summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorTobias Markmann <tm@ayena.de>2014-10-19 20:22:58 (GMT)
committerTobias Markmann <tm@ayena.de>2014-10-20 13:49:33 (GMT)
commit6b22dfcf59474dd016a0355a3102a1dd3692d92c (patch)
tree2b1fd33be433a91e81fee84fdc2bf1b52575d934 /3rdParty/Boost/src/boost/spirit/home/phoenix/detail/type_deduction.hpp
parent38b0cb785fea8eae5e48fae56440695fdfd10ee1 (diff)
downloadswift-6b22dfcf59474dd016a0355a3102a1dd3692d92c.zip
swift-6b22dfcf59474dd016a0355a3102a1dd3692d92c.tar.bz2
Update Boost in 3rdParty to version 1.56.0.
This updates Boost in our 3rdParty directory to version 1.56.0. Updated our update.sh script to stop on error. Changed error reporting in SwiftTools/CrashReporter.cpp to SWIFT_LOG due to missing include of <iostream> with newer Boost. Change-Id: I4b35c77de951333979a524097f35f5f83d325edc
Diffstat (limited to '3rdParty/Boost/src/boost/spirit/home/phoenix/detail/type_deduction.hpp')
-rw-r--r--3rdParty/Boost/src/boost/spirit/home/phoenix/detail/type_deduction.hpp497
1 files changed, 0 insertions, 497 deletions
diff --git a/3rdParty/Boost/src/boost/spirit/home/phoenix/detail/type_deduction.hpp b/3rdParty/Boost/src/boost/spirit/home/phoenix/detail/type_deduction.hpp
deleted file mode 100644
index b99ea1e..0000000
--- a/3rdParty/Boost/src/boost/spirit/home/phoenix/detail/type_deduction.hpp
+++ /dev/null
@@ -1,497 +0,0 @@
-/*=============================================================================
- Copyright (c) 2001-2007 Joel de Guzman
-
- Distributed under the Boost Software License, Version 1.0. (See accompanying
- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-==============================================================================*/
-#ifndef PHOENIX_DETAIL_TYPE_DEDUCTION_HPP
-#define PHOENIX_DETAIL_TYPE_DEDUCTION_HPP
-
-/*=============================================================================
-
- Return Type Deduction
- [JDG Sept. 15, 2003]
-
- Before C++ adopts the typeof, there is currently no way to deduce the
- result type of an expression such as x + y. This deficiency is a major
- problem with template metaprogramming; for example, when writing
- forwarding functions that attempt to capture the essence of an
- expression inside a function. Consider the std::plus<T>:
-
- template <typename T>
- struct plus : public binary_function<T, T, T>
- {
- T operator()(T const& x, T const& y) const
- {
- return x + y;
- }
- };
-
- What's wrong with this? Well, this functor does not accurately capture
- the behavior of the plus operator. 1) It does not handle the case where
- x and y are of different types (e.g. x is short and y is int). 2) It
- assumes that the arguments and return type are the same (i.e. when
- adding a short and an int, the return type ought to be an int). Due to
- these shortcomings, std::plus<T>(x, y) is a poor substitute for x + y.
-
- The case where x is short and y is int does not really expose the
- problem. We can simply use std::plus<int> and be happy that the
- operands x and y will simply be converted to an int. The problem
- becomes evident when an operand is a user defined type such as bigint.
- Here, the conversion to bigint is simply not acceptable. Even if the
- unnecessary conversion is tolerable, in generic code, it is not always
- possible to choose the right T type that can accomodate both x and y
- operands.
-
- To truly model the plus operator, what we need is a polymorphic functor
- that can take arbitrary x and y operands. Here's a rough schematic:
-
- struct plus
- {
- template <typename X, typename Y>
- unspecified-type
- operator()(X const& x, Y const& y) const
- {
- return x + y;
- }
- };
-
- Now, we can handle the case where X and Y are arbitrary types. We've
- solved the first problem. To solve the second problem, we need some
- form of return type deduction mechanism. If we had the typeof, it would
- be something like:
-
- template <typename X, typename Y>
- typeof(X() + Y())
- operator()(X const& x, Y const& y) const
- {
- return x + y;
- }
-
- Without the typeof facility, it is only possible to wrap an expression
- such as x + y in a function or functor if we are given a hint that
- tells us what the actual result type of such an expression is. Such a
- hint can be in the form of a metaprogram, that, given the types of the
- arguments, will return the result type. Example:
-
- template <typename X, typename Y>
- struct result_of_plus
- {
- typedef unspecified-type type;
- };
-
- Given a result_of_plus metaprogram, we can complete our polymorphic
- plus functor:
-
- struct plus
- {
- template <typename X, typename Y>
- typename result_of_plus<X, Y>::type
- operator()(X const& x, Y const& y) const
- {
- return x + y;
- }
- };
-
- The process is not automatic. We have to specialize the metaprogram for
- specific argument types. Examples:
-
- template <>
- struct result_of_plus<short, int>
- {
- typedef int type;
- };
-
- template <typename T>
- struct result_of_plus<std::complex<T>, std::complex<T> >
- {
- typedef std::complex<T> type;
- };
-
- To make it easier for the user, specializations are provided for common
- types such as primitive c++ types (e.g. int, char, double, etc.), and
- standard types (e.g. std::complex, iostream, std containers and
- iterators).
-
- To further improve the ease of use, for user defined classes, we can
- supply a few more basic specializations through metaprogramming using
- heuristics based on canonical operator rules (Such heuristics can be
- found in the LL and Phoenix, for example). For example, it is rather
- common that the result of x += y is X& or the result of x || y is a
- bool. The client is out of luck if her classes do not follow the
- canonical rules. She'll then have to supply her own specialization.
-
- The type deduction mechanism demostrated below approaches the problem
- not through specialization and heuristics, but through a limited form
- of typeof mechanism. The code does not use heuristics, hence, no
- guessing games. The code takes advantage of the fact that, in general,
- the result type of an expression is related to one its arguments' type.
- For example, x + y, where x has type int and y has type double, has the
- result type double (the second operand type). Another example, x[y]
- where x is a vector<T> and y is a std::size_t, has the result type
- vector<T>::reference (the vector<T>'s reference type type).
-
- The limited form of type deduction presented can detect common
- relations if the result of a binary or unary operation, given arguments
- x and y with types X and Y (respectively), is X, Y, X&, Y&, X*, Y*, X
- const*, Y const*, bool, int, unsigned, double, container and iterator
- elements (e.g the T, where X is: T[N], T*, vector<T>, map<T>,
- vector<T>::iterator). More arguments/return type relationships can be
- established if needed.
-
- A set of overloaded test(T) functions capture these argument related
- types. Each test(T) function returns a distinct type that can be used
- to determine the exact type of an expression.
-
- Consider:
-
- template <typename X, typename Y>
- x_value_type
- test(X const&);
-
- template <typename X, typename Y>
- y_value_type
- test(Y const&);
-
- Given an expression x + y, where x is int and y is double, the call to:
-
- test<int, double>(x + y)
-
- will return a y_value_type.
-
- Now, if we rig x_value_type and y_value_type such that both have unique
- sizes, we can use sizeof(test<X, Y>(x + y)) to determine if the result
- type is either X or Y.
-
- For example, if:
-
- sizeof(test<X, Y>(x + y)) == sizeof(y_value_type)
-
- then, we know for sure that the result of x + y has type Y.
-
- The same basic scheme can be used to detect more argument-dependent
- return types where the sizeof the test(T) return type is used to index
- through a boost::mpl vector which holds each of the corresponding
- result types.
-
-==============================================================================*/
-#include <boost/mpl/vector/vector20.hpp>
-#include <boost/mpl/at.hpp>
-#include <boost/mpl/not.hpp>
-#include <boost/mpl/or.hpp>
-#include <boost/mpl/and.hpp>
-#include <boost/mpl/identity.hpp>
-#include <boost/type_traits/remove_reference.hpp>
-#include <boost/type_traits/add_reference.hpp>
-#include <boost/type_traits/remove_cv.hpp>
-#include <boost/type_traits/is_const.hpp>
-#include <boost/type_traits/is_reference.hpp>
-#include <boost/type_traits/is_same.hpp>
-#include <boost/type_traits/is_array.hpp>
-#include <boost/type_traits/is_pointer.hpp>
-#include <boost/utility/enable_if.hpp>
-#include <boost/static_assert.hpp>
-#include <boost/preprocessor/cat.hpp>
-#include <boost/spirit/home/phoenix/detail/local_reference.hpp>
-
-namespace boost
-{
- struct error_cant_deduce_type {};
-}
-
-namespace boost { namespace type_deduction_detail
-{
- typedef char(&bool_value_type)[1];
- typedef char(&int_value_type)[2];
- typedef char(&uint_value_type)[3];
- typedef char(&double_value_type)[4];
-
- typedef char(&bool_reference_type)[5];
- typedef char(&int_reference_type)[6];
- typedef char(&uint_reference_type)[7];
- typedef char(&double_reference_type)[8];
-
- typedef char(&x_value_type)[9];
- typedef char(&x_reference_type)[10];
- typedef char(&x_const_pointer_type)[11];
- typedef char(&x_pointer_type)[12];
-
- typedef char(&y_value_type)[13];
- typedef char(&y_reference_type)[14];
- typedef char(&y_const_pointer_type)[15];
- typedef char(&y_pointer_type)[16];
-
- typedef char(&container_reference_type)[17];
- typedef char(&container_const_reference_type)[18];
- typedef char(&container_mapped_type)[19];
-
- typedef char(&cant_deduce_type)[20];
-
- template <typename T, typename Plain = typename remove_cv<T>::type>
- struct is_basic
- : mpl::or_<
- is_same<Plain, bool>
- , is_same<Plain, int>
- , is_same<Plain, unsigned>
- , is_same<Plain, double>
- > {};
-
- template <typename C>
- struct reference_type
- {
- typedef typename C::reference type;
- };
-
- template <typename T>
- struct reference_type<T const>
- : reference_type<T> {};
-
- template <typename T, std::size_t N>
- struct reference_type<T[N]>
- {
- typedef T& type;
- };
-
- template <typename T>
- struct reference_type<T*>
- {
- typedef T& type;
- };
-
- template <typename T>
- struct reference_type<T* const>
- {
- typedef T const& type;
- };
-
- template <typename C>
- struct const_reference_type
- {
- typedef typename C::const_reference type;
- };
-
- template <typename C>
- struct mapped_type
- {
- typedef typename C::mapped_type type;
- };
-
- struct asymmetric;
-
- template <typename X, typename Y>
- cant_deduce_type
- test(...); // The black hole !!!
-
- template <typename X, typename Y>
- bool_value_type
- test(bool const&);
-
- template <typename X, typename Y>
- int_value_type
- test(int const&);
-
- template <typename X, typename Y>
- uint_value_type
- test(unsigned const&);
-
- template <typename X, typename Y>
- double_value_type
- test(double const&);
-
- template <typename X, typename Y>
- bool_reference_type
- test(bool&);
-
- template <typename X, typename Y>
- int_reference_type
- test(int&);
-
- template <typename X, typename Y>
- uint_reference_type
- test(unsigned&);
-
- template <typename X, typename Y>
- double_reference_type
- test(double&);
-
- template <typename X, typename Y>
- typename disable_if<
- mpl::or_<is_basic<X>, is_const<X> >
- , x_value_type
- >::type
- test(X const&);
-
- template <typename X, typename Y>
- typename disable_if<
- is_basic<X>
- , x_reference_type
- >::type
- test(X&);
-
- template <typename X, typename Y>
- typename disable_if<
- mpl::or_<
- is_basic<X>
- , is_const<X>
- >
- , x_const_pointer_type
- >::type
- test(X const*);
-
- template <typename X, typename Y>
- x_pointer_type
- test(X*);
-
- template <typename X, typename Y>
- typename disable_if<
- mpl::or_<
- is_basic<Y>
- , is_same<Y, asymmetric>
- , is_const<Y>
- , is_same<X, Y>
- >
- , y_value_type
- >::type
- test(Y const&);
-
- template <typename X, typename Y>
- typename disable_if<
- mpl::or_<
- is_basic<Y>
- , is_same<Y, asymmetric>
- , is_same<X, Y>
- >
- , y_reference_type
- >::type
- test(Y&);
-
- template <typename X, typename Y>
- typename disable_if<
- mpl::or_<
- is_same<Y, asymmetric>
- , is_const<Y>
- , is_same<X, Y>
- >
- , y_const_pointer_type
- >::type
- test(Y const*);
-
- template <typename X, typename Y>
- typename disable_if<
- mpl::or_<
- is_same<Y, asymmetric>
- , is_same<X, Y>
- >
- , y_pointer_type
- >::type
- test(Y*);
-
- template <typename X, typename Y>
- typename disable_if<
- mpl::or_<
- is_basic<typename X::value_type>
- , is_same<typename add_reference<X>::type, typename X::reference>
- >
- , container_reference_type
- >::type
- test(typename X::reference);
-
- template <typename X, typename Y, typename Z>
- typename enable_if<
- mpl::and_<
- mpl::or_<is_array<X>, is_pointer<X> >
- , mpl::not_<is_basic<Z> >
- , mpl::not_<is_same<X, Z> >
- >
- , container_reference_type
- >::type
- test(Z&);
-
- template <typename X, typename Y>
- typename disable_if<
- mpl::or_<
- is_basic<typename X::value_type>
- , is_same<typename add_reference<X>::type, typename X::const_reference>
- >
- , container_const_reference_type
- >::type
- test(typename X::const_reference);
-
- template <typename X, typename Y>
- typename disable_if<
- is_basic<typename X::mapped_type>
- , container_mapped_type
- >::type
- test(typename X::mapped_type);
-
- template <typename X, typename Y>
- struct base_result_of
- {
- typedef typename phoenix::detail::unwrap_local_reference<X>::type x_type_;
- typedef typename phoenix::detail::unwrap_local_reference<Y>::type y_type_;
- typedef typename remove_reference<x_type_>::type x_type;
- typedef typename remove_reference<y_type_>::type y_type;
-
- typedef mpl::vector20<
- mpl::identity<bool>
- , mpl::identity<int>
- , mpl::identity<unsigned>
- , mpl::identity<double>
- , mpl::identity<bool&>
- , mpl::identity<int&>
- , mpl::identity<unsigned&>
- , mpl::identity<double&>
- , mpl::identity<x_type>
- , mpl::identity<x_type&>
- , mpl::identity<x_type const*>
- , mpl::identity<x_type*>
- , mpl::identity<y_type>
- , mpl::identity<y_type&>
- , mpl::identity<y_type const*>
- , mpl::identity<y_type*>
- , reference_type<x_type>
- , const_reference_type<x_type>
- , mapped_type<x_type>
- , mpl::identity<error_cant_deduce_type>
- >
- types;
- };
-
-}} // namespace boost::type_deduction_detail
-
-#define BOOST_RESULT_OF_COMMON(expr, name, Y, SYMMETRY) \
- struct name \
- { \
- typedef type_deduction_detail::base_result_of<X, Y> base_type; \
- static typename base_type::x_type x; \
- static typename base_type::y_type y; \
- \
- BOOST_STATIC_CONSTANT(int, \
- size = sizeof( \
- type_deduction_detail::test< \
- typename base_type::x_type \
- , SYMMETRY \
- >(expr) \
- )); \
- \
- BOOST_STATIC_CONSTANT(int, index = (size / sizeof(char)) - 1); \
- \
- typedef typename mpl::at_c< \
- typename base_type::types, index>::type id; \
- typedef typename id::type type; \
- };
-
-#define BOOST_UNARY_RESULT_OF(expr, name) \
- template <typename X> \
- BOOST_RESULT_OF_COMMON(expr, name, \
- type_deduction_detail::asymmetric, type_deduction_detail::asymmetric)
-
-#define BOOST_BINARY_RESULT_OF(expr, name) \
- template <typename X, typename Y> \
- BOOST_RESULT_OF_COMMON(expr, name, Y, typename base_type::y_type)
-
-#define BOOST_ASYMMETRIC_BINARY_RESULT_OF(expr, name) \
- template <typename X, typename Y> \
- BOOST_RESULT_OF_COMMON(expr, name, Y, type_deduction_detail::asymmetric)
-
-#endif