLASSIFY_VAX_FORMAT
// long double (64 bits) -------------------------------------------------------
#if defined(BOOST_NO_INT64_T) || defined(BOOST_NO_INCLASS_MEMBER_INITIALIZATION)\
|| defined(__BORLANDC__) || defined(__CODEGEAR__)
template<> struct fp_traits_non_native<long double, double_precision>
{
typedef ieee_copy_leading_bits_tag method;
BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7ff00000);
BOOST_STATIC_CONSTANT(uint32_t, flag = 0);
BOOST_STATIC_CONSTANT(uint32_t, significand = 0x000fffff);
typedef uint32_t bits;
static void get_bits(long double x, uint32_t& a)
{
std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
}
static void set_bits(long double& x, uint32_t a)
{
std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
}
private:
#if defined(BOOST_BIG_ENDIAN)
BOOST_STATIC_CONSTANT(int, offset_ = 0);
#elif defined(BOOST_LITTLE_ENDIAN)
BOOST_STATIC_CONSTANT(int, offset_ = 4);
#else
BOOST_STATIC_ASSERT(false);
#endif
};
//..............................................................................
#else
template<> struct fp_traits_non_native<long double, double_precision>
{
typedef ieee_copy_all_bits_tag method;
static const uint64_t sign = (uint64_t)0x80000000u << 32;
static const uint64_t exponent = (uint64_t)0x7ff00000 << 32;
static const uint64_t flag = 0;
static const uint64_t significand
= ((uint64_t)0x000fffff << 32) + (uint64_t)0xffffffffu;
typedef uint64_t bits;
static void get_bits(long double x, uint64_t& a) { std::memcpy(&a, &x, 8); }
static void set_bits(long double& x, uint64_t a) { std::memcpy(&x, &a, 8); }
};
#endif
// long double (>64 bits), x86 and x64 -----------------------------------------
#if defined(__i386) || defined(__i386__) || defined(_M_IX86) \
|| defined(__amd64) || defined(__amd64__) || defined(_M_AMD64) \
|| defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)
// Intel extended double precision format (80 bits)
template<>
struct fp_traits_non_native<long double, extended_double_precision>
{
typedef ieee_copy_leading_bits_tag method;
BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7fff0000);
BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00008000);
BOOST_STATIC_CONSTANT(uint32_t, significand = 0x00007fff);
typedef uint32_t bits;
static void get_bits(long double x, uint32_t& a)
{
std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + 6, 4);
}
static void set_bits(long double& x, uint32_t a)
{
std::memcpy(reinterpret_cast<unsigned char*>(&x) + 6, &a, 4);
}
};
// long double (>64 bits), Itanium ---------------------------------------------
#elif defined(__ia64) || defined(__ia64__) || defined(_M_IA64)
// The floating point format is unknown at compile time
// No template specialization is provided.
// The generic_tag definition is used.
// The Itanium supports both
// the Intel extended double precision format (80 bits) and
// the IEEE extended double precision format with 15 exponent bits (128 bits).
#elif defined(__GNUC__) && (LDBL_MANT_DIG == 106)
//
// Define nothing here and fall though to generic_tag:
// We have GCC's "double double" in effect, and any attempt
// to handle it via bit-fiddling is pretty much doomed to fail...
//
// long double (>64 bits), PowerPC ---------------------------------------------
#elif defined(__powerpc) || defined(__powerpc__) || defined(__POWERPC__) \
|| defined(__ppc) || defined(__ppc__) || defined(__PPC__)
// PowerPC extended double precision format (128 bits)
template<>
struct fp_traits_non_native<long double, extended_double_precision>
{
typedef ieee_copy_leading_bits_tag method;
BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7ff00000);
BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00000000);
BOOST_STATIC_CONSTANT(uint32_t, significand = 0x000fffff);
typedef uint32_t bits;
static void get_bits(long double x, uint32_t& a)
{
std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
}
static void set_bits(long double& x, uint32_t a)
{
std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
}
private:
#if defined(BOOST_BIG_ENDIAN)
BOOST_STATIC_CONSTANT(int, offset_ = 0);
#elif defined(BOOST_LITTLE_ENDIAN)
BOOST_STATIC_CONSTANT(int, offset_ = 12);
#else
BOOST_STATIC_ASSERT(false);
#endif
};
// long double (>64 bits), Motorola 68K ----------------------------------------
#elif defined(__m68k) || defined(__m68k__) \
|| defined(__mc68000) || defined(__mc68000__) \
// Motorola extended double precision format (96 bits)
// It is the same format as the Intel extended double precision format,
// except that 1) it is big-endian, 2) the 3rd and 4th byte are padding, and
// 3) the flag bit is not set for infinity
template<>
struct fp_traits_non_native<long double, extended_double_precision>
{
typedef ieee_copy_leading_bits_tag method;
BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7fff0000);
BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00008000);
BOOST_STATIC_CONSTANT(uint32_t, significand = 0x00007fff);
// copy 1st, 2nd, 5th and 6th byte. 3rd and 4th byte are padding.
typedef uint32_t bits;
static void get_bits(long double x, uint32_t& a)
{
std::memcpy(&a, &x, 2);
std::memcpy(reinterpret_cast<unsigned char*>(&a) + 2,
reinterpret_cast<const unsigned char*>(&x) + 4, 2);
}
static void set_bits(long double& x, uint32_t a)
{
std::memcpy(&x, &a, 2);
std::memcpy(reinterpret_cast<unsigned char*>(&x) + 4,
reinterpret_cast<const unsigned char*>(&a) + 2, 2);
}
};
// long double (>64 bits), All other processors --------------------------------
#else
// IEEE extended double precision format with 15 exponent bits (128 bits)
template<>
struct fp_traits_non_native<long double, extended_double_precision>
{
typedef ieee_copy_leading_bits_tag method;
BOOST_STATIC_CONSTANT(uint32_t, sign = 0x80000000u);
BOOST_STATIC_CONSTANT(uint32_t, exponent = 0x7fff0000);
BOOST_STATIC_CONSTANT(uint32_t, flag = 0x00000000);
BOOST_STATIC_CONSTANT(uint32_t, significand = 0x0000ffff);
typedef uint32_t bits;
static void get_bits(long double x, uint32_t& a)
{
std::memcpy(&a, reinterpret_cast<const unsigned char*>(&x) + offset_, 4);
}
static void set_bits(long double& x, uint32_t a)
{
std::memcpy(reinterpret_cast<unsigned char*>(&x) + offset_, &a, 4);
}
private:
#if defined(BOOST_BIG_ENDIAN)
BOOST_STATIC_CONSTANT(int, offset_ = 0);
#elif defined(BOOST_LITTLE_ENDIAN)
BOOST_STATIC_CONSTANT(int, offset_ = 12);
#else
BOOST_STATIC_ASSERT(false);
#endif
};
#endif
//------------------------------------------------------------------------------
// size_to_precision is a type switch for converting a C++ floating point type
// to the corresponding precision type.
template<int n, bool fp> struct size_to_precision
{
typedef unknown_precision type;
};
template<> struct size_to_precision<4, true>
{
typedef single_precision type;
};
template<> struct size_to_precision<8, true>
{
typedef double_precision type;
};
template<> struct size_to_precision<10, true>
{
typedef extended_double_precision type;
};
template<> struct size_to_precision<12, true>
{
typedef extended_double_precision type;
};
template<> struct size_to_precision<16, true>
{
typedef extended_double_precision type;
};
//------------------------------------------------------------------------------
//
// Figure out whether to use native classification functions based on
// whether T is a built in floating point type or not:
//
template <class T>
struct select_native
{
typedef BOOST_DEDUCED_TYPENAME size_to_precision<sizeof(T), ::boost::is_floating_point<T>::value>::type precision;
typedef fp_traits_non_native<T, precision> type;
};
template<>
struct select_native<float>
{
typedef fp_traits_native<float> type;
};
template<>
struct select_native<double>
{
typedef fp_traits_native<double> type;
};
template<>
struct select_native<long double>
{
typedef fp_traits_native<long double> type;
};
//------------------------------------------------------------------------------
// fp_traits is a type switch that selects the right fp_traits_non_native
#if (defined(BOOST_MATH_USE_C99) && !(defined(__GNUC__) && (__GNUC__ < 4))) \
&& !defined(__hpux) \
&& !defined(__DECCXX)\
&& !defined(__osf__) \
&& !defined(__SGI_STL_PORT) && !defined(_STLPORT_VERSION)\
&& !defined(__FAST_MATH__)\
&& !defined(BOOST_MATH_DISABLE_STD_FPCLASSIFY)\
&& !defined(BOOST_INTEL)
# define BOOST_MATH_USE_STD_FPCLASSIFY
#endif
template<class T> struct fp_traits
{
typedef BOOST_DEDUCED_TYPENAME size_to_precision<sizeof(T), ::boost::is_floating_point<T>::value>::type precision;
#if defined(BOOST_MATH_USE_STD_FPCLASSIFY) && !defined(BOOST_MATH_DISABLE_STD_FPCLASSIFY)
typedef typename select_native<T>::type type;
#else
typedef fp_traits_non_native<T, precision> type;
#endif
typedef fp_traits_non_native<T, precision> sign_change_type;
};
//------------------------------------------------------------------------------
} // namespace detail
} // namespace math
} // namespace boost
#endif
|