diff options
Diffstat (limited to '3rdParty/Boost/boost/regex/v4/basic_regex_creator.hpp')
| -rw-r--r-- | 3rdParty/Boost/boost/regex/v4/basic_regex_creator.hpp | 1332 | 
1 files changed, 1332 insertions, 0 deletions
diff --git a/3rdParty/Boost/boost/regex/v4/basic_regex_creator.hpp b/3rdParty/Boost/boost/regex/v4/basic_regex_creator.hpp new file mode 100644 index 0000000..9f2cbee --- /dev/null +++ b/3rdParty/Boost/boost/regex/v4/basic_regex_creator.hpp @@ -0,0 +1,1332 @@ +/* + * + * Copyright (c) 2004 + * John Maddock + * + * Use, modification and distribution are subject to the  + * Boost Software License, Version 1.0. (See accompanying file  + * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + * + */ + + /* +  *   LOCATION:    see http://www.boost.org for most recent version. +  *   FILE         basic_regex_creator.cpp +  *   VERSION      see <boost/version.hpp> +  *   DESCRIPTION: Declares template class basic_regex_creator which fills in +  *                the data members of a regex_data object. +  */ + +#ifndef BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP +#define BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP + +#ifdef BOOST_MSVC +#pragma warning(push) +#pragma warning(disable: 4103) +#endif +#ifdef BOOST_HAS_ABI_HEADERS +#  include BOOST_ABI_PREFIX +#endif +#ifdef BOOST_MSVC +#pragma warning(pop) +#endif + +#ifdef BOOST_MSVC +#  pragma warning(push) +#  pragma warning(disable: 4800) +#endif + +namespace boost{ + +namespace re_detail{ + +template <class charT> +struct digraph : public std::pair<charT, charT> +{ +   digraph() : std::pair<charT, charT>(0, 0){} +   digraph(charT c1) : std::pair<charT, charT>(c1, 0){} +   digraph(charT c1, charT c2) : std::pair<charT, charT>(c1, c2) +   {} +#if !BOOST_WORKAROUND(BOOST_MSVC, < 1300) +   digraph(const digraph<charT>& d) : std::pair<charT, charT>(d.first, d.second){} +#endif +   template <class Seq> +   digraph(const Seq& s) : std::pair<charT, charT>() +   { +      BOOST_ASSERT(s.size() <= 2); +      BOOST_ASSERT(s.size()); +      this->first = s[0]; +      this->second = (s.size() > 1) ? s[1] : 0; +   } +}; + +template <class charT, class traits> +class basic_char_set +{ +public: +   typedef digraph<charT>                   digraph_type; +   typedef typename traits::string_type     string_type; +   typedef typename traits::char_class_type mask_type; + +   basic_char_set() +   { +      m_negate = false; +      m_has_digraphs = false; +      m_classes = 0; +      m_negated_classes = 0; +      m_empty = true; +   } + +   void add_single(const digraph_type& s) +   { +      m_singles.insert(m_singles.end(), s); +      if(s.second) +         m_has_digraphs = true; +      m_empty = false; +   } +   void add_range(const digraph_type& first, const digraph_type& end) +   { +      m_ranges.insert(m_ranges.end(), first); +      m_ranges.insert(m_ranges.end(), end); +      if(first.second) +      { +         m_has_digraphs = true; +         add_single(first); +      } +      if(end.second) +      { +         m_has_digraphs = true; +         add_single(end); +      } +      m_empty = false; +   } +   void add_class(mask_type m) +   { +      m_classes |= m; +      m_empty = false; +   } +   void add_negated_class(mask_type m) +   { +      m_negated_classes |= m; +      m_empty = false; +   } +   void add_equivalent(const digraph_type& s) +   { +      m_equivalents.insert(m_equivalents.end(), s); +      if(s.second) +      { +         m_has_digraphs = true; +         add_single(s); +      } +      m_empty = false; +   } +   void negate() +   {  +      m_negate = true; +      //m_empty = false; +   } + +   // +   // accessor functions: +   // +   bool has_digraphs()const +   { +      return m_has_digraphs; +   } +   bool is_negated()const +   { +      return m_negate; +   } +   typedef typename std::vector<digraph_type>::const_iterator  list_iterator; +   list_iterator singles_begin()const +   { +      return m_singles.begin(); +   } +   list_iterator singles_end()const +   { +      return m_singles.end(); +   } +   list_iterator ranges_begin()const +   { +      return m_ranges.begin(); +   } +   list_iterator ranges_end()const +   { +      return m_ranges.end(); +   } +   list_iterator equivalents_begin()const +   { +      return m_equivalents.begin(); +   } +   list_iterator equivalents_end()const +   { +      return m_equivalents.end(); +   } +   mask_type classes()const +   { +      return m_classes; +   } +   mask_type negated_classes()const +   { +      return m_negated_classes; +   } +   bool empty()const +   { +      return m_empty; +   } +private: +   std::vector<digraph_type> m_singles;         // a list of single characters to match +   std::vector<digraph_type> m_ranges;          // a list of end points of our ranges +   bool                      m_negate;          // true if the set is to be negated +   bool                      m_has_digraphs;    // true if we have digraphs present +   mask_type                 m_classes;         // character classes to match +   mask_type                 m_negated_classes; // negated character classes to match +   bool                      m_empty;           // whether we've added anything yet +   std::vector<digraph_type> m_equivalents;     // a list of equivalence classes +}; +    +template <class charT, class traits> +class basic_regex_creator +{ +public: +   basic_regex_creator(regex_data<charT, traits>* data); +   std::ptrdiff_t getoffset(void* addr) +   { +      return getoffset(addr, m_pdata->m_data.data()); +   } +   std::ptrdiff_t getoffset(const void* addr, const void* base) +   { +      return static_cast<const char*>(addr) - static_cast<const char*>(base); +   } +   re_syntax_base* getaddress(std::ptrdiff_t off) +   { +      return getaddress(off, m_pdata->m_data.data()); +   } +   re_syntax_base* getaddress(std::ptrdiff_t off, void* base) +   { +      return static_cast<re_syntax_base*>(static_cast<void*>(static_cast<char*>(base) + off)); +   } +   void init(unsigned l_flags) +   { +      m_pdata->m_flags = l_flags; +      m_icase = l_flags & regex_constants::icase; +   } +   regbase::flag_type flags() +   { +      return m_pdata->m_flags; +   } +   void flags(regbase::flag_type f) +   { +      m_pdata->m_flags = f; +      if(m_icase != static_cast<bool>(f & regbase::icase)) +      { +         m_icase = static_cast<bool>(f & regbase::icase); +      } +   } +   re_syntax_base* append_state(syntax_element_type t, std::size_t s = sizeof(re_syntax_base)); +   re_syntax_base* insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s = sizeof(re_syntax_base)); +   re_literal* append_literal(charT c); +   re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set); +   re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::false_*); +   re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::true_*); +   void finalize(const charT* p1, const charT* p2); +protected: +   regex_data<charT, traits>*    m_pdata;              // pointer to the basic_regex_data struct we are filling in +   const ::boost::regex_traits_wrapper<traits>&   +                                 m_traits;             // convenience reference to traits class +   re_syntax_base*               m_last_state;         // the last state we added +   bool                          m_icase;              // true for case insensitive matches +   unsigned                      m_repeater_id;        // the state_id of the next repeater +   bool                          m_has_backrefs;       // true if there are actually any backrefs +   unsigned                      m_backrefs;           // bitmask of permitted backrefs +   boost::uintmax_t              m_bad_repeats;        // bitmask of repeats we can't deduce a startmap for; +   typename traits::char_class_type m_word_mask;       // mask used to determine if a character is a word character +   typename traits::char_class_type m_mask_space;      // mask used to determine if a character is a word character +   typename traits::char_class_type m_lower_mask;       // mask used to determine if a character is a lowercase character +   typename traits::char_class_type m_upper_mask;      // mask used to determine if a character is an uppercase character +   typename traits::char_class_type m_alpha_mask;      // mask used to determine if a character is an alphabetic character +private: +   basic_regex_creator& operator=(const basic_regex_creator&); +   basic_regex_creator(const basic_regex_creator&); + +   void fixup_pointers(re_syntax_base* state); +   void create_startmaps(re_syntax_base* state); +   int calculate_backstep(re_syntax_base* state); +   void create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask); +   unsigned get_restart_type(re_syntax_base* state); +   void set_all_masks(unsigned char* bits, unsigned char); +   bool is_bad_repeat(re_syntax_base* pt); +   void set_bad_repeat(re_syntax_base* pt); +   syntax_element_type get_repeat_type(re_syntax_base* state); +   void probe_leading_repeat(re_syntax_base* state); +}; + +template <class charT, class traits> +basic_regex_creator<charT, traits>::basic_regex_creator(regex_data<charT, traits>* data) +   : m_pdata(data), m_traits(*(data->m_ptraits)), m_last_state(0), m_repeater_id(0), m_has_backrefs(false), m_backrefs(0) +{ +   m_pdata->m_data.clear(); +   m_pdata->m_status = ::boost::regex_constants::error_ok; +   static const charT w = 'w'; +   static const charT s = 's'; +   static const charT l[5] = { 'l', 'o', 'w', 'e', 'r', }; +   static const charT u[5] = { 'u', 'p', 'p', 'e', 'r', }; +   static const charT a[5] = { 'a', 'l', 'p', 'h', 'a', }; +   m_word_mask = m_traits.lookup_classname(&w, &w +1); +   m_mask_space = m_traits.lookup_classname(&s, &s +1); +   m_lower_mask = m_traits.lookup_classname(l, l + 5); +   m_upper_mask = m_traits.lookup_classname(u, u + 5); +   m_alpha_mask = m_traits.lookup_classname(a, a + 5); +   m_pdata->m_word_mask = m_word_mask; +   BOOST_ASSERT(m_word_mask != 0);  +   BOOST_ASSERT(m_mask_space != 0);  +   BOOST_ASSERT(m_lower_mask != 0);  +   BOOST_ASSERT(m_upper_mask != 0);  +   BOOST_ASSERT(m_alpha_mask != 0);  +} + +template <class charT, class traits> +re_syntax_base* basic_regex_creator<charT, traits>::append_state(syntax_element_type t, std::size_t s) +{ +   // if the state is a backref then make a note of it: +   if(t == syntax_element_backref) +      this->m_has_backrefs = true; +   // append a new state, start by aligning our last one: +   m_pdata->m_data.align(); +   // set the offset to the next state in our last one: +   if(m_last_state) +      m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state); +   // now actually extent our data: +   m_last_state = static_cast<re_syntax_base*>(m_pdata->m_data.extend(s)); +   // fill in boilerplate options in the new state: +   m_last_state->next.i = 0; +   m_last_state->type = t; +   return m_last_state; +} + +template <class charT, class traits> +re_syntax_base* basic_regex_creator<charT, traits>::insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s) +{ +   // append a new state, start by aligning our last one: +   m_pdata->m_data.align(); +   // set the offset to the next state in our last one: +   if(m_last_state) +      m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state); +   // remember the last state position: +   std::ptrdiff_t off = getoffset(m_last_state) + s; +   // now actually insert our data: +   re_syntax_base* new_state = static_cast<re_syntax_base*>(m_pdata->m_data.insert(pos, s)); +   // fill in boilerplate options in the new state: +   new_state->next.i = s; +   new_state->type = t; +   m_last_state = getaddress(off); +   return new_state; +} + +template <class charT, class traits> +re_literal* basic_regex_creator<charT, traits>::append_literal(charT c) +{ +   re_literal* result; +   // start by seeing if we have an existing re_literal we can extend: +   if((0 == m_last_state) || (m_last_state->type != syntax_element_literal)) +   { +      // no existing re_literal, create a new one: +      result = static_cast<re_literal*>(append_state(syntax_element_literal, sizeof(re_literal) + sizeof(charT))); +      result->length = 1; +      *static_cast<charT*>(static_cast<void*>(result+1)) = m_traits.translate(c, m_icase); +   } +   else +   { +      // we have an existing re_literal, extend it: +      std::ptrdiff_t off = getoffset(m_last_state); +      m_pdata->m_data.extend(sizeof(charT)); +      m_last_state = result = static_cast<re_literal*>(getaddress(off)); +      charT* characters = static_cast<charT*>(static_cast<void*>(result+1)); +      characters[result->length] = m_traits.translate(c, m_icase); +      ++(result->length); +   } +   return result; +} + +template <class charT, class traits> +inline re_syntax_base* basic_regex_creator<charT, traits>::append_set( +   const basic_char_set<charT, traits>& char_set) +{ +   typedef mpl::bool_< (sizeof(charT) == 1) > truth_type; +   return char_set.has_digraphs()  +      ? append_set(char_set, static_cast<mpl::false_*>(0)) +      : append_set(char_set, static_cast<truth_type*>(0)); +} + +template <class charT, class traits> +re_syntax_base* basic_regex_creator<charT, traits>::append_set( +   const basic_char_set<charT, traits>& char_set, mpl::false_*) +{ +   typedef typename traits::string_type string_type; +   typedef typename basic_char_set<charT, traits>::list_iterator item_iterator; +   typedef typename traits::char_class_type mask_type; +    +   re_set_long<mask_type>* result = static_cast<re_set_long<mask_type>*>(append_state(syntax_element_long_set, sizeof(re_set_long<mask_type>))); +   // +   // fill in the basics: +   // +   result->csingles = static_cast<unsigned int>(::boost::re_detail::distance(char_set.singles_begin(), char_set.singles_end())); +   result->cranges = static_cast<unsigned int>(::boost::re_detail::distance(char_set.ranges_begin(), char_set.ranges_end())) / 2; +   result->cequivalents = static_cast<unsigned int>(::boost::re_detail::distance(char_set.equivalents_begin(), char_set.equivalents_end())); +   result->cclasses = char_set.classes(); +   result->cnclasses = char_set.negated_classes(); +   if(flags() & regbase::icase) +   { +      // adjust classes as needed: +      if(((result->cclasses & m_lower_mask) == m_lower_mask) || ((result->cclasses & m_upper_mask) == m_upper_mask)) +         result->cclasses |= m_alpha_mask; +      if(((result->cnclasses & m_lower_mask) == m_lower_mask) || ((result->cnclasses & m_upper_mask) == m_upper_mask)) +         result->cnclasses |= m_alpha_mask; +   } + +   result->isnot = char_set.is_negated(); +   result->singleton = !char_set.has_digraphs(); +   // +   // remember where the state is for later: +   // +   std::ptrdiff_t offset = getoffset(result); +   // +   // now extend with all the singles: +   // +   item_iterator first, last; +   first = char_set.singles_begin(); +   last = char_set.singles_end(); +   while(first != last) +   { +      charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (first->second ? 3 : 2))); +      p[0] = m_traits.translate(first->first, m_icase); +      if(first->second) +      { +         p[1] = m_traits.translate(first->second, m_icase); +         p[2] = 0; +      } +      else +         p[1] = 0; +      ++first; +   } +   // +   // now extend with all the ranges: +   // +   first = char_set.ranges_begin(); +   last = char_set.ranges_end(); +   while(first != last) +   { +      // first grab the endpoints of the range: +      digraph<charT> c1 = *first; +      c1.first = this->m_traits.translate(c1.first, this->m_icase); +      c1.second = this->m_traits.translate(c1.second, this->m_icase); +      ++first; +      digraph<charT> c2 = *first; +      c2.first = this->m_traits.translate(c2.first, this->m_icase); +      c2.second = this->m_traits.translate(c2.second, this->m_icase); +      ++first; +      string_type s1, s2; +      // different actions now depending upon whether collation is turned on: +      if(flags() & regex_constants::collate) +      { +         // we need to transform our range into sort keys: +#if BOOST_WORKAROUND(__GNUC__, < 3) +         string_type in(3, charT(0)); +         in[0] = c1.first; +         in[1] = c1.second; +         s1 = this->m_traits.transform(in.c_str(), (in[1] ? in.c_str()+2 : in.c_str()+1)); +         in[0] = c2.first; +         in[1] = c2.second; +         s2 = this->m_traits.transform(in.c_str(), (in[1] ? in.c_str()+2 : in.c_str()+1)); +#else +         charT a1[3] = { c1.first, c1.second, charT(0), }; +         charT a2[3] = { c2.first, c2.second, charT(0), }; +         s1 = this->m_traits.transform(a1, (a1[1] ? a1+2 : a1+1)); +         s2 = this->m_traits.transform(a2, (a2[1] ? a2+2 : a2+1)); +#endif +         if(s1.size() == 0) +            s1 = string_type(1, charT(0)); +         if(s2.size() == 0) +            s2 = string_type(1, charT(0)); +      } +      else +      { +         if(c1.second) +         { +            s1.insert(s1.end(), c1.first); +            s1.insert(s1.end(), c1.second); +         } +         else +            s1 = string_type(1, c1.first); +         if(c2.second) +         { +            s2.insert(s2.end(), c2.first); +            s2.insert(s2.end(), c2.second); +         } +         else +            s2.insert(s2.end(), c2.first); +      } +      if(s1 > s2) +      { +         // Oops error: +         return 0; +      } +      charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s1.size() + s2.size() + 2) ) ); +      re_detail::copy(s1.begin(), s1.end(), p); +      p[s1.size()] = charT(0); +      p += s1.size() + 1; +      re_detail::copy(s2.begin(), s2.end(), p); +      p[s2.size()] = charT(0); +   } +   // +   // now process the equivalence classes: +   // +   first = char_set.equivalents_begin(); +   last = char_set.equivalents_end(); +   while(first != last) +   { +      string_type s; +      if(first->second) +      { +#if BOOST_WORKAROUND(__GNUC__, < 3) +         string_type in(3, charT(0)); +         in[0] = first->first; +         in[1] = first->second; +         s = m_traits.transform_primary(in.c_str(), in.c_str()+2); +#else +         charT cs[3] = { first->first, first->second, charT(0), }; +         s = m_traits.transform_primary(cs, cs+2); +#endif +      } +      else +         s = m_traits.transform_primary(&first->first, &first->first+1); +      if(s.empty()) +         return 0;  // invalid or unsupported equivalence class +      charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s.size()+1) ) ); +      re_detail::copy(s.begin(), s.end(), p); +      p[s.size()] = charT(0); +      ++first; +   } +   // +   // finally reset the address of our last state: +   // +   m_last_state = result = static_cast<re_set_long<mask_type>*>(getaddress(offset)); +   return result; +} + +namespace{ + +template<class T> +inline bool char_less(T t1, T t2) +{ +   return t1 < t2; +} +template<> +inline bool char_less<char>(char t1, char t2) +{ +   return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2); +} +template<> +inline bool char_less<signed char>(signed char t1, signed char t2) +{ +   return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2); +} +} + +template <class charT, class traits> +re_syntax_base* basic_regex_creator<charT, traits>::append_set( +   const basic_char_set<charT, traits>& char_set, mpl::true_*) +{ +   typedef typename traits::string_type string_type; +   typedef typename basic_char_set<charT, traits>::list_iterator item_iterator; +    +   re_set* result = static_cast<re_set*>(append_state(syntax_element_set, sizeof(re_set))); +   bool negate = char_set.is_negated(); +   std::memset(result->_map, 0, sizeof(result->_map)); +   // +   // handle singles first: +   // +   item_iterator first, last; +   first = char_set.singles_begin(); +   last = char_set.singles_end(); +   while(first != last) +   { +      for(unsigned int i = 0; i < (1 << CHAR_BIT); ++i) +      { +         if(this->m_traits.translate(static_cast<charT>(i), this->m_icase) +            == this->m_traits.translate(first->first, this->m_icase)) +            result->_map[i] = true; +      } +      ++first; +   } +   // +   // OK now handle ranges: +   // +   first = char_set.ranges_begin(); +   last = char_set.ranges_end(); +   while(first != last) +   { +      // first grab the endpoints of the range: +      charT c1 = this->m_traits.translate(first->first, this->m_icase); +      ++first; +      charT c2 = this->m_traits.translate(first->first, this->m_icase); +      ++first; +      // different actions now depending upon whether collation is turned on: +      if(flags() & regex_constants::collate) +      { +         // we need to transform our range into sort keys: +         charT c3[2] = { c1, charT(0), }; +         string_type s1 = this->m_traits.transform(c3, c3+1); +         c3[0] = c2; +         string_type s2 = this->m_traits.transform(c3, c3+1); +         if(s1 > s2) +         { +            // Oops error: +            return 0; +         } +         BOOST_ASSERT(c3[1] == charT(0)); +         for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) +         { +            c3[0] = static_cast<charT>(i); +            string_type s3 = this->m_traits.transform(c3, c3 +1); +            if((s1 <= s3) && (s3 <= s2)) +               result->_map[i] = true; +         } +      } +      else +      { +         if(char_less<charT>(c2, c1)) +         { +            // Oops error: +            return 0; +         } +         // everything in range matches: +         std::memset(result->_map + static_cast<unsigned char>(c1), true, 1 + static_cast<unsigned char>(c2) - static_cast<unsigned char>(c1)); +      } +   } +   // +   // and now the classes: +   // +   typedef typename traits::char_class_type mask_type; +   mask_type m = char_set.classes(); +   if(flags() & regbase::icase) +   { +      // adjust m as needed: +      if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask)) +         m |= m_alpha_mask; +   } +   if(m != 0) +   { +      for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) +      { +         if(this->m_traits.isctype(static_cast<charT>(i), m)) +            result->_map[i] = true; +      } +   } +   // +   // and now the negated classes: +   // +   m = char_set.negated_classes(); +   if(flags() & regbase::icase) +   { +      // adjust m as needed: +      if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask)) +         m |= m_alpha_mask; +   } +   if(m != 0) +   { +      for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) +      { +         if(0 == this->m_traits.isctype(static_cast<charT>(i), m)) +            result->_map[i] = true; +      } +   } +   // +   // now process the equivalence classes: +   // +   first = char_set.equivalents_begin(); +   last = char_set.equivalents_end(); +   while(first != last) +   { +      string_type s; +      BOOST_ASSERT(static_cast<charT>(0) == first->second); +      s = m_traits.transform_primary(&first->first, &first->first+1); +      if(s.empty()) +         return 0;  // invalid or unsupported equivalence class +      for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) +      { +         charT c[2] = { (static_cast<charT>(i)), charT(0), }; +         string_type s2 = this->m_traits.transform_primary(c, c+1); +         if(s == s2) +            result->_map[i] = true; +      } +      ++first; +   } +   if(negate) +   { +      for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) +      { +         result->_map[i] = !(result->_map[i]); +      } +   } +   return result; +} + +template <class charT, class traits> +void basic_regex_creator<charT, traits>::finalize(const charT* p1, const charT* p2) +{ +   // we've added all the states we need, now finish things off. +   // start by adding a terminating state: +   append_state(syntax_element_match); +   // extend storage to store original expression: +   std::ptrdiff_t len = p2 - p1; +   m_pdata->m_expression_len = len; +   charT* ps = static_cast<charT*>(m_pdata->m_data.extend(sizeof(charT) * (1 + (p2 - p1)))); +   m_pdata->m_expression = ps; +   re_detail::copy(p1, p2, ps); +   ps[p2 - p1] = 0; +   // fill in our other data... +   // successful parsing implies a zero status: +   m_pdata->m_status = 0; +   // get the first state of the machine: +   m_pdata->m_first_state = static_cast<re_syntax_base*>(m_pdata->m_data.data()); +   // fixup pointers in the machine: +   fixup_pointers(m_pdata->m_first_state); +   // create nested startmaps: +   create_startmaps(m_pdata->m_first_state); +   // create main startmap: +   std::memset(m_pdata->m_startmap, 0, sizeof(m_pdata->m_startmap)); +   m_pdata->m_can_be_null = 0; + +   m_bad_repeats = 0; +   create_startmap(m_pdata->m_first_state, m_pdata->m_startmap, &(m_pdata->m_can_be_null), mask_all); +   // get the restart type: +   m_pdata->m_restart_type = get_restart_type(m_pdata->m_first_state); +   // optimise a leading repeat if there is one: +   probe_leading_repeat(m_pdata->m_first_state); +} + +template <class charT, class traits> +void basic_regex_creator<charT, traits>::fixup_pointers(re_syntax_base* state) +{ +   while(state) +   { +      switch(state->type) +      { +      case syntax_element_rep: +      case syntax_element_dot_rep: +      case syntax_element_char_rep: +      case syntax_element_short_set_rep: +      case syntax_element_long_set_rep: +         // set the state_id of this repeat: +         static_cast<re_repeat*>(state)->state_id = m_repeater_id++; +         // fall through: +      case syntax_element_alt: +         std::memset(static_cast<re_alt*>(state)->_map, 0, sizeof(static_cast<re_alt*>(state)->_map)); +         static_cast<re_alt*>(state)->can_be_null = 0; +         // fall through: +      case syntax_element_jump: +         static_cast<re_jump*>(state)->alt.p = getaddress(static_cast<re_jump*>(state)->alt.i, state); +         // fall through again: +      default: +         if(state->next.i) +            state->next.p = getaddress(state->next.i, state); +         else +            state->next.p = 0; +      } +      state = state->next.p; +   } +} + +template <class charT, class traits> +void basic_regex_creator<charT, traits>::create_startmaps(re_syntax_base* state) +{ +   // non-recursive implementation: +   // create the last map in the machine first, so that earlier maps +   // can make use of the result... +   // +   // This was originally a recursive implementation, but that caused stack +   // overflows with complex expressions on small stacks (think COM+). + +   // start by saving the case setting: +   bool l_icase = m_icase; +   std::vector<std::pair<bool, re_syntax_base*> > v; + +   while(state) +   { +      switch(state->type) +      { +      case syntax_element_toggle_case: +         // we need to track case changes here: +         m_icase = static_cast<re_case*>(state)->icase; +         state = state->next.p; +         continue; +      case syntax_element_alt: +      case syntax_element_rep: +      case syntax_element_dot_rep: +      case syntax_element_char_rep: +      case syntax_element_short_set_rep: +      case syntax_element_long_set_rep: +         // just push the state onto our stack for now: +         v.push_back(std::pair<bool, re_syntax_base*>(m_icase, state)); +         state = state->next.p; +         break; +      case syntax_element_backstep: +         // we need to calculate how big the backstep is: +         static_cast<re_brace*>(state)->index +            = this->calculate_backstep(state->next.p); +         if(static_cast<re_brace*>(state)->index < 0) +         { +            // Oops error: +            if(0 == this->m_pdata->m_status) // update the error code if not already set +               this->m_pdata->m_status = boost::regex_constants::error_bad_pattern; +            // +            // clear the expression, we should be empty: +            // +            this->m_pdata->m_expression = 0; +            this->m_pdata->m_expression_len = 0; +            // +            // and throw if required: +            // +            if(0 == (this->flags() & regex_constants::no_except)) +            { +               std::string message = this->m_pdata->m_ptraits->error_string(boost::regex_constants::error_bad_pattern); +               boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0); +               e.raise(); +            } +         } +         // fall through: +      default: +         state = state->next.p; +      } +   } +   // now work through our list, building all the maps as we go: +   while(v.size()) +   { +      const std::pair<bool, re_syntax_base*>& p = v.back(); +      m_icase = p.first; +      state = p.second; +      v.pop_back(); + +      // Build maps: +      m_bad_repeats = 0; +      create_startmap(state->next.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_take); +      m_bad_repeats = 0; +      create_startmap(static_cast<re_alt*>(state)->alt.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_skip); +      // adjust the type of the state to allow for faster matching: +      state->type = this->get_repeat_type(state); +   } +   // restore case sensitivity: +   m_icase = l_icase; +} + +template <class charT, class traits> +int basic_regex_creator<charT, traits>::calculate_backstep(re_syntax_base* state) +{ +   typedef typename traits::char_class_type mask_type; +   int result = 0; +   while(state) +   { +      switch(state->type) +      { +      case syntax_element_startmark: +         if((static_cast<re_brace*>(state)->index == -1) +            || (static_cast<re_brace*>(state)->index == -2)) +         { +            state = static_cast<re_jump*>(state->next.p)->alt.p->next.p; +            continue; +         } +         else if(static_cast<re_brace*>(state)->index == -3) +         { +            state = state->next.p->next.p; +            continue; +         } +         break; +      case syntax_element_endmark: +         if((static_cast<re_brace*>(state)->index == -1) +            || (static_cast<re_brace*>(state)->index == -2)) +            return result; +         break; +      case syntax_element_literal: +         result += static_cast<re_literal*>(state)->length; +         break; +      case syntax_element_wild: +      case syntax_element_set: +         result += 1; +         break; +      case syntax_element_dot_rep: +      case syntax_element_char_rep: +      case syntax_element_short_set_rep: +      case syntax_element_backref: +      case syntax_element_rep: +      case syntax_element_combining: +      case syntax_element_long_set_rep: +      case syntax_element_backstep: +         { +            re_repeat* rep = static_cast<re_repeat *>(state); +            // adjust the type of the state to allow for faster matching: +            state->type = this->get_repeat_type(state); +            if((state->type == syntax_element_dot_rep)  +               || (state->type == syntax_element_char_rep) +               || (state->type == syntax_element_short_set_rep)) +            { +               if(rep->max != rep->min) +                  return -1; +               result += static_cast<int>(rep->min); +               state = rep->alt.p; +               continue; +            } +            else if((state->type == syntax_element_long_set_rep))  +            { +               BOOST_ASSERT(rep->next.p->type == syntax_element_long_set); +               if(static_cast<re_set_long<mask_type>*>(rep->next.p)->singleton == 0) +                  return -1; +               if(rep->max != rep->min) +                  return -1; +               result += static_cast<int>(rep->min); +               state = rep->alt.p; +               continue; +            } +         } +         return -1; +      case syntax_element_long_set: +         if(static_cast<re_set_long<mask_type>*>(state)->singleton == 0) +            return -1; +         result += 1; +         break; +      case syntax_element_jump: +         state = static_cast<re_jump*>(state)->alt.p; +         continue; +      default: +         break; +      } +      state = state->next.p; +   } +   return -1; +} + +template <class charT, class traits> +void basic_regex_creator<charT, traits>::create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask) +{ +   int not_last_jump = 1; + +   // track case sensitivity: +   bool l_icase = m_icase; + +   while(state) +   { +      switch(state->type) +      { +      case syntax_element_toggle_case: +         l_icase = static_cast<re_case*>(state)->icase; +         state = state->next.p; +         break; +      case syntax_element_literal: +      { +         // don't set anything in *pnull, set each element in l_map +         // that could match the first character in the literal: +         if(l_map) +         { +            l_map[0] |= mask_init; +            charT first_char = *static_cast<charT*>(static_cast<void*>(static_cast<re_literal*>(state) + 1)); +            for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) +            { +               if(m_traits.translate(static_cast<charT>(i), l_icase) == first_char) +                  l_map[i] |= mask; +            } +         } +         return; +      } +      case syntax_element_end_line: +      { +         // next character must be a line separator (if there is one): +         if(l_map) +         { +            l_map[0] |= mask_init; +            l_map['\n'] |= mask; +            l_map['\r'] |= mask; +            l_map['\f'] |= mask; +            l_map[0x85] |= mask; +         } +         // now figure out if we can match a NULL string at this point: +         if(pnull) +            create_startmap(state->next.p, 0, pnull, mask); +         return; +      } +      case syntax_element_backref: +         // can be null, and any character can match: +         if(pnull) +            *pnull |= mask; +         // fall through: +      case syntax_element_wild: +      { +         // can't be null, any character can match: +         set_all_masks(l_map, mask); +         return; +      } +      case syntax_element_match: +      { +         // must be null, any character can match: +         set_all_masks(l_map, mask); +         if(pnull) +            *pnull |= mask; +         return; +      } +      case syntax_element_word_start: +      { +         // recurse, then AND with all the word characters: +         create_startmap(state->next.p, l_map, pnull, mask); +         if(l_map) +         { +            l_map[0] |= mask_init; +            for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) +            { +               if(!m_traits.isctype(static_cast<charT>(i), m_word_mask)) +                  l_map[i] &= static_cast<unsigned char>(~mask); +            } +         } +         return; +      } +      case syntax_element_word_end: +      { +         // recurse, then AND with all the word characters: +         create_startmap(state->next.p, l_map, pnull, mask); +         if(l_map) +         { +            l_map[0] |= mask_init; +            for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) +            { +               if(m_traits.isctype(static_cast<charT>(i), m_word_mask)) +                  l_map[i] &= static_cast<unsigned char>(~mask); +            } +         } +         return; +      } +      case syntax_element_buffer_end: +      { +         // we *must be null* : +         if(pnull) +            *pnull |= mask; +         return; +      } +      case syntax_element_long_set: +         if(l_map) +         { +            typedef typename traits::char_class_type mask_type; +            if(static_cast<re_set_long<mask_type>*>(state)->singleton) +            { +               l_map[0] |= mask_init; +               for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) +               { +                  charT c = static_cast<charT>(i); +                  if(&c != re_is_set_member(&c, &c + 1, static_cast<re_set_long<mask_type>*>(state), *m_pdata, m_icase)) +                     l_map[i] |= mask; +               } +            } +            else +               set_all_masks(l_map, mask); +         } +         return; +      case syntax_element_set: +         if(l_map) +         { +            l_map[0] |= mask_init; +            for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) +            { +               if(static_cast<re_set*>(state)->_map[ +                  static_cast<unsigned char>(m_traits.translate(static_cast<charT>(i), l_icase))]) +                  l_map[i] |= mask; +            } +         } +         return; +      case syntax_element_jump: +         // take the jump: +         state = static_cast<re_alt*>(state)->alt.p; +         not_last_jump = -1; +         break; +      case syntax_element_alt: +      case syntax_element_rep: +      case syntax_element_dot_rep: +      case syntax_element_char_rep: +      case syntax_element_short_set_rep: +      case syntax_element_long_set_rep: +         { +            re_alt* rep = static_cast<re_alt*>(state); +            if(rep->_map[0] & mask_init) +            { +               if(l_map) +               { +                  // copy previous results: +                  l_map[0] |= mask_init; +                  for(unsigned int i = 0; i <= UCHAR_MAX; ++i) +                  { +                     if(rep->_map[i] & mask_any) +                        l_map[i] |= mask; +                  } +               } +               if(pnull) +               { +                  if(rep->can_be_null & mask_any) +                     *pnull |= mask; +               } +            } +            else +            { +               // we haven't created a startmap for this alternative yet +               // so take the union of the two options: +               if(is_bad_repeat(state)) +               { +                  set_all_masks(l_map, mask); +                  if(pnull) +                     *pnull |= mask; +                  return; +               } +               set_bad_repeat(state); +               create_startmap(state->next.p, l_map, pnull, mask); +               if((state->type == syntax_element_alt) +                  || (static_cast<re_repeat*>(state)->min == 0) +                  || (not_last_jump == 0)) +                  create_startmap(rep->alt.p, l_map, pnull, mask); +            } +         } +         return; +      case syntax_element_soft_buffer_end: +         // match newline or null: +         if(l_map) +         { +            l_map[0] |= mask_init; +            l_map['\n'] |= mask; +            l_map['\r'] |= mask; +         } +         if(pnull) +            *pnull |= mask; +         return; +      case syntax_element_endmark: +         // need to handle independent subs as a special case: +         if(static_cast<re_brace*>(state)->index < 0) +         { +            // can be null, any character can match: +            set_all_masks(l_map, mask); +            if(pnull) +               *pnull |= mask; +            return; +         } +         else +         { +            state = state->next.p; +            break; +         } + +      case syntax_element_startmark: +         // need to handle independent subs as a special case: +         if(static_cast<re_brace*>(state)->index == -3) +         { +            state = state->next.p->next.p; +            break; +         } +         // otherwise fall through: +      default: +         state = state->next.p; +      } +      ++not_last_jump; +   } +} + +template <class charT, class traits> +unsigned basic_regex_creator<charT, traits>::get_restart_type(re_syntax_base* state) +{ +   // +   // find out how the machine starts, so we can optimise the search: +   // +   while(state) +   { +      switch(state->type) +      { +      case syntax_element_startmark: +      case syntax_element_endmark: +         state = state->next.p; +         continue; +      case syntax_element_start_line: +         return regbase::restart_line; +      case syntax_element_word_start: +         return regbase::restart_word; +      case syntax_element_buffer_start: +         return regbase::restart_buf; +      case syntax_element_restart_continue: +         return regbase::restart_continue; +      default: +         state = 0; +         continue; +      } +   } +   return regbase::restart_any; +} + +template <class charT, class traits> +void basic_regex_creator<charT, traits>::set_all_masks(unsigned char* bits, unsigned char mask) +{ +   // +   // set mask in all of bits elements,  +   // if bits[0] has mask_init not set then we can  +   // optimise this to a call to memset: +   // +   if(bits) +   { +      if(bits[0] == 0) +         (std::memset)(bits, mask, 1u << CHAR_BIT); +      else +      { +         for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) +            bits[i] |= mask; +      } +      bits[0] |= mask_init; +   } +} + +template <class charT, class traits> +bool basic_regex_creator<charT, traits>::is_bad_repeat(re_syntax_base* pt) +{ +   switch(pt->type) +   { +   case syntax_element_rep: +   case syntax_element_dot_rep: +   case syntax_element_char_rep: +   case syntax_element_short_set_rep: +   case syntax_element_long_set_rep: +      { +         unsigned state_id = static_cast<re_repeat*>(pt)->state_id; +         if(state_id > sizeof(m_bad_repeats) * CHAR_BIT) +            return true;  // run out of bits, assume we can't traverse this one. +         static const boost::uintmax_t one = 1uL; +         return m_bad_repeats & (one << state_id); +      } +   default: +      return false; +   } +} + +template <class charT, class traits> +void basic_regex_creator<charT, traits>::set_bad_repeat(re_syntax_base* pt) +{ +   switch(pt->type) +   { +   case syntax_element_rep: +   case syntax_element_dot_rep: +   case syntax_element_char_rep: +   case syntax_element_short_set_rep: +   case syntax_element_long_set_rep: +      { +         unsigned state_id = static_cast<re_repeat*>(pt)->state_id; +         static const boost::uintmax_t one = 1uL; +         if(state_id <= sizeof(m_bad_repeats) * CHAR_BIT) +            m_bad_repeats |= (one << state_id); +      } +   default: +      break; +   } +} + +template <class charT, class traits> +syntax_element_type basic_regex_creator<charT, traits>::get_repeat_type(re_syntax_base* state) +{ +   typedef typename traits::char_class_type mask_type; +   if(state->type == syntax_element_rep) +   { +      // check to see if we are repeating a single state: +      if(state->next.p->next.p->next.p == static_cast<re_alt*>(state)->alt.p) +      { +         switch(state->next.p->type) +         { +         case re_detail::syntax_element_wild: +            return re_detail::syntax_element_dot_rep; +         case re_detail::syntax_element_literal: +            return re_detail::syntax_element_char_rep; +         case re_detail::syntax_element_set: +            return re_detail::syntax_element_short_set_rep; +         case re_detail::syntax_element_long_set: +            if(static_cast<re_detail::re_set_long<mask_type>*>(state->next.p)->singleton) +               return re_detail::syntax_element_long_set_rep; +            break; +         default: +            break; +         } +      } +   } +   return state->type; +} + +template <class charT, class traits> +void basic_regex_creator<charT, traits>::probe_leading_repeat(re_syntax_base* state) +{ +   // enumerate our states, and see if we have a leading repeat  +   // for which failed search restarts can be optimised; +   do +   { +      switch(state->type) +      { +      case syntax_element_startmark: +         if(static_cast<re_brace*>(state)->index >= 0) +         { +            state = state->next.p; +            continue; +         } +         if((static_cast<re_brace*>(state)->index == -1) +            || (static_cast<re_brace*>(state)->index == -2)) +         { +            // skip past the zero width assertion: +            state = static_cast<const re_jump*>(state->next.p)->alt.p->next.p; +            continue; +         } +         if(static_cast<re_brace*>(state)->index == -3) +         { +            // Have to skip the leading jump state: +            state = state->next.p->next.p; +            continue; +         } +         return; +      case syntax_element_endmark: +      case syntax_element_start_line: +      case syntax_element_end_line: +      case syntax_element_word_boundary: +      case syntax_element_within_word: +      case syntax_element_word_start: +      case syntax_element_word_end: +      case syntax_element_buffer_start: +      case syntax_element_buffer_end: +      case syntax_element_restart_continue: +         state = state->next.p; +         break; +      case syntax_element_dot_rep: +      case syntax_element_char_rep: +      case syntax_element_short_set_rep: +      case syntax_element_long_set_rep: +         if(this->m_has_backrefs == 0) +            static_cast<re_repeat*>(state)->leading = true; +         // fall through: +      default: +         return; +      } +   }while(state); +} + + +} // namespace re_detail + +} // namespace boost + +#ifdef BOOST_MSVC +#  pragma warning(pop) +#endif + +#ifdef BOOST_MSVC +#pragma warning(push) +#pragma warning(disable: 4103) +#endif +#ifdef BOOST_HAS_ABI_HEADERS +#  include BOOST_ABI_SUFFIX +#endif +#ifdef BOOST_MSVC +#pragma warning(pop) +#endif + +#endif  | 
 Swift