1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
/* The following code declares class array,
* an STL container (as wrapper) for arrays of constant size.
*
* See
* http://www.boost.org/libs/array/
* for documentation.
*
* The original author site is at: http://www.josuttis.com/
*
* (C) Copyright Nicolai M. Josuttis 2001.
*
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* 10 Mar 2010 - (mtc) fill method added, matching resolution of the standard library working group.
* See <http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#776> or Trac issue #3168
* Eventually, we should remove "assign" which is now a synonym for "fill" (Marshall Clow)
* 10 Mar 2010 - added workaround for SUNCC and !STLPort [trac #3893] (Marshall Clow)
* 29 Jan 2004 - c_array() added, BOOST_NO_PRIVATE_IN_AGGREGATE removed (Nico Josuttis)
* 23 Aug 2002 - fix for Non-MSVC compilers combined with MSVC libraries.
* 05 Aug 2001 - minor update (Nico Josuttis)
* 20 Jan 2001 - STLport fix (Beman Dawes)
* 29 Sep 2000 - Initial Revision (Nico Josuttis)
*
* Jan 29, 2004
*/
#ifndef BOOST_ARRAY_HPP
#define BOOST_ARRAY_HPP
#include <boost/detail/workaround.hpp>
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
# pragma warning(push)
# pragma warning(disable:4996) // 'std::equal': Function call with parameters that may be unsafe
# pragma warning(disable:4510) // boost::array<T,N>' : default constructor could not be generated
# pragma warning(disable:4610) // warning C4610: class 'boost::array<T,N>' can never be instantiated - user defined constructor required
#endif
#include <cstddef>
#include <stdexcept>
#include <boost/assert.hpp>
#include <boost/swap.hpp>
// Handles broken standard libraries better than <iterator>
#include <boost/detail/iterator.hpp>
#include <boost/throw_exception.hpp>
#include <algorithm>
// FIXES for broken compilers
#include <boost/config.hpp>
namespace boost {
template<class T, std::size_t N>
class array {
public:
T elems[N]; // fixed-size array of elements of type T
public:
// type definitions
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
// iterator support
iterator begin() { return elems; }
const_iterator begin() const { return elems; }
iterator end() { return elems+N; }
const_iterator end() const { return elems+N; }
// reverse iterator support
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR) && !defined(BOOST_NO_STD_ITERATOR_TRAITS)
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
#elif defined(_MSC_VER) && (_MSC_VER == 1300) && defined(BOOST_DINKUMWARE_STDLIB) && (BOOST_DINKUMWARE_STDLIB == 310)
// workaround for broken reverse_iterator in VC7
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, iterator,
reference, iterator, reference> > reverse_iterator;
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, const_iterator,
const_reference, iterator, reference> > const_reverse_iterator;
#elif defined(_RWSTD_NO_CLASS_PARTIAL_SPEC)
typedef std::reverse_iterator<iterator, std::random_access_iterator_tag,
value_type, reference, iterator, difference_type> reverse_iterator;
typedef std::reverse_iterator<const_iterator, std::random_access_iterator_tag,
value_type, const_reference, const_iterator, difference_type> const_reverse_iterator;
#else
// workaround for broken reverse_iterator implementations
typedef std::reverse_iterator<iterator,T> reverse_iterator;
typedef std::reverse_iterator<const_iterator,T> const_reverse_iterator;
#endif
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// operator[]
reference operator[](size_type i)
{
BOOST_ASSERT( i < N && "out of range" );
return elems[i];
}
const_reference operator[](size_type i) const
{
BOOST_ASSERT( i < N && "out of range" );
return elems[i];
}
// at() with range check
reference at(size_type i) { rangecheck(i); return elems[i]; }
const_reference at(size_type i) const { rangecheck(i); return elems[i]; }
// front() and back()
reference front()
{
return elems[0];
}
const_reference front() const
{
return elems[0];
}
reference back()
{
return elems[N-1];
}
const_reference back() const
{
return elems[N-1];
}
// size is constant
static size_type size() { return N; }
static bool empty() { return false; }
static size_type max_size() { return N; }
enum { static_size = N };
// swap (note: linear complexity)
void swap (array<T,N>& y) {
for (size_type i = 0; i < N; ++i)
boost::swap(elems[i],y.elems[i]);
}
// direct access to data (read-only)
const T* data() const { return elems; }
T* data() { return elems; }
// use array as C array (direct read/write access to data)
T* c_array() { return elems; }
// assignment with type conversion
template <typename T2>
array<T,N>& operator= (const array<T2,N>& rhs) {
std::copy(rhs.begin(),rhs.end(), begin());
return *this;
}
// assign one value to all elements
void assign (const T& value) { fill ( value ); } // A synonym for fill
void fill (const T& value)
{
std::fill_n(begin(),size(),value);
}
// check range (may be private because it is static)
static void rangecheck (size_type i) {
if (i >= size()) {
std::out_of_range e("array<>: index out of range");
boost::throw_exception(e);
}
}
};
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
template< class T >
class array< T, 0 > {
public:
// type definitions
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
// iterator support
iterator begin() { return iterator( reinterpret_cast< T * >( this ) ); }
const_iterator begin() const { return const_iterator( reinterpret_cast< const T * >( this ) ); }
iterator end() { return begin(); }
const_iterator end() const { return begin(); }
// reverse iterator support
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR) && !defined(BOOST_NO_STD_ITERATOR_TRAITS)
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
#elif defined(_MSC_VER) && (_MSC_VER == 1300) && defined(BOOST_DINKUMWARE_STDLIB) && (BOOST_DINKUMWARE_STDLIB == 310)
// workaround for broken reverse_iterator in VC7
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, iterator,
reference, iterator, reference> > reverse_iterator;
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, const_iterator,
const_reference, iterator, reference> > const_reverse_iterator;
#elif defined(_RWSTD_NO_CLASS_PARTIAL_SPEC)
typedef std::reverse_iterator<iterator, std::random_access_iterator_tag,
value_type, reference, iterator, difference_type> reverse_iterator;
typedef std::reverse_iterator<const_iterator, std::random_access_iterator_tag,
value_type, const_reference, const_iterator, difference_type> const_reverse_iterator;
#else
// workaround for broken reverse_iterator implementations
typedef std::reverse_iterator<iterator,T> reverse_iterator;
typedef std::reverse_iterator<const_iterator,T> const_reverse_iterator;
#endif
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// operator[]
reference operator[](size_type /*i*/)
{
return failed_rangecheck();
}
const_reference operator[](size_type /*i*/) const
{
return failed_rangecheck();
}
// at() with range check
reference at(size_type /*i*/) { return failed_rangecheck(); }
const_reference at(size_type /*i*/) const { return failed_rangecheck(); }
// front() and back()
reference front()
{
return failed_rangecheck();
}
const_reference front() const
{
return failed_rangecheck();
}
reference back()
{
return failed_rangecheck();
}
const_reference back() const
{
return failed_rangecheck();
}
// size is constant
static size_type size() { return 0; }
static bool empty() { return true; }
static size_type max_size() { return 0; }
enum { static_size = 0 };
void swap (array<T,0>& /*y*/) {
}
// direct access to data (read-only)
const T* data() const { return 0; }
T* data() { return 0; }
// use array as C array (direct read/write access to data)
T* c_array() { return 0; }
// assignment with type conversion
template <typename T2>
array<T,0>& operator= (const array<T2,0>& ) {
return *this;
}
// assign one value to all elements
void assign (const T& value) { fill ( value ); }
void fill (const T& ) {}
// check range (may be private because it is static)
static reference failed_rangecheck () {
std::out_of_range e("attempt to access element of an empty array");
boost::throw_exception(e);
#if defined(BOOST_NO_EXCEPTIONS) || !defined(BOOST_MSVC)
//
// We need to return something here to keep
// some compilers happy: however we will never
// actually get here....
//
static T placeholder;
return placeholder;
#endif
}
};
#endif
// comparisons
template<class T, std::size_t N>
bool operator== (const array<T,N>& x, const array<T,N>& y) {
return std::equal(x.begin(), x.end(), y.begin());
}
template<class T, std::size_t N>
bool operator< (const array<T,N>& x, const array<T,N>& y) {
return std::lexicographical_compare(x.begin(),x.end(),y.begin(),y.end());
}
template<class T, std::size_t N>
bool operator!= (const array<T,N>& x, const array<T,N>& y) {
return !(x==y);
}
template<class T, std::size_t N>
bool operator> (const array<T,N>& x, const array<T,N>& y) {
return y<x;
}
template<class T, std::size_t N>
bool operator<= (const array<T,N>& x, const array<T,N>& y) {
return !(y<x);
}
template<class T, std::size_t N>
bool operator>= (const array<T,N>& x, const array<T,N>& y) {
return !(x<y);
}
// global swap()
template<class T, std::size_t N>
inline void swap (array<T,N>& x, array<T,N>& y) {
x.swap(y);
}
// Specific for boost::array: simply returns its elems data member.
template <typename T, std::size_t N>
T(&get_c_array(boost::array<T,N>& arg))[N]
{
return arg.elems;
}
// Const version.
template <typename T, std::size_t N>
const T(&get_c_array(const boost::array<T,N>& arg))[N]
{
return arg.elems;
}
#if 0
// Overload for std::array, assuming that std::array will have
// explicit conversion functions as discussed at the WG21 meeting
// in Summit, March 2009.
template <typename T, std::size_t N>
T(&get_c_array(std::array<T,N>& arg))[N]
{
return static_cast<T(&)[N]>(arg);
}
// Const version.
template <typename T, std::size_t N>
const T(&get_c_array(const std::array<T,N>& arg))[N]
{
return static_cast<T(&)[N]>(arg);
}
#endif
} /* namespace boost */
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
# pragma warning(pop)
#endif
#endif /*BOOST_ARRAY_HPP*/
|