1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
/* boost random/uniform_int.hpp header file
*
* Copyright Jens Maurer 2000-2001
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id: uniform_int.hpp 60755 2010-03-22 00:45:06Z steven_watanabe $
*
* Revision history
* 2001-04-08 added min<max assertion (N. Becker)
* 2001-02-18 moved to individual header files
*/
#ifndef BOOST_RANDOM_UNIFORM_INT_HPP
#define BOOST_RANDOM_UNIFORM_INT_HPP
#include <cassert>
#include <iostream>
#include <boost/config.hpp>
#include <boost/limits.hpp>
#include <boost/static_assert.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/signed_unsigned_tools.hpp>
#include <boost/type_traits/make_unsigned.hpp>
namespace boost {
/**
* The distribution function uniform_int models a \random_distribution.
* On each invocation, it returns a random integer value uniformly
* distributed in the set of integer numbers {min, min+1, min+2, ..., max}.
*
* The template parameter IntType shall denote an integer-like value type.
*/
template<class IntType = int>
class uniform_int
{
public:
typedef IntType input_type;
typedef IntType result_type;
/// \cond hide_private_members
typedef typename make_unsigned<result_type>::type range_type;
/// \endcond
/**
* Constructs a uniform_int object. @c min and @c max are
* the parameters of the distribution.
*
* Requires: min <= max
*/
explicit uniform_int(IntType min_arg = 0, IntType max_arg = 9)
: _min(min_arg), _max(max_arg)
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
// MSVC fails BOOST_STATIC_ASSERT with std::numeric_limits at class scope
BOOST_STATIC_ASSERT(std::numeric_limits<IntType>::is_integer);
#endif
assert(min_arg <= max_arg);
init();
}
/**
* Returns: The "min" parameter of the distribution
*/
result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _min; }
/**
* Returns: The "max" parameter of the distribution
*/
result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _max; }
void reset() { }
// can't have member function templates out-of-line due to MSVC bugs
template<class Engine>
result_type operator()(Engine& eng)
{
return generate(eng, _min, _max, _range);
}
template<class Engine>
result_type operator()(Engine& eng, result_type n)
{
assert(n > 0);
if (n == 1)
{
return 0;
}
return generate(eng, 0, n - 1, n - 1);
}
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
template<class CharT, class Traits>
friend std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& os, const uniform_int& ud)
{
os << ud._min << " " << ud._max;
return os;
}
template<class CharT, class Traits>
friend std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& is, uniform_int& ud)
{
is >> std::ws >> ud._min >> std::ws >> ud._max;
ud.init();
return is;
}
#endif
private:
#ifdef BOOST_MSVC
#pragma warning(push)
// disable division by zero warning, since we can't
// actually divide by zero.
#pragma warning(disable:4723)
#endif
/// \cond hide_private_members
template<class Engine>
static result_type generate(Engine& eng, result_type min_value, result_type /*max_value*/, range_type range)
{
typedef typename Engine::result_type base_result;
// ranges are always unsigned
typedef typename make_unsigned<base_result>::type base_unsigned;
const base_result bmin = (eng.min)();
const base_unsigned brange =
random::detail::subtract<base_result>()((eng.max)(), (eng.min)());
if(range == 0) {
return min_value;
} else if(brange == range) {
// this will probably never happen in real life
// basically nothing to do; just take care we don't overflow / underflow
base_unsigned v = random::detail::subtract<base_result>()(eng(), bmin);
return random::detail::add<base_unsigned, result_type>()(v, min_value);
} else if(brange < range) {
// use rejection method to handle things like 0..3 --> 0..4
for(;;) {
// concatenate several invocations of the base RNG
// take extra care to avoid overflows
// limit == floor((range+1)/(brange+1))
// Therefore limit*(brange+1) <= range+1
range_type limit;
if(range == (std::numeric_limits<range_type>::max)()) {
limit = range/(range_type(brange)+1);
if(range % (range_type(brange)+1) == range_type(brange))
++limit;
} else {
limit = (range+1)/(range_type(brange)+1);
}
// We consider "result" as expressed to base (brange+1):
// For every power of (brange+1), we determine a random factor
range_type result = range_type(0);
range_type mult = range_type(1);
// loop invariants:
// result < mult
// mult <= range
while(mult <= limit) {
// Postcondition: result <= range, thus no overflow
//
// limit*(brange+1)<=range+1 def. of limit (1)
// eng()-bmin<=brange eng() post. (2)
// and mult<=limit. loop condition (3)
// Therefore mult*(eng()-bmin+1)<=range+1 by (1),(2),(3) (4)
// Therefore mult*(eng()-bmin)+mult<=range+1 rearranging (4) (5)
// result<mult loop invariant (6)
// Therefore result+mult*(eng()-bmin)<range+1 by (5), (6) (7)
//
// Postcondition: result < mult*(brange+1)
//
// result<mult loop invariant (1)
// eng()-bmin<=brange eng() post. (2)
// Therefore result+mult*(eng()-bmin) <
// mult+mult*(eng()-bmin) by (1) (3)
// Therefore result+(eng()-bmin)*mult <
// mult+mult*brange by (2), (3) (4)
// Therefore result+(eng()-bmin)*mult <
// mult*(brange+1) by (4)
result += static_cast<range_type>(random::detail::subtract<base_result>()(eng(), bmin) * mult);
// equivalent to (mult * (brange+1)) == range+1, but avoids overflow.
if(mult * range_type(brange) == range - mult + 1) {
// The destination range is an integer power of
// the generator's range.
return(result);
}
// Postcondition: mult <= range
//
// limit*(brange+1)<=range+1 def. of limit (1)
// mult<=limit loop condition (2)
// Therefore mult*(brange+1)<=range+1 by (1), (2) (3)
// mult*(brange+1)!=range+1 preceding if (4)
// Therefore mult*(brange+1)<range+1 by (3), (4) (5)
//
// Postcondition: result < mult
//
// See the second postcondition on the change to result.
mult *= range_type(brange)+range_type(1);
}
// loop postcondition: range/mult < brange+1
//
// mult > limit loop condition (1)
// Suppose range/mult >= brange+1 Assumption (2)
// range >= mult*(brange+1) by (2) (3)
// range+1 > mult*(brange+1) by (3) (4)
// range+1 > (limit+1)*(brange+1) by (1), (4) (5)
// (range+1)/(brange+1) > limit+1 by (5) (6)
// limit < floor((range+1)/(brange+1)) by (6) (7)
// limit==floor((range+1)/(brange+1)) def. of limit (8)
// not (2) reductio (9)
//
// loop postcondition: (range/mult)*mult+(mult-1) >= range
//
// (range/mult)*mult + range%mult == range identity (1)
// range%mult < mult def. of % (2)
// (range/mult)*mult+mult > range by (1), (2) (3)
// (range/mult)*mult+(mult-1) >= range by (3) (4)
//
// Note that the maximum value of result at this point is (mult-1),
// so after this final step, we generate numbers that can be
// at least as large as range. We have to really careful to avoid
// overflow in this final addition and in the rejection. Anything
// that overflows is larger than range and can thus be rejected.
// range/mult < brange+1 -> no endless loop
range_type result_increment = uniform_int<range_type>(0, range/mult)(eng);
if((std::numeric_limits<range_type>::max)() / mult < result_increment) {
// The multiplcation would overflow. Reject immediately.
continue;
}
result_increment *= mult;
// unsigned integers are guaranteed to wrap on overflow.
result += result_increment;
if(result < result_increment) {
// The addition overflowed. Reject.
continue;
}
if(result > range) {
// Too big. Reject.
continue;
}
return random::detail::add<range_type, result_type>()(result, min_value);
}
} else { // brange > range
base_unsigned bucket_size;
// it's safe to add 1 to range, as long as we cast it first,
// because we know that it is less than brange. However,
// we do need to be careful not to cause overflow by adding 1
// to brange.
if(brange == (std::numeric_limits<base_unsigned>::max)()) {
bucket_size = brange / (static_cast<base_unsigned>(range)+1);
if(brange % (static_cast<base_unsigned>(range)+1) == static_cast<base_unsigned>(range)) {
++bucket_size;
}
} else {
bucket_size = (brange+1) / (static_cast<base_unsigned>(range)+1);
}
for(;;) {
base_unsigned result =
random::detail::subtract<base_result>()(eng(), bmin);
result /= bucket_size;
// result and range are non-negative, and result is possibly larger
// than range, so the cast is safe
if(result <= static_cast<base_unsigned>(range))
return random::detail::add<base_unsigned, result_type>()(result, min_value);
}
}
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
void init()
{
_range = random::detail::subtract<result_type>()(_max, _min);
}
/// \endcond
// The result_type may be signed or unsigned, but the _range is always
// unsigned.
result_type _min, _max;
range_type _range;
};
} // namespace boost
#endif // BOOST_RANDOM_UNIFORM_INT_HPP
|