1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
/* boost random/detail/const_mod.hpp header file
*
* Copyright Jens Maurer 2000-2001
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id: const_mod.hpp 71018 2011-04-05 21:27:52Z steven_watanabe $
*
* Revision history
* 2001-02-18 moved to individual header files
*/
#ifndef BOOST_RANDOM_CONST_MOD_HPP
#define BOOST_RANDOM_CONST_MOD_HPP
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/integer_traits.hpp>
#include <boost/type_traits/make_unsigned.hpp>
#include <boost/random/detail/large_arithmetic.hpp>
#include <boost/random/detail/disable_warnings.hpp>
namespace boost {
namespace random {
template<class IntType, IntType m>
class const_mod
{
public:
static IntType apply(IntType x)
{
if(((unsigned_m() - 1) & unsigned_m()) == 0)
return (unsigned_type(x)) & (unsigned_m() - 1);
else {
IntType supress_warnings = (m == 0);
BOOST_ASSERT(supress_warnings == 0);
return x % (m + supress_warnings);
}
}
static IntType add(IntType x, IntType c)
{
if(((unsigned_m() - 1) & unsigned_m()) == 0)
return (unsigned_type(x) + unsigned_type(c)) & (unsigned_m() - 1);
else if(c == 0)
return x;
else if(x < m - c)
return x + c;
else
return x - (m - c);
}
static IntType mult(IntType a, IntType x)
{
if(((unsigned_m() - 1) & unsigned_m()) == 0)
return unsigned_type(a) * unsigned_type(x) & (unsigned_m() - 1);
else if(a == 0)
return 0;
else if(a == 1)
return x;
else if(m <= traits::const_max/a) // i.e. a*m <= max
return mult_small(a, x);
else if(traits::is_signed && (m%a < m/a))
return mult_schrage(a, x);
else
return mult_general(a, x);
}
static IntType mult_add(IntType a, IntType x, IntType c)
{
if(((unsigned_m() - 1) & unsigned_m()) == 0)
return (unsigned_type(a) * unsigned_type(x) + unsigned_type(c)) & (unsigned_m() - 1);
else if(a == 0)
return c;
else if(m <= (traits::const_max-c)/a) { // i.e. a*m+c <= max
IntType supress_warnings = (m == 0);
BOOST_ASSERT(supress_warnings == 0);
return (a*x+c) % (m + supress_warnings);
} else
return add(mult(a, x), c);
}
static IntType pow(IntType a, boost::uintmax_t exponent)
{
IntType result = 1;
while(exponent != 0) {
if(exponent % 2 == 1) {
result = mult(result, a);
}
a = mult(a, a);
exponent /= 2;
}
return result;
}
static IntType invert(IntType x)
{ return x == 0 ? 0 : (m == 0? invert_euclidian0(x) : invert_euclidian(x)); }
private:
typedef integer_traits<IntType> traits;
typedef typename make_unsigned<IntType>::type unsigned_type;
const_mod(); // don't instantiate
static IntType mult_small(IntType a, IntType x)
{
IntType supress_warnings = (m == 0);
BOOST_ASSERT(supress_warnings == 0);
return a*x % (m + supress_warnings);
}
static IntType mult_schrage(IntType a, IntType value)
{
const IntType q = m / a;
const IntType r = m % a;
BOOST_ASSERT(r < q); // check that overflow cannot happen
return sub(a*(value%q), r*(value/q));
}
static IntType mult_general(IntType a, IntType b)
{
IntType suppress_warnings = (m == 0);
BOOST_ASSERT(suppress_warnings == 0);
IntType modulus = m + suppress_warnings;
BOOST_ASSERT(modulus == m);
if(::boost::uintmax_t(modulus) <=
(::std::numeric_limits< ::boost::uintmax_t>::max)() / modulus)
{
return static_cast<IntType>(boost::uintmax_t(a) * b % modulus);
} else {
return static_cast<IntType>(detail::mulmod(a, b, modulus));
}
}
static IntType sub(IntType a, IntType b)
{
if(a < b)
return m - (b - a);
else
return a - b;
}
static unsigned_type unsigned_m()
{
if(m == 0) {
return unsigned_type((std::numeric_limits<IntType>::max)()) + 1;
} else {
return unsigned_type(m);
}
}
// invert c in the finite field (mod m) (m must be prime)
static IntType invert_euclidian(IntType c)
{
// we are interested in the gcd factor for c, because this is our inverse
BOOST_ASSERT(c > 0);
IntType l1 = 0;
IntType l2 = 1;
IntType n = c;
IntType p = m;
for(;;) {
IntType q = p / n;
l1 += q * l2;
p -= q * n;
if(p == 0)
return l2;
IntType q2 = n / p;
l2 += q2 * l1;
n -= q2 * p;
if(n == 0)
return m - l1;
}
}
// invert c in the finite field (mod m) (c must be relatively prime to m)
static IntType invert_euclidian0(IntType c)
{
// we are interested in the gcd factor for c, because this is our inverse
BOOST_ASSERT(c > 0);
if(c == 1) return 1;
IntType l1 = 0;
IntType l2 = 1;
IntType n = c;
IntType p = m;
IntType max = (std::numeric_limits<IntType>::max)();
IntType q = max / n;
BOOST_ASSERT(max % n != n - 1 && "c must be relatively prime to m.");
l1 += q * l2;
p = max - q * n + 1;
for(;;) {
if(p == 0)
return l2;
IntType q2 = n / p;
l2 += q2 * l1;
n -= q2 * p;
if(n == 0)
return m - l1;
q = p / n;
l1 += q * l2;
p -= q * n;
}
}
};
} // namespace random
} // namespace boost
#include <boost/random/detail/enable_warnings.hpp>
#endif // BOOST_RANDOM_CONST_MOD_HPP
|