summaryrefslogtreecommitdiffstats
blob: 48bff06085b070dfa05973497b90bd8269942da9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
/*=============================================================================
    Copyright (c) 2001-2011 Joel de Guzman
    Copyright (c) 2001-2011 Hartmut Kaiser

    Distributed under the Boost Software License, Version 1.0. (See accompanying
    file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
#if !defined(BOOST_SPIRIT_ATTRIBUTES_JANUARY_29_2007_0954AM)
#define BOOST_SPIRIT_ATTRIBUTES_JANUARY_29_2007_0954AM

#if defined(_MSC_VER)
#pragma once
#endif

#include <boost/spirit/home/support/unused.hpp>
#include <boost/spirit/home/support/has_semantic_action.hpp>
#include <boost/spirit/home/support/attributes_fwd.hpp>
#include <boost/spirit/home/support/container.hpp>
#include <boost/spirit/home/support/detail/hold_any.hpp>
#include <boost/spirit/home/support/detail/as_variant.hpp>
#include <boost/optional/optional.hpp>
#include <boost/fusion/include/transform.hpp>
#include <boost/fusion/include/filter_if.hpp>
#include <boost/fusion/include/as_vector.hpp>
#include <boost/fusion/include/push_front.hpp>
#include <boost/fusion/include/pop_front.hpp>
#include <boost/fusion/include/is_sequence.hpp>
#include <boost/fusion/include/for_each.hpp>
#include <boost/fusion/include/is_view.hpp>
#include <boost/fusion/include/mpl.hpp>
#include <boost/foreach.hpp>
#include <boost/utility/value_init.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/end.hpp>
#include <boost/mpl/find_if.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/mpl/deref.hpp>
#include <boost/mpl/distance.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/has_xxx.hpp>
#include <boost/mpl/equal.hpp>
#include <boost/proto/proto_fwd.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/variant.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/config.hpp>
#include <vector>
#include <utility>
#include <ios>

///////////////////////////////////////////////////////////////////////////////
namespace boost { namespace spirit { namespace traits
{
    ///////////////////////////////////////////////////////////////////////////
    // This file deals with attribute related functions and meta-functions
    // including generalized attribute transformation utilities for Spirit
    // components.
    ///////////////////////////////////////////////////////////////////////////

    ///////////////////////////////////////////////////////////////////////////
    // Find out if T can be a (strong) substitute for Expected attribute
    namespace detail
    {
        template <typename T, typename Expected>
        struct value_type_is_substitute
          : is_substitute<
                typename container_value<T>::type
              , typename container_value<Expected>::type>
        {};

        template <typename T, typename Expected, typename Enable = void>
        struct is_substitute_impl : is_same<T, Expected> {};

        template <typename T, typename Expected>
        struct is_substitute_impl<T, Expected,
            typename enable_if<
                mpl::and_<
                    fusion::traits::is_sequence<T>,
                    fusion::traits::is_sequence<Expected>,
                    mpl::equal<T, Expected, is_substitute<mpl::_1, mpl::_2> >
                >
            >::type>
          : mpl::true_ {};

        template <typename T, typename Expected>
        struct is_substitute_impl<T, Expected,
            typename enable_if<
                mpl::and_<
                    is_container<T>,
                    is_container<Expected>,
                    detail::value_type_is_substitute<T, Expected>
                >
            >::type>
          : mpl::true_ {};
    }

    template <typename T, typename Expected, typename Enable /*= void*/>
    struct is_substitute
      : detail::is_substitute_impl<T, Expected> {};

    template <typename T, typename Expected>
    struct is_substitute<optional<T>, optional<Expected> >
      : is_substitute<T, Expected> {};

    template <typename T>
    struct is_substitute<T, T
          , typename enable_if<not_is_optional<T> >::type>
      : mpl::true_ {};

    ///////////////////////////////////////////////////////////////////////////
    // Find out if T can be a weak substitute for Expected attribute
    namespace detail
    {
        // A type, which is convertible to the attribute is at the same time
        // usable as its weak substitute.
        template <typename T, typename Expected, typename Enable = void>
        struct is_weak_substitute_impl : is_convertible<T, Expected> {};

//        // An exposed attribute is a weak substitute for a supplied container
//        // attribute if it is a weak substitute for its value_type. This is
//        // true as all character parsers are compatible with a container
//        // attribute having the corresponding character type as its value_type.
//        template <typename T, typename Expected>
//        struct is_weak_substitute_for_value_type
//          : is_weak_substitute<T, typename container_value<Expected>::type>
//        {};
//
//        template <typename T, typename Expected>
//        struct is_weak_substitute_impl<T, Expected,
//            typename enable_if<
//                mpl::and_<
//                    mpl::not_<is_string<T> >
//                  , is_string<Expected>
//                  , is_weak_substitute_for_value_type<T, Expected> >
//            >::type>
//          : mpl::true_
//        {};

        // An exposed container attribute is a weak substitute for a supplied
        // container attribute if and only if their value_types are weak
        // substitutes.
        template <typename T, typename Expected>
        struct value_type_is_weak_substitute
          : is_weak_substitute<
                typename container_value<T>::type
              , typename container_value<Expected>::type>
        {};

        template <typename T, typename Expected>
        struct is_weak_substitute_impl<T, Expected,
            typename enable_if<
                mpl::and_<
                    is_container<T>
                  , is_container<Expected>
                  , value_type_is_weak_substitute<T, Expected> >
            >::type>
          : mpl::true_ {};

        // Two fusion sequences are weak substitutes if and only if their
        // elements are pairwise weak substitutes.
        template <typename T, typename Expected>
        struct is_weak_substitute_impl<T, Expected,
            typename enable_if<
                mpl::and_<
                    fusion::traits::is_sequence<T>
                  , fusion::traits::is_sequence<Expected>
                  , mpl::equal<T, Expected, is_weak_substitute<mpl::_1, mpl::_2> > >
            >::type>
          : mpl::true_ {};

        // If this is not defined, the main template definition above will return
        // true if T is convertible to the first type in a fusion::vector. We
        // globally declare any non-Fusion sequence T as not compatible with any
        // Fusion sequence 'Expected'.
        template <typename T, typename Expected>
        struct is_weak_substitute_impl<T, Expected,
            typename enable_if<
                mpl::and_<
                    mpl::not_<fusion::traits::is_sequence<T> >
                  , fusion::traits::is_sequence<Expected> >
            >::type>
          : mpl::false_ {};
    }

    // main template forwards to detail namespace, this helps older compilers
    // to disambiguate things
    template <typename T, typename Expected, typename Enable /*= void*/>
    struct is_weak_substitute
      : detail::is_weak_substitute_impl<T, Expected> {};

    template <typename T, typename Expected>
    struct is_weak_substitute<optional<T>, optional<Expected> >
      : is_weak_substitute<T, Expected> {};

    template <typename T, typename Expected>
    struct is_weak_substitute<optional<T>, Expected>
      : is_weak_substitute<T, Expected> {};

    template <typename T, typename Expected>
    struct is_weak_substitute<T, optional<Expected> >
      : is_weak_substitute<T, Expected> {};

#define BOOST_SPIRIT_IS_WEAK_SUBSTITUTE(z, N, _)                              \
    is_weak_substitute<BOOST_PP_CAT(T, N), Expected>::type::value &&          \
    /***/

    // make sure unused variant parameters do not affect the outcome
    template <typename Expected>
    struct is_weak_substitute<boost::detail::variant::void_, Expected>
      : mpl::true_
    {};

    template <BOOST_VARIANT_ENUM_PARAMS(typename T), typename Expected>
    struct is_weak_substitute<
            boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)>, Expected>
      : mpl::bool_<BOOST_PP_REPEAT(BOOST_VARIANT_LIMIT_TYPES
          , BOOST_SPIRIT_IS_WEAK_SUBSTITUTE, _) true>
    {};

#undef BOOST_SPIRIT_IS_WEAK_SUBSTITUTE

    template <typename T>
    struct is_weak_substitute<T, T
          , typename enable_if<
                mpl::and_<not_is_optional<T>, not_is_variant<T> >
            >::type>
      : mpl::true_ {};

    ///////////////////////////////////////////////////////////////////////////
    template <typename T, typename Enable/* = void*/>
    struct is_proxy : mpl::false_ {};

    template <typename T>
    struct is_proxy<T,
        typename enable_if<
            mpl::and_<
                fusion::traits::is_sequence<T>,
                fusion::traits::is_view<T>
            >
        >::type>
      : mpl::true_ {};

    namespace detail
    {
        // By declaring a nested struct in your class/struct, you tell
        // spirit that it is regarded as a variant type. The minimum
        // required interface for such a variant is that it has constructors
        // for various types supported by your variant and a typedef 'types'
        // which is an mpl sequence of the contained types.
        //
        // This is an intrusive interface. For a non-intrusive interface,
        // use the not_is_variant trait.
        BOOST_MPL_HAS_XXX_TRAIT_DEF(adapted_variant_tag)
    }

    template <typename T, typename Domain, typename Enable/* = void*/>
    struct not_is_variant
      : mpl::not_<detail::has_adapted_variant_tag<T> >
    {};

    template <BOOST_VARIANT_ENUM_PARAMS(typename T), typename Domain>
    struct not_is_variant<boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)>, Domain>
      : mpl::false_
    {};

    template <typename T, typename Domain>
    struct not_is_variant<boost::optional<T>, Domain>
      : not_is_variant<T, Domain>
    {};

    // we treat every type as if it where the variant (as this meta function is
    // invoked for variant types only)
    template <typename T>
    struct variant_type
      : mpl::identity<T>
    {};

    template <typename T>
    struct variant_type<boost::optional<T> >
      : variant_type<T>
    {};

    ///////////////////////////////////////////////////////////////////////////
    // The compute_compatible_component_variant
    ///////////////////////////////////////////////////////////////////////////
    namespace detail
    {
        //  A component is compatible to a given Attribute type if the
        //  Attribute is the same as the expected type of the component or if
        //  it is convertible to the expected type.
        template <typename Expected, typename Attribute>
        struct attribute_is_compatible
          : is_convertible<Attribute, Expected>
        {};

        template <typename Expected, typename Attribute>
        struct attribute_is_compatible<Expected, boost::optional<Attribute> >
          : is_convertible<Attribute, Expected>
        {};

        template <typename Container>
        struct is_hold_any_container
          : traits::is_hold_any<typename traits::container_value<Container>::type>
        {};
    }

    template <typename Attribute, typename Expected
      , typename IsNotVariant = mpl::false_, typename Enable = void>
    struct compute_compatible_component_variant
      : mpl::or_<
            traits::detail::attribute_is_compatible<Expected, Attribute>
          , traits::is_hold_any<Expected>
          , mpl::eval_if<
                is_container<Expected>
              , traits::detail::is_hold_any_container<Expected>
              , mpl::false_> >
    {};

    namespace detail
    {
        BOOST_MPL_HAS_XXX_TRAIT_DEF(types)
    }

    template <typename Variant, typename Expected>
    struct compute_compatible_component_variant<Variant, Expected, mpl::false_
      , typename enable_if<detail::has_types<Variant> >::type>
    {
        typedef typename traits::variant_type<Variant>::type variant_type;
        typedef typename variant_type::types types;
        typedef typename mpl::end<types>::type end;

        typedef typename
            mpl::find_if<types, is_same<Expected, mpl::_1> >::type
        iter;

        typedef typename mpl::distance<
            typename mpl::begin<types>::type, iter
        >::type distance;

        // true_ if the attribute matches one of the types in the variant
        typedef typename mpl::not_<is_same<iter, end> >::type type;
        enum { value = type::value };

        // return the type in the variant the attribute is compatible with
        typedef typename
            mpl::eval_if<type, mpl::deref<iter>, mpl::identity<unused_type> >::type
        compatible_type;

        // return whether the given type is compatible with the Expected type
        static bool is_compatible(int which)
        {
            return which == distance::value;
        }
    };

    template <typename Expected, typename Attribute, typename Domain>
    struct compute_compatible_component
      : compute_compatible_component_variant<Attribute, Expected
          , typename spirit::traits::not_is_variant<Attribute, Domain>::type> {};

    template <typename Expected, typename Domain>
    struct compute_compatible_component<Expected, unused_type, Domain>
      : mpl::false_ {};

    template <typename Attribute, typename Domain>
    struct compute_compatible_component<unused_type, Attribute, Domain>
      : mpl::false_ {};

    template <typename Domain>
    struct compute_compatible_component<unused_type, unused_type, Domain>
      : mpl::false_ {};

    ///////////////////////////////////////////////////////////////////////////
    // return the type currently stored in the given variant
    template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
    struct variant_which<boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
    {
        static int call(boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& v)
        {
            return v.which();
        }
    };

    template <typename T>
    int which(T const& v)
    {
        return variant_which<T>::call(v);
    }

    ///////////////////////////////////////////////////////////////////////////
    template <typename T, typename Domain, typename Enable/* = void*/>
    struct not_is_optional
      : mpl::true_
    {};

    template <typename T, typename Domain>
    struct not_is_optional<boost::optional<T>, Domain>
      : mpl::false_
    {};

    ///////////////////////////////////////////////////////////////////////////
    // attribute_of
    //
    // Get the component's attribute
    ///////////////////////////////////////////////////////////////////////////
    template <typename Component
      , typename Context = unused_type, typename Iterator = unused_type>
    struct attribute_of
    {
        typedef typename Component::template
            attribute<Context, Iterator>::type type;
    };

    ///////////////////////////////////////////////////////////////////////////
    // attribute_not_unused
    //
    // An mpl meta-function class that determines whether a component's
    // attribute is not unused.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Context, typename Iterator = unused_type>
    struct attribute_not_unused
    {
        template <typename Component>
        struct apply
          : not_is_unused<typename
                attribute_of<Component, Context, Iterator>::type>
        {};
    };

    ///////////////////////////////////////////////////////////////////////////
    // Retrieve the attribute type to use from the given type
    //
    // This is needed to extract the correct attribute type from proxy classes
    // as utilized in FUSION_ADAPT_ADT et. al.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Attribute, typename Enable/* = void*/>
    struct attribute_type : mpl::identity<Attribute> {};

    ///////////////////////////////////////////////////////////////////////////
    // Retrieve the size of a fusion sequence (compile time)
    ///////////////////////////////////////////////////////////////////////////
    template <typename T>
    struct sequence_size
      : fusion::result_of::size<T>
    {};

    template <>
    struct sequence_size<unused_type>
      : mpl::int_<0>
    {};

    ///////////////////////////////////////////////////////////////////////////
    // Retrieve the size of an attribute (runtime)
    ///////////////////////////////////////////////////////////////////////////
    namespace detail
    {
        template <typename Attribute, typename Enable = void>
        struct attribute_size_impl
        {
            typedef std::size_t type;

            static type call(Attribute const&)
            {
                return 1;
            }
        };

        template <typename Attribute>
        struct attribute_size_impl<Attribute
          , typename enable_if<
                mpl::and_<
                    fusion::traits::is_sequence<Attribute>
                  , mpl::not_<traits::is_container<Attribute> >
                >
            >::type>
        {
            typedef typename fusion::result_of::size<Attribute>::value_type type;

            static type call(Attribute const& attr)
            {
                return fusion::size(attr);
            }
        };

        template <typename Attribute>
        struct attribute_size_impl<Attribute
          , typename enable_if<
                mpl::and_<
                    traits::is_container<Attribute>
                  , mpl::not_<traits::is_iterator_range<Attribute> >
                >
            >::type>
        {
            typedef typename Attribute::size_type type;

            static type call(Attribute const& attr)
            {
                return attr.size();
            }
        };
    }

    template <typename Attribute, typename Enable/* = void*/>
    struct attribute_size
      : detail::attribute_size_impl<Attribute>
    {};

    template <typename Attribute>
    struct attribute_size<optional<Attribute> >
    {
        typedef typename attribute_size<Attribute>::type type;

        static type call(optional<Attribute> const& val)
        {
            if (!val)
                return 0;
            return val.get();
        }
    };

    template <typename Iterator>
    struct attribute_size<iterator_range<Iterator> >
    {
        typedef typename boost::detail::iterator_traits<Iterator>::
            difference_type type;

        static type call(iterator_range<Iterator> const& r)
        {
            return boost::detail::distance(r.begin(), r.end());
        }
    };

    template <>
    struct attribute_size<unused_type>
    {
        typedef std::size_t type;

        static type call(unused_type)
        {
            return 0;
        }
    };

    template <typename Attribute>
    typename attribute_size<Attribute>::type
    size (Attribute const& attr)
    {
        return attribute_size<Attribute>::call(attr);
    }

    ///////////////////////////////////////////////////////////////////////////
    // pass_attribute
    //
    // Determines how we pass attributes to semantic actions. This
    // may be specialized. By default, all attributes are wrapped in
    // a fusion sequence, because the attribute has to be treated as being
    // a single value in any case (even if it actually already is a fusion
    // sequence in its own).
    ///////////////////////////////////////////////////////////////////////////
    template <typename Component, typename Attribute, typename Enable/* = void*/>
    struct pass_attribute
    {
        typedef fusion::vector1<Attribute&> type;
    };

    ///////////////////////////////////////////////////////////////////////////
    // Subclass a pass_attribute specialization from this to wrap
    // the attribute in a tuple only IFF it is not already a fusion tuple.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Attribute, typename Force = mpl::false_>
    struct wrap_if_not_tuple
      : mpl::if_<
            fusion::traits::is_sequence<Attribute>
          , Attribute&, fusion::vector1<Attribute&> >
    {};

    template <typename Attribute>
    struct wrap_if_not_tuple<Attribute, mpl::true_>
    {
        typedef fusion::vector1<Attribute&> type;
    };

    template <>
    struct wrap_if_not_tuple<unused_type, mpl::false_>
    {
        typedef unused_type type;
    };

    template <>
    struct wrap_if_not_tuple<unused_type const, mpl::false_>
    {
        typedef unused_type type;
    };

    ///////////////////////////////////////////////////////////////////////////
    // build_optional
    //
    // Build a boost::optional from T. Return unused_type if T is unused_type.
    ///////////////////////////////////////////////////////////////////////////
    template <typename T>
    struct build_optional
    {
        typedef boost::optional<T> type;
    };

    template <typename T>
    struct build_optional<boost::optional<T> >
    {
        typedef boost::optional<T> type;
    };

    template <>
    struct build_optional<unused_type>
    {
        typedef unused_type type;
    };

    ///////////////////////////////////////////////////////////////////////////
    // build_std_vector
    //
    // Build a std::vector from T. Return unused_type if T is unused_type.
    ///////////////////////////////////////////////////////////////////////////
    template <typename T>
    struct build_std_vector
    {
        typedef std::vector<T> type;
    };

    template <>
    struct build_std_vector<unused_type>
    {
        typedef unused_type type;
    };

    ///////////////////////////////////////////////////////////////////////////
    // filter_unused_attributes
    //
    // Remove unused_types from a sequence
    ///////////////////////////////////////////////////////////////////////////

    // Compute the list of all *used* attributes of sub-components
    // (filter all unused attributes from the list)
    template <typename Sequence>
    struct filter_unused_attributes
      : fusion::result_of::filter_if<Sequence, not_is_unused<mpl::_> >
    {};

    ///////////////////////////////////////////////////////////////////////////
    // sequence_attribute_transform
    //
    // This transform is invoked for every attribute in a sequence allowing
    // to modify the attribute type exposed by a component to the enclosing
    // sequence component. By default no transformation is performed.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Attribute, typename Domain>
    struct sequence_attribute_transform
      : mpl::identity<Attribute>
    {};

    ///////////////////////////////////////////////////////////////////////////
    // permutation_attribute_transform
    //
    // This transform is invoked for every attribute in a sequence allowing
    // to modify the attribute type exposed by a component to the enclosing
    // permutation component. By default a build_optional transformation is
    // performed.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Attribute, typename Domain>
    struct permutation_attribute_transform
      : traits::build_optional<Attribute>
    {};

    ///////////////////////////////////////////////////////////////////////////
    // sequential_or_attribute_transform
    //
    // This transform is invoked for every attribute in a sequential_or allowing
    // to modify the attribute type exposed by a component to the enclosing
    // sequential_or component. By default a build_optional transformation is
    // performed.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Attribute, typename Domain>
    struct sequential_or_attribute_transform
      : traits::build_optional<Attribute>
    {};

    ///////////////////////////////////////////////////////////////////////////
    // build_fusion_vector
    //
    // Build a fusion vector from a fusion sequence. All unused attributes
    // are filtered out. If the result is empty after the removal of unused
    // types, return unused_type. If the input sequence is an unused_type,
    // also return unused_type.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Sequence>
    struct build_fusion_vector
    {
        // Remove all unused attributes
        typedef typename
            filter_unused_attributes<Sequence>::type
        filtered_attributes;

        // Build a fusion vector from a fusion sequence (Sequence),
        // But *only if* the sequence is not empty. i.e. if the
        // sequence is empty, our result will be unused_type.

        typedef typename
            mpl::eval_if<
                fusion::result_of::empty<filtered_attributes>
              , mpl::identity<unused_type>
              , fusion::result_of::as_vector<filtered_attributes>
            >::type
        type;
    };

    template <>
    struct build_fusion_vector<unused_type>
    {
        typedef unused_type type;
    };

    ///////////////////////////////////////////////////////////////////////////
    // build_attribute_sequence
    //
    // Build a fusion sequence attribute sequence from a sequence of
    // components. Transform<T>::type is called on each element.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Sequence, typename Context
      , template <typename T, typename D> class Transform
      , typename Iterator = unused_type, typename Domain = unused_type>
    struct build_attribute_sequence
    {
        struct element_attribute
        {
            template <typename T>
            struct result;

            template <typename F, typename Element>
            struct result<F(Element)>
            {
                typedef typename
                    Transform<
                        typename attribute_of<Element, Context, Iterator>::type
                      , Domain
                    >::type
                type;
            };

            // never called, but needed for decltype-based result_of (C++0x)
#ifndef BOOST_NO_RVALUE_REFERENCES
            template <typename Element>
            typename result<element_attribute(Element)>::type
            operator()(Element&&) const;
#endif
        };

        // Compute the list of attributes of all sub-components
        typedef typename
            fusion::result_of::transform<Sequence, element_attribute>::type
        type;
    };

    ///////////////////////////////////////////////////////////////////////////
    // has_no_unused
    //
    // Test if there are no unused attributes in Sequence
    ///////////////////////////////////////////////////////////////////////////
    template <typename Sequence>
    struct has_no_unused
      : is_same<
            typename mpl::find_if<Sequence, is_same<mpl::_, unused_type> >::type
          , typename mpl::end<Sequence>::type>
    {};

    namespace detail
    {
        template <typename Sequence, bool no_unused
            , int size = mpl::size<Sequence>::value>
        struct build_collapsed_variant;

        // N element case, no unused
        template <typename Sequence, int size>
        struct build_collapsed_variant<Sequence, true, size>
            : spirit::detail::as_variant<Sequence> {};

        // N element case with unused
        template <typename Sequence, int size>
        struct build_collapsed_variant<Sequence, false, size>
        {
            typedef boost::optional<
                typename spirit::detail::as_variant<
                    typename fusion::result_of::pop_front<Sequence>::type
                >::type
            > type;
        };

        // 1 element case, no unused
        template <typename Sequence>
        struct build_collapsed_variant<Sequence, true, 1>
            : mpl::front<Sequence> {};

        // 1 element case, with unused
        template <typename Sequence>
        struct build_collapsed_variant<Sequence, false, 1>
            : mpl::front<Sequence> {};

        // 2 element case, no unused
        template <typename Sequence>
        struct build_collapsed_variant<Sequence, true, 2>
            : spirit::detail::as_variant<Sequence> {};

        // 2 element case, with unused
        template <typename Sequence>
        struct build_collapsed_variant<Sequence, false, 2>
        {
            typedef boost::optional<
                typename mpl::deref<
                    typename mpl::next<
                        typename mpl::begin<Sequence>::type
                    >::type
                >::type
            >
            type;
        };
    }

    ///////////////////////////////////////////////////////////////////////////
    // alternative_attribute_transform
    //
    // This transform is invoked for every attribute in an alternative allowing
    // to modify the attribute type exposed by a component to the enclosing
    // alternative component. By default no transformation is performed.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Attribute, typename Domain>
    struct alternative_attribute_transform
      : mpl::identity<Attribute>
    {};

    ///////////////////////////////////////////////////////////////////////////
    // build_variant
    //
    // Build a boost::variant from a fusion sequence. build_variant makes sure
    // that 1) all attributes in the variant are unique 2) puts the unused
    // attribute, if there is any, to the front and 3) collapses single element
    // variants, variant<T> to T.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Sequence>
    struct build_variant
    {
        // Remove all unused attributes.
        typedef typename
            filter_unused_attributes<Sequence>::type
        filtered_attributes;

        typedef has_no_unused<Sequence> no_unused;

        // If the original attribute list does not contain any unused
        // attributes, it is used, otherwise a single unused_type is
        // pushed to the front of the list. This is to make sure that if
        // there is an unused_type in the list, it is the first one.
        typedef typename
            mpl::eval_if<
                no_unused,
                mpl::identity<Sequence>,
                fusion::result_of::push_front<filtered_attributes, unused_type>
            >::type
        attribute_sequence;

        // Make sure each of the types occur only once in the type list
        typedef typename
            mpl::fold<
                attribute_sequence, mpl::vector<>,
                mpl::if_<
                    mpl::contains<mpl::_1, mpl::_2>,
                    mpl::_1, mpl::push_back<mpl::_1, mpl::_2>
                >
            >::type
        no_duplicates;

        // If there is only one type in the list of types we strip off the
        // variant. IOTW, collapse single element variants, variant<T> to T.
        // Take note that this also collapses variant<unused_type, T> to T.
        typedef typename
            traits::detail::build_collapsed_variant<
                no_duplicates, no_unused::value>::type
        type;
    };

    ///////////////////////////////////////////////////////////////////////////
    //  transform_attribute
    //
    //  Sometimes the user needs to transform the attribute types for certain
    //  attributes. This template can be used as a customization point, where
    //  the user is able specify specific transformation rules for any attribute
    //  type.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Exposed, typename Transformed, typename Domain
      , typename Enable/* = void*/>
    struct transform_attribute;

    ///////////////////////////////////////////////////////////////////////////
    template <typename Domain, typename Transformed, typename Exposed>
    typename spirit::result_of::pre_transform<Exposed, Transformed, Domain>::type
    pre_transform(Exposed& attr BOOST_PROTO_DISABLE_IF_IS_CONST(Exposed))
    {
        return transform_attribute<Exposed, Transformed, Domain>::pre(attr);
    }

    template <typename Domain, typename Transformed, typename Exposed>
    typename spirit::result_of::pre_transform<Exposed const, Transformed, Domain>::type
    pre_transform(Exposed const& attr)
    {
        return transform_attribute<Exposed const, Transformed, Domain>::pre(attr);
    }

    ///////////////////////////////////////////////////////////////////////////
    // make_attribute
    //
    // All parsers and generators have specific attribute types.
    // Spirit parsers and generators are passed an attribute; these are either
    // references to the expected type, or an unused_type -- to flag that we do
    // not care about the attribute. For semantic actions, however, we need to
    // have a real value to pass to the semantic action. If the client did not
    // provide one, we will have to synthesize the value. This class takes care
    // of that. *Note that this behavior has changed. From Boost 1.47, semantic
    // actions always take in the passed attribute as-is if the PP constant:
    // BOOST_SPIRIT_ACTIONS_ALLOW_ATTR_COMPAT is defined.
    ///////////////////////////////////////////////////////////////////////////
    template <typename Attribute, typename ActualAttribute>
    struct make_attribute
    {
        typedef typename remove_const<Attribute>::type attribute_type;
        typedef typename
            mpl::if_<
                is_same<typename remove_const<ActualAttribute>::type, unused_type>
              , attribute_type
              , ActualAttribute&>::type
        type;

        typedef typename
            mpl::if_<
                is_same<typename remove_const<ActualAttribute>::type, unused_type>
              , attribute_type
              , ActualAttribute>::type
        value_type;

        static Attribute call(unused_type)
        {
             // synthesize the attribute/parameter
            return boost::get(value_initialized<attribute_type>());
        }

        template <typename T>
        static T& call(T& value)
        {
            return value; // just pass the one provided
        }
    };

    template <typename Attribute, typename ActualAttribute>
    struct make_attribute<Attribute&, ActualAttribute>
      : make_attribute<Attribute, ActualAttribute>
    {};

    template <typename Attribute, typename ActualAttribute>
    struct make_attribute<Attribute const&, ActualAttribute>
      : make_attribute<Attribute const, ActualAttribute>
    {};

    template <typename ActualAttribute>
    struct make_attribute<unused_type, ActualAttribute>
    {
        typedef unused_type type;
        typedef unused_type value_type;
        static unused_type call(unused_type)
        {
            return unused;
        }
    };

    ///////////////////////////////////////////////////////////////////////////
    // swap_impl
    //
    // Swap (with proper handling of unused_types)
    ///////////////////////////////////////////////////////////////////////////
    template <typename A, typename B>
    void swap_impl(A& a, B& b)
    {
        A temp = a;
        a = b;
        b = temp;
    }

    template <typename T>
    void swap_impl(T& a, T& b)
    {
        using namespace std;
        swap(a, b);
    }

    template <typename A>
    void swap_impl(A&, unused_type)
    {
    }

    template <typename A>
    void swap_impl(unused_type, A&)
    {
    }

    inline void swap_impl(unused_type, unused_type)
    {
    }

    ///////////////////////////////////////////////////////////////////////////
    //  Strips single element fusion vectors into its 'naked'
    //  form: vector<T> --> T
    ///////////////////////////////////////////////////////////////////////////
    template <typename T>
    struct strip_single_element_vector
    {
        typedef T type;
    };

    template <typename T>
    struct strip_single_element_vector<fusion::vector1<T> >
    {
        typedef T type;
    };

    template <typename T>
    struct strip_single_element_vector<fusion::vector<T> >
    {
        typedef T type;
    };

    ///////////////////////////////////////////////////////////////////////////
    // meta function to return whether the argument is a one element fusion
    // sequence
    ///////////////////////////////////////////////////////////////////////////
    template <typename T
      , bool IsFusionSeq = fusion::traits::is_sequence<T>::value
      , bool IsProtoExpr = proto::is_expr<T>::value>
    struct one_element_sequence
      : mpl::false_
    {};

    template <typename T>
    struct one_element_sequence<T, true, false>
      : mpl::bool_<mpl::size<T>::value == 1>
    {};

    ///////////////////////////////////////////////////////////////////////////
    // clear
    //
    // Clear data efficiently
    ///////////////////////////////////////////////////////////////////////////
    template <typename T>
    void clear(T& val);

    namespace detail
    {
        // this is used by the variant and fusion sequence dispatch
        struct clear_visitor : static_visitor<>
        {
            template <typename T>
            void operator()(T& val) const
            {
                spirit::traits::clear(val);
            }
        };

        // default
        template <typename T>
        void clear_impl2(T& val, mpl::false_)
        {
            val = T();
        }

        // for fusion sequences
        template <typename T>
        void clear_impl2(T& val, mpl::true_)
        {
            fusion::for_each(val, clear_visitor());
        }

        // dispatch default or fusion sequence
        template <typename T>
        void clear_impl(T& val, mpl::false_)
        {
            clear_impl2(val, fusion::traits::is_sequence<T>());
        }

        // STL containers
        template <typename T>
        void clear_impl(T& val, mpl::true_)
        {
            val.clear();
        }
    }

    template <typename T, typename Enable/* = void*/>
    struct clear_value
    {
        static void call(T& val)
        {
            detail::clear_impl(val, typename is_container<T>::type());
        }
    };

    // optionals
    template <typename T>
    struct clear_value<boost::optional<T> >
    {
        static void call(boost::optional<T>& val)
        {
            if (val)
                val = none_t();   // leave optional uninitialized
        }
    };

    // variants
    template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
    struct clear_value<variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
    {
        static void call(variant<BOOST_VARIANT_ENUM_PARAMS(T)>& val)
        {
            apply_visitor(detail::clear_visitor(), val);
        }
    };

    // iterator range
    template <typename T>
    struct clear_value<iterator_range<T> >
    {
        static void call(iterator_range<T>& val)
        {
            val = iterator_range<T>(val.end(), val.end());
        }
    };

    // main dispatch
    template <typename T>
    void clear(T& val)
    {
        clear_value<T>::call(val);
    }

    // for unused
    inline void clear(unused_type)
    {
    }

    ///////////////////////////////////////////////////////////////////////////
    namespace detail
    {
        template <typename Out>
        struct print_fusion_sequence
        {
            print_fusion_sequence(Out& out)
              : out(out), is_first(true) {}

            typedef void result_type;

            template <typename T>
            void operator()(T const& val) const
            {
                if (is_first)
                    is_first = false;
                else
                    out << ", ";
                spirit::traits::print_attribute(out, val);
            }

            Out& out;
            mutable bool is_first;
        };

        // print elements in a variant
        template <typename Out>
        struct print_visitor : static_visitor<>
        {
            print_visitor(Out& out) : out(out) {}

            template <typename T>
            void operator()(T const& val) const
            {
                spirit::traits::print_attribute(out, val);
            }

            Out& out;
        };
    }

    template <typename Out, typename T, typename Enable>
    struct print_attribute_debug
    {
        // for plain data types
        template <typename T_>
        static void call_impl3(Out& out, T_ const& val, mpl::false_)
        {
            out << val;
        }

        // for fusion data types
        template <typename T_>
        static void call_impl3(Out& out, T_ const& val, mpl::true_)
        {
            out << '[';
            fusion::for_each(val, detail::print_fusion_sequence<Out>(out));
            out << ']';
        }

        // non-stl container
        template <typename T_>
        static void call_impl2(Out& out, T_ const& val, mpl::false_)
        {
            call_impl3(out, val, fusion::traits::is_sequence<T_>());
        }

        // stl container
        template <typename T_>
        static void call_impl2(Out& out, T_ const& val, mpl::true_)
        {
            out << '[';
            if (!traits::is_empty(val))
            {
                bool first = true;
                typename container_iterator<T_ const>::type iend = traits::end(val);
                for (typename container_iterator<T_ const>::type i = traits::begin(val);
                     !traits::compare(i, iend); traits::next(i))
                {
                    if (!first)
                        out << ", ";
                    first = false;
                    spirit::traits::print_attribute(out, traits::deref(i));
                }
            }
            out << ']';
        }

        // for variant types
        template <typename T_>
        static void call_impl(Out& out, T_ const& val, mpl::false_)
        {
            apply_visitor(detail::print_visitor<Out>(out), val);
        }

        // for non-variant types
        template <typename T_>
        static void call_impl(Out& out, T_ const& val, mpl::true_)
        {
            call_impl2(out, val, is_container<T_>());
        }

        // main entry point
        static void call(Out& out, T const& val)
        {
            call_impl(out, val, not_is_variant<T>());
        }
    };

    template <typename Out, typename T>
    struct print_attribute_debug<Out, boost::optional<T> >
    {
        static void call(Out& out, boost::optional<T> const& val)
        {
            if (val)
                spirit::traits::print_attribute(out, *val);
            else
                out << "[empty]";
        }
    };

    ///////////////////////////////////////////////////////////////////////////
    template <typename Out, typename T>
    inline void print_attribute(Out& out, T const& val)
    {
        print_attribute_debug<Out, T>::call(out, val);
    }

    template <typename Out>
    inline void print_attribute(Out&, unused_type)
    {
    }

    ///////////////////////////////////////////////////////////////////////////
    // generate debug output for lookahead token (character) stream
    namespace detail
    {
        struct token_printer_debug_for_chars
        {
            template<typename Out, typename Char>
            static void print(Out& o, Char c)
            {
                using namespace std;    // allow for ADL to find the proper iscntrl

                if (c == static_cast<Char>('\a'))
                    o << "\\a";
                else if (c == static_cast<Char>('\b'))
                    o << "\\b";
                else if (c == static_cast<Char>('\f'))
                    o << "\\f";
                else if (c == static_cast<Char>('\n'))
                    o << "\\n";
                else if (c == static_cast<Char>('\r'))
                    o << "\\r";
                else if (c == static_cast<Char>('\t'))
                    o << "\\t";
                else if (c == static_cast<Char>('\v'))
                    o << "\\v";
                else if (c >= 0 && c < 127 && iscntrl(c))
                    o << "\\" << std::oct << static_cast<int>(c);
                else
                    o << static_cast<char>(c);
            }
        };

        // for token types where the comparison with char constants wouldn't work
        struct token_printer_debug
        {
            template<typename Out, typename T>
            static void print(Out& o, T const& val)
            {
                o << val;
            }
        };
    }

    template <typename T, typename Enable>
    struct token_printer_debug
      : mpl::if_<
            mpl::and_<
                is_convertible<T, char>, is_convertible<char, T> >
          , detail::token_printer_debug_for_chars
          , detail::token_printer_debug>::type
    {};

    template <typename Out, typename T>
    inline void print_token(Out& out, T const& val)
    {
        // allow to customize the token printer routine
        token_printer_debug<T>::print(out, val);
    }
}}}

///////////////////////////////////////////////////////////////////////////////
namespace boost { namespace spirit { namespace result_of
{
    template <typename Exposed, typename Transformed, typename Domain>
    struct pre_transform
      : traits::transform_attribute<Exposed, Transformed, Domain>
    {};
}}}


#endif