summaryrefslogtreecommitdiffstats
blob: 4582a96c7b4876812c0aef7d3bf3e39a4ac74202 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
//  Boost common_factor_rt.hpp header file  ----------------------------------//

//  (C) Copyright Daryle Walker and Paul Moore 2001-2002.  Permission to copy,
//  use, modify, sell and distribute this software is granted provided this
//  copyright notice appears in all copies.  This software is provided "as is"
//  without express or implied warranty, and with no claim as to its suitability
//  for any purpose. 

// boostinspect:nolicense (don't complain about the lack of a Boost license)
// (Paul Moore hasn't been in contact for years, so there's no way to change the
// license.)

//  See http://www.boost.org for updates, documentation, and revision history. 

#ifndef BOOST_MATH_COMMON_FACTOR_RT_HPP
#define BOOST_MATH_COMMON_FACTOR_RT_HPP

#include <boost/math_fwd.hpp>  // self include

#include <boost/config.hpp>  // for BOOST_NESTED_TEMPLATE, etc.
#include <boost/limits.hpp>  // for std::numeric_limits
#include <climits>           // for CHAR_MIN
#include <boost/detail/workaround.hpp>

#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4127 4244)  // Conditional expression is constant
#endif

namespace boost
{
namespace math
{


//  Forward declarations for function templates  -----------------------------//

template < typename IntegerType >
    IntegerType  gcd( IntegerType const &a, IntegerType const &b );

template < typename IntegerType >
    IntegerType  lcm( IntegerType const &a, IntegerType const &b );


//  Greatest common divisor evaluator class declaration  ---------------------//

template < typename IntegerType >
class gcd_evaluator
{
public:
    // Types
    typedef IntegerType  result_type, first_argument_type, second_argument_type;

    // Function object interface
    result_type  operator ()( first_argument_type const &a,
     second_argument_type const &b ) const;

};  // boost::math::gcd_evaluator


//  Least common multiple evaluator class declaration  -----------------------//

template < typename IntegerType >
class lcm_evaluator
{
public:
    // Types
    typedef IntegerType  result_type, first_argument_type, second_argument_type;

    // Function object interface
    result_type  operator ()( first_argument_type const &a,
     second_argument_type const &b ) const;

};  // boost::math::lcm_evaluator


//  Implementation details  --------------------------------------------------//

namespace detail
{
    // Greatest common divisor for rings (including unsigned integers)
    template < typename RingType >
    RingType
    gcd_euclidean
    (
        RingType a,
        RingType b
    )
    {
        // Avoid repeated construction
        #ifndef __BORLANDC__
        RingType const  zero = static_cast<RingType>( 0 );
        #else
        RingType  zero = static_cast<RingType>( 0 );
        #endif

        // Reduce by GCD-remainder property [GCD(a,b) == GCD(b,a MOD b)]
        while ( true )
        {
            if ( a == zero )
                return b;
            b %= a;

            if ( b == zero )
                return a;
            a %= b;
        }
    }

    // Greatest common divisor for (signed) integers
    template < typename IntegerType >
    inline
    IntegerType
    gcd_integer
    (
        IntegerType const &  a,
        IntegerType const &  b
    )
    {
        // Avoid repeated construction
        IntegerType const  zero = static_cast<IntegerType>( 0 );
        IntegerType const  result = gcd_euclidean( a, b );

        return ( result < zero ) ? static_cast<IntegerType>(-result) : result;
    }

    // Greatest common divisor for unsigned binary integers
    template < typename BuiltInUnsigned >
    BuiltInUnsigned
    gcd_binary
    (
        BuiltInUnsigned  u,
        BuiltInUnsigned  v
    )
    {
        if ( u && v )
        {
            // Shift out common factors of 2
            unsigned  shifts = 0;

            while ( !(u & 1u) && !(v & 1u) )
            {
                ++shifts;
                u >>= 1;
                v >>= 1;
            }

            // Start with the still-even one, if any
            BuiltInUnsigned  r[] = { u, v };
            unsigned         which = static_cast<bool>( u & 1u );

            // Whittle down the values via their differences
            do
            {
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
                while ( !(r[ which ] & 1u) )
                {
                    r[ which ] = (r[which] >> 1);
                }
#else
                // Remove factors of two from the even one
                while ( !(r[ which ] & 1u) )
                {
                    r[ which ] >>= 1;
                }
#endif

                // Replace the larger of the two with their difference
                if ( r[!which] > r[which] )
                {
                    which ^= 1u;
                }

                r[ which ] -= r[ !which ];
            }
            while ( r[which] );

            // Shift-in the common factor of 2 to the residues' GCD
            return r[ !which ] << shifts;
        }
        else
        {
            // At least one input is zero, return the other
            // (adding since zero is the additive identity)
            // or zero if both are zero.
            return u + v;
        }
    }

    // Least common multiple for rings (including unsigned integers)
    template < typename RingType >
    inline
    RingType
    lcm_euclidean
    (
        RingType const &  a,
        RingType const &  b
    )
    {
        RingType const  zero = static_cast<RingType>( 0 );
        RingType const  temp = gcd_euclidean( a, b );

        return ( temp != zero ) ? ( a / temp * b ) : zero;
    }

    // Least common multiple for (signed) integers
    template < typename IntegerType >
    inline
    IntegerType
    lcm_integer
    (
        IntegerType const &  a,
        IntegerType const &  b
    )
    {
        // Avoid repeated construction
        IntegerType const  zero = static_cast<IntegerType>( 0 );
        IntegerType const  result = lcm_euclidean( a, b );

        return ( result < zero ) ? static_cast<IntegerType>(-result) : result;
    }

    // Function objects to find the best way of computing GCD or LCM
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
    template < typename T, bool IsSpecialized, bool IsSigned >
    struct gcd_optimal_evaluator_helper_t
    {
        T  operator ()( T const &a, T const &b )
        {
            return gcd_euclidean( a, b );
        }
    };

    template < typename T >
    struct gcd_optimal_evaluator_helper_t< T, true, true >
    {
        T  operator ()( T const &a, T const &b )
        {
            return gcd_integer( a, b );
        }
    };
#else
    template < bool IsSpecialized, bool IsSigned >
    struct gcd_optimal_evaluator_helper2_t
    {
        template < typename T >
        struct helper
        {
            T  operator ()( T const &a, T const &b )
            {
                return gcd_euclidean( a, b );
            }
        };
    };

    template < >
    struct gcd_optimal_evaluator_helper2_t< true, true >
    {
        template < typename T >
        struct helper
        {
            T  operator ()( T const &a, T const &b )
            {
                return gcd_integer( a, b );
            }
        };
    };

    template < typename T, bool IsSpecialized, bool IsSigned >
    struct gcd_optimal_evaluator_helper_t
        : gcd_optimal_evaluator_helper2_t<IsSpecialized, IsSigned>
           ::BOOST_NESTED_TEMPLATE helper<T>
    {
    };
#endif

    template < typename T >
    struct gcd_optimal_evaluator
    {
        T  operator ()( T const &a, T const &b )
        {
            typedef ::std::numeric_limits<T>  limits_type;

            typedef gcd_optimal_evaluator_helper_t<T,
             limits_type::is_specialized, limits_type::is_signed>  helper_type;

            helper_type  solver;

            return solver( a, b );
        }
    };
#else // BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
    template < typename T >
    struct gcd_optimal_evaluator
    {
        T  operator ()( T const &a, T const &b )
        {
            return gcd_integer( a, b );
        }
    };
#endif

    // Specialize for the built-in integers
#define BOOST_PRIVATE_GCD_UF( Ut )                  \
    template < >  struct gcd_optimal_evaluator<Ut>  \
    {  Ut  operator ()( Ut a, Ut b ) const  { return gcd_binary( a, b ); }  }

    BOOST_PRIVATE_GCD_UF( unsigned char );
    BOOST_PRIVATE_GCD_UF( unsigned short );
    BOOST_PRIVATE_GCD_UF( unsigned );
    BOOST_PRIVATE_GCD_UF( unsigned long );

#ifdef BOOST_HAS_LONG_LONG
    BOOST_PRIVATE_GCD_UF( boost::ulong_long_type );
#elif defined(BOOST_HAS_MS_INT64)
    BOOST_PRIVATE_GCD_UF( unsigned __int64 );
#endif

#if CHAR_MIN == 0
    BOOST_PRIVATE_GCD_UF( char ); // char is unsigned
#endif

#undef BOOST_PRIVATE_GCD_UF

#define BOOST_PRIVATE_GCD_SF( St, Ut )                            \
    template < >  struct gcd_optimal_evaluator<St>                \
    {  St  operator ()( St a, St b ) const  { Ut const  a_abs =   \
    static_cast<Ut>( a < 0 ? -a : +a ), b_abs = static_cast<Ut>(  \
    b < 0 ? -b : +b ); return static_cast<St>(                    \
    gcd_optimal_evaluator<Ut>()(a_abs, b_abs) ); }  }

    BOOST_PRIVATE_GCD_SF( signed char, unsigned char );
    BOOST_PRIVATE_GCD_SF( short, unsigned short );
    BOOST_PRIVATE_GCD_SF( int, unsigned );
    BOOST_PRIVATE_GCD_SF( long, unsigned long );

#if CHAR_MIN < 0
    BOOST_PRIVATE_GCD_SF( char, unsigned char ); // char is signed
#endif

#ifdef BOOST_HAS_LONG_LONG
    BOOST_PRIVATE_GCD_SF( boost::long_long_type, boost::ulong_long_type );
#elif defined(BOOST_HAS_MS_INT64)
    BOOST_PRIVATE_GCD_SF( __int64, unsigned __int64 );
#endif

#undef BOOST_PRIVATE_GCD_SF

#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
    template < typename T, bool IsSpecialized, bool IsSigned >
    struct lcm_optimal_evaluator_helper_t
    {
        T  operator ()( T const &a, T const &b )
        {
            return lcm_euclidean( a, b );
        }
    };

    template < typename T >
    struct lcm_optimal_evaluator_helper_t< T, true, true >
    {
        T  operator ()( T const &a, T const &b )
        {
            return lcm_integer( a, b );
        }
    };
#else
    template < bool IsSpecialized, bool IsSigned >
    struct lcm_optimal_evaluator_helper2_t
    {
        template < typename T >
        struct helper
        {
            T  operator ()( T const &a, T const &b )
            {
                return lcm_euclidean( a, b );
            }
        };
    };

    template < >
    struct lcm_optimal_evaluator_helper2_t< true, true >
    {
        template < typename T >
        struct helper
        {
            T  operator ()( T const &a, T const &b )
            {
                return lcm_integer( a, b );
            }
        };
    };

    template < typename T, bool IsSpecialized, bool IsSigned >
    struct lcm_optimal_evaluator_helper_t
        : lcm_optimal_evaluator_helper2_t<IsSpecialized, IsSigned>
           ::BOOST_NESTED_TEMPLATE helper<T>
    {
    };
#endif

    template < typename T >
    struct lcm_optimal_evaluator
    {
        T  operator ()( T const &a, T const &b )
        {
            typedef ::std::numeric_limits<T>  limits_type;

            typedef lcm_optimal_evaluator_helper_t<T,
             limits_type::is_specialized, limits_type::is_signed>  helper_type;

            helper_type  solver;

            return solver( a, b );
        }
    };
#else // BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
    template < typename T >
    struct lcm_optimal_evaluator
    {
        T  operator ()( T const &a, T const &b )
        {
            return lcm_integer( a, b );
        }
    };
#endif

    // Functions to find the GCD or LCM in the best way
    template < typename T >
    inline
    T
    gcd_optimal
    (
        T const &  a,
        T const &  b
    )
    {
        gcd_optimal_evaluator<T>  solver;

        return solver( a, b );
    }

    template < typename T >
    inline
    T
    lcm_optimal
    (
        T const &  a,
        T const &  b
    )
    {
        lcm_optimal_evaluator<T>  solver;

        return solver( a, b );
    }

}  // namespace detail


//  Greatest common divisor evaluator member function definition  ------------//

template < typename IntegerType >
inline
typename gcd_evaluator<IntegerType>::result_type
gcd_evaluator<IntegerType>::operator ()
(
    first_argument_type const &   a,
    second_argument_type const &  b
) const
{
    return detail::gcd_optimal( a, b );
}


//  Least common multiple evaluator member function definition  --------------//

template < typename IntegerType >
inline
typename lcm_evaluator<IntegerType>::result_type
lcm_evaluator<IntegerType>::operator ()
(
    first_argument_type const &   a,
    second_argument_type const &  b
) const
{
    return detail::lcm_optimal( a, b );
}


//  Greatest common divisor and least common multiple function definitions  --//

template < typename IntegerType >
inline
IntegerType
gcd
(
    IntegerType const &  a,
    IntegerType const &  b
)
{
    gcd_evaluator<IntegerType>  solver;

    return solver( a, b );
}

template < typename IntegerType >
inline
IntegerType
lcm
(
    IntegerType const &  a,
    IntegerType const &  b
)
{
    lcm_evaluator<IntegerType>  solver;

    return solver( a, b );
}


}  // namespace math
}  // namespace boost

#ifdef BOOST_MSVC
#pragma warning(pop)
#endif

#endif  // BOOST_MATH_COMMON_FACTOR_RT_HPP