1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
//
// kqueue_reactor.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2010 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP
#define BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/kqueue_reactor_fwd.hpp>
#if defined(BOOST_ASIO_HAS_KQUEUE)
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <sys/types.h>
#include <sys/event.h>
#include <sys/time.h>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/hash_map.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/op_queue.hpp>
#include <boost/asio/detail/reactor_op.hpp>
#include <boost/asio/detail/select_interrupter.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/timer_op.hpp>
#include <boost/asio/detail/timer_queue_base.hpp>
#include <boost/asio/detail/timer_queue_fwd.hpp>
#include <boost/asio/detail/timer_queue_set.hpp>
// Older versions of Mac OS X may not define EV_OOBAND.
#if !defined(EV_OOBAND)
# define EV_OOBAND EV_FLAG1
#endif // !defined(EV_OOBAND)
namespace boost {
namespace asio {
namespace detail {
class kqueue_reactor
: public boost::asio::detail::service_base<kqueue_reactor>
{
public:
enum op_types { read_op = 0, write_op = 1,
connect_op = 1, except_op = 2, max_ops = 3 };
// Per-descriptor queues.
struct descriptor_state
{
descriptor_state() {}
descriptor_state(const descriptor_state&) {}
void operator=(const descriptor_state&) {}
mutex mutex_;
op_queue<reactor_op> op_queue_[max_ops];
bool shutdown_;
};
// Per-descriptor data.
typedef descriptor_state* per_descriptor_data;
// Constructor.
kqueue_reactor(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<kqueue_reactor>(io_service),
io_service_(use_service<io_service_impl>(io_service)),
mutex_(),
kqueue_fd_(do_kqueue_create()),
interrupter_(),
shutdown_(false)
{
// The interrupter is put into a permanently readable state. Whenever we
// want to interrupt the blocked kevent call we register a one-shot read
// operation against the descriptor.
interrupter_.interrupt();
}
// Destructor.
~kqueue_reactor()
{
close(kqueue_fd_);
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
mutex::scoped_lock lock(mutex_);
shutdown_ = true;
lock.unlock();
op_queue<operation> ops;
descriptor_map::iterator iter = registered_descriptors_.begin();
descriptor_map::iterator end = registered_descriptors_.end();
while (iter != end)
{
for (int i = 0; i < max_ops; ++i)
ops.push(iter->second.op_queue_[i]);
iter->second.shutdown_ = true;
++iter;
}
timer_queues_.get_all_timers(ops);
}
// Initialise the task.
void init_task()
{
io_service_.init_task();
}
// Register a socket with the reactor. Returns 0 on success, system error
// code on failure.
int register_descriptor(socket_type descriptor,
per_descriptor_data& descriptor_data)
{
mutex::scoped_lock lock(registered_descriptors_mutex_);
descriptor_map::iterator new_entry = registered_descriptors_.insert(
std::make_pair(descriptor, descriptor_state())).first;
descriptor_data = &new_entry->second;
descriptor_data->shutdown_ = false;
return 0;
}
// Start a new operation. The reactor operation will be performed when the
// given descriptor is flagged as ready, or an error has occurred.
void start_op(int op_type, socket_type descriptor,
per_descriptor_data& descriptor_data,
reactor_op* op, bool allow_speculative)
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (descriptor_data->shutdown_)
return;
bool first = descriptor_data->op_queue_[op_type].empty();
if (first)
{
if (allow_speculative)
{
if (op_type != read_op || descriptor_data->op_queue_[except_op].empty())
{
if (op->perform())
{
descriptor_lock.unlock();
io_service_.post_immediate_completion(op);
return;
}
}
}
}
descriptor_data->op_queue_[op_type].push(op);
io_service_.work_started();
if (first)
{
struct kevent event;
switch (op_type)
{
case read_op:
EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
break;
case write_op:
EV_SET(&event, descriptor, EVFILT_WRITE,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
break;
case except_op:
if (!descriptor_data->op_queue_[read_op].empty())
return; // Already registered for read events.
EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data);
break;
}
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
op->ec_ = boost::system::error_code(errno,
boost::asio::error::get_system_category());
descriptor_data->op_queue_[op_type].pop();
io_service_.post_deferred_completion(op);
}
}
}
// Cancel all operations associated with the given descriptor. The
// handlers associated with the descriptor will be invoked with the
// operation_aborted error.
void cancel_ops(socket_type /*descriptor*/, per_descriptor_data& descriptor_data)
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_lock.unlock();
io_service_.post_deferred_completions(ops);
}
// Cancel any operations that are running against the descriptor and remove
// its registration from the reactor.
void close_descriptor(socket_type descriptor,
per_descriptor_data& descriptor_data)
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
// Remove the descriptor from the set of known descriptors. The descriptor
// will be automatically removed from the kqueue set when it is closed.
descriptor_data->shutdown_ = true;
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_lock.unlock();
registered_descriptors_.erase(descriptor);
descriptors_lock.unlock();
io_service_.post_deferred_completions(ops);
}
// Add a new timer queue to the reactor.
template <typename Time_Traits>
void add_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.insert(&timer_queue);
}
// Remove a timer queue from the reactor.
template <typename Time_Traits>
void remove_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.erase(&timer_queue);
}
// Schedule a new operation in the given timer queue to expire at the
// specified absolute time.
template <typename Time_Traits>
void schedule_timer(timer_queue<Time_Traits>& timer_queue,
const typename Time_Traits::time_type& time, timer_op* op, void* token)
{
mutex::scoped_lock lock(mutex_);
if (!shutdown_)
{
bool earliest = timer_queue.enqueue_timer(time, op, token);
io_service_.work_started();
if (earliest)
interrupt();
}
}
// Cancel the timer operations associated with the given token. Returns the
// number of operations that have been posted or dispatched.
template <typename Time_Traits>
std::size_t cancel_timer(timer_queue<Time_Traits>& timer_queue, void* token)
{
mutex::scoped_lock lock(mutex_);
op_queue<operation> ops;
std::size_t n = timer_queue.cancel_timer(token, ops);
lock.unlock();
io_service_.post_deferred_completions(ops);
return n;
}
// Run the kqueue loop.
void run(bool block, op_queue<operation>& ops)
{
mutex::scoped_lock lock(mutex_);
// Determine how long to block while waiting for events.
timespec timeout_buf = { 0, 0 };
timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf;
lock.unlock();
// Block on the kqueue descriptor.
struct kevent events[128];
int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout);
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
int descriptor = events[i].ident;
void* ptr = events[i].udata;
if (ptr == &interrupter_)
{
// No need to reset the interrupter since we're leaving the descriptor
// in a ready-to-read state and relying on one-shot notifications.
}
else
{
descriptor_state* descriptor_data = static_cast<descriptor_state*>(ptr);
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
// Exception operations must be processed first to ensure that any
// out-of-band data is read before normal data.
static const int filter[max_ops] =
{ EVFILT_READ, EVFILT_WRITE, EVFILT_READ };
for (int j = max_ops - 1; j >= 0; --j)
{
if (events[i].filter == filter[j])
{
if (j != except_op || events[i].flags & EV_OOBAND)
{
while (reactor_op* op = descriptor_data->op_queue_[j].front())
{
if (events[i].flags & EV_ERROR)
{
op->ec_ = boost::system::error_code(events[i].data,
boost::asio::error::get_system_category());
descriptor_data->op_queue_[j].pop();
ops.push(op);
}
if (op->perform())
{
descriptor_data->op_queue_[j].pop();
ops.push(op);
}
else
break;
}
}
}
}
// Renew registration for event notifications.
struct kevent event;
switch (events[i].filter)
{
case EVFILT_READ:
if (!descriptor_data->op_queue_[read_op].empty())
EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
else if (!descriptor_data->op_queue_[except_op].empty())
EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data);
else
continue;
case EVFILT_WRITE:
if (!descriptor_data->op_queue_[write_op].empty())
EV_SET(&event, descriptor, EVFILT_WRITE,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
else
continue;
default:
break;
}
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
boost::system::error_code error(errno,
boost::asio::error::get_system_category());
for (int j = 0; j < max_ops; ++j)
{
while (reactor_op* op = descriptor_data->op_queue_[j].front())
{
op->ec_ = error;
descriptor_data->op_queue_[j].pop();
ops.push(op);
}
}
}
}
}
lock.lock();
timer_queues_.get_ready_timers(ops);
}
// Interrupt the kqueue loop.
void interrupt()
{
struct kevent event;
EV_SET(&event, interrupter_.read_descriptor(),
EVFILT_READ, EV_ADD | EV_ONESHOT, 0, 0, &interrupter_);
::kevent(kqueue_fd_, &event, 1, 0, 0, 0);
}
private:
// Create the kqueue file descriptor. Throws an exception if the descriptor
// cannot be created.
static int do_kqueue_create()
{
int fd = kqueue();
if (fd == -1)
{
boost::throw_exception(
boost::system::system_error(
boost::system::error_code(errno,
boost::asio::error::get_system_category()),
"kqueue"));
}
return fd;
}
// Get the timeout value for the kevent call.
timespec* get_timeout(timespec& ts)
{
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000);
ts.tv_sec = usec / 1000000;
ts.tv_nsec = (usec % 1000000) * 1000;
return &ts;
}
// The io_service implementation used to post completions.
io_service_impl& io_service_;
// Mutex to protect access to internal data.
mutex mutex_;
// The kqueue file descriptor.
int kqueue_fd_;
// The interrupter is used to break a blocking kevent call.
select_interrupter interrupter_;
// The timer queues.
timer_queue_set timer_queues_;
// Whether the service has been shut down.
bool shutdown_;
// Mutex to protect access to the registered descriptors.
mutex registered_descriptors_mutex_;
// Keep track of all registered descriptors. This code relies on the fact that
// the hash_map implementation pools deleted nodes, meaning that we can assume
// our descriptor_state pointer remains valid even after the entry is removed.
// Technically this is not true for C++98, as that standard says that spliced
// elements in a list are invalidated. However, C++0x fixes this shortcoming
// so we'll just assume that C++98 std::list implementations will do the right
// thing anyway.
typedef detail::hash_map<socket_type, descriptor_state> descriptor_map;
descriptor_map registered_descriptors_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_KQUEUE)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP
|