summaryrefslogtreecommitdiffstats
blob: f3675acd401c4f635bbbccd0a036f05e52b904e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/* Copyright 2003-2013 Joaquin M Lopez Munoz.
 * Distributed under the Boost Software License, Version 1.0.
 * (See accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org/libs/multi_index for library home page.
 */

#ifndef BOOST_MULTI_INDEX_DETAIL_INDEX_MATCHER_HPP
#define BOOST_MULTI_INDEX_DETAIL_INDEX_MATCHER_HPP

#if defined(_MSC_VER)
#pragma once
#endif

#include <boost/config.hpp> /* keep it first to prevent nasty warns in MSVC */
#include <algorithm>
#include <boost/noncopyable.hpp>
#include <boost/multi_index/detail/auto_space.hpp>
#include <cstddef>
#include <functional>

namespace boost{

namespace multi_index{

namespace detail{

/* index_matcher compares a sequence of elements against a
 * base sequence, identifying those elements that belong to the
 * longest subsequence which is ordered with respect to the base.
 * For instance, if the base sequence is:
 *
 *   0 1 2 3 4 5 6 7 8 9
 *
 * and the compared sequence (not necesarilly the same length):
 *
 *   1 4 2 3 0 7 8 9
 *
 * the elements of the longest ordered subsequence are:
 *
 *   1 2 3 7 8 9
 * 
 * The algorithm for obtaining such a subsequence is called
 * Patience Sorting, described in ch. 1 of:
 *   Aldous, D., Diaconis, P.: "Longest increasing subsequences: from
 *   patience sorting to the Baik-Deift-Johansson Theorem", Bulletin
 *   of the American Mathematical Society, vol. 36, no 4, pp. 413-432,
 *   July 1999.
 *   http://www.ams.org/bull/1999-36-04/S0273-0979-99-00796-X/
 *   S0273-0979-99-00796-X.pdf
 *
 * This implementation is not fully generic since it assumes that
 * the sequences given are pointed to by index iterators (having a
 * get_node() memfun.)
 */

namespace index_matcher{

/* The algorithm stores the nodes of the base sequence and a number
 * of "piles" that are dynamically updated during the calculation
 * stage. From a logical point of view, nodes form an independent
 * sequence from piles. They are stored together so as to minimize
 * allocated memory.
 */

struct entry
{
  entry(void* node_,std::size_t pos_=0):node(node_),pos(pos_){}

  /* node stuff */

  void*       node;
  std::size_t pos;
  entry*      previous;
  bool        ordered;

  struct less_by_node
  {
    bool operator()(
      const entry& x,const entry& y)const
    {
      return std::less<void*>()(x.node,y.node);
    }
  };

  /* pile stuff */

  std::size_t pile_top;
  entry*      pile_top_entry;

  struct less_by_pile_top
  {
    bool operator()(
      const entry& x,const entry& y)const
    {
      return x.pile_top<y.pile_top;
    }
  };
};

/* common code operating on void *'s */

template<typename Allocator>
class algorithm_base:private noncopyable
{
protected:
  algorithm_base(const Allocator& al,std::size_t size):
    spc(al,size),size_(size),n_(0),sorted(false)
  {
  }

  void add(void* node)
  {
    entries()[n_]=entry(node,n_);
    ++n_;
  }

  void begin_algorithm()const
  {
    if(!sorted){
      std::sort(entries(),entries()+size_,entry::less_by_node());
      sorted=true;
    }
    num_piles=0;
  }

  void add_node_to_algorithm(void* node)const
  {
    entry* ent=
      std::lower_bound(
        entries(),entries()+size_,
        entry(node),entry::less_by_node()); /* localize entry */
    ent->ordered=false;
    std::size_t n=ent->pos;                 /* get its position */

    entry dummy(0);
    dummy.pile_top=n;

    entry* pile_ent=                        /* find the first available pile */
      std::lower_bound(                     /* to stack the entry            */
        entries(),entries()+num_piles,
        dummy,entry::less_by_pile_top());

    pile_ent->pile_top=n;                   /* stack the entry */
    pile_ent->pile_top_entry=ent;        

    /* if not the first pile, link entry to top of the preceding pile */
    if(pile_ent>&entries()[0]){ 
      ent->previous=(pile_ent-1)->pile_top_entry;
    }

    if(pile_ent==&entries()[num_piles]){    /* new pile? */
      ++num_piles;
    }
  }

  void finish_algorithm()const
  {
    if(num_piles>0){
      /* Mark those elements which are in their correct position, i.e. those
       * belonging to the longest increasing subsequence. These are those
       * elements linked from the top of the last pile.
       */

      entry* ent=entries()[num_piles-1].pile_top_entry;
      for(std::size_t n=num_piles;n--;){
        ent->ordered=true;
        ent=ent->previous;
      }
    }
  }

  bool is_ordered(void * node)const
  {
    return std::lower_bound(
      entries(),entries()+size_,
      entry(node),entry::less_by_node())->ordered;
  }

private:
  entry* entries()const{return &*spc.data();}

  auto_space<entry,Allocator> spc;
  std::size_t                 size_;
  std::size_t                 n_;
  mutable bool                sorted;
  mutable std::size_t         num_piles;
};

/* The algorithm has three phases:
 *   - Initialization, during which the nodes of the base sequence are added.
 *   - Execution.
 *   - Results querying, through the is_ordered memfun.
 */

template<typename Node,typename Allocator>
class algorithm:private algorithm_base<Allocator>
{
  typedef algorithm_base<Allocator> super;

public:
  algorithm(const Allocator& al,std::size_t size):super(al,size){}

  void add(Node* node)
  {
    super::add(node);
  }

  template<typename IndexIterator>
  void execute(IndexIterator first,IndexIterator last)const
  {
    super::begin_algorithm();

    for(IndexIterator it=first;it!=last;++it){
      add_node_to_algorithm(get_node(it));
    }

    super::finish_algorithm();
  }

  bool is_ordered(Node* node)const
  {
    return super::is_ordered(node);
  }

private:
  void add_node_to_algorithm(Node* node)const
  {
    super::add_node_to_algorithm(node);
  }

  template<typename IndexIterator>
  static Node* get_node(IndexIterator it)
  {
    return static_cast<Node*>(it.get_node());
  }
};

} /* namespace multi_index::detail::index_matcher */

} /* namespace multi_index::detail */

} /* namespace multi_index */

} /* namespace boost */

#endif