summaryrefslogtreecommitdiffstats
blob: b99ea1e86cd47ee953b3be01c2ffeb41b2363c9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/*=============================================================================
    Copyright (c) 2001-2007 Joel de Guzman

    Distributed under the Boost Software License, Version 1.0. (See accompanying
    file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
#ifndef PHOENIX_DETAIL_TYPE_DEDUCTION_HPP
#define PHOENIX_DETAIL_TYPE_DEDUCTION_HPP

/*=============================================================================

    Return Type Deduction
    [JDG Sept. 15, 2003]

    Before C++ adopts the typeof, there is currently no way to deduce the
    result type of an expression such as x + y. This deficiency is a major
    problem with template metaprogramming; for example, when writing
    forwarding functions that attempt to capture the essence of an
    expression inside a function. Consider the std::plus<T>:

        template <typename T>
        struct plus : public binary_function<T, T, T>
        {
            T operator()(T const& x, T const& y) const
            {
                return x + y;
            }
        };

    What's wrong with this? Well, this functor does not accurately capture
    the behavior of the plus operator. 1) It does not handle the case where
    x and y are of different types (e.g. x is short and y is int). 2) It
    assumes that the arguments and return type are the same (i.e. when
    adding a short and an int, the return type ought to be an int). Due to
    these shortcomings, std::plus<T>(x, y) is a poor substitute for x + y.

    The case where x is short and y is int does not really expose the
    problem. We can simply use std::plus<int> and be happy that the
    operands x and y will simply be converted to an int. The problem
    becomes evident when an operand is a user defined type such as bigint.
    Here, the conversion to bigint is simply not acceptable. Even if the
    unnecessary conversion is tolerable, in generic code, it is not always
    possible to choose the right T type that can accomodate both x and y
    operands.

    To truly model the plus operator, what we need is a polymorphic functor
    that can take arbitrary x and y operands. Here's a rough schematic:

        struct plus
        {
            template <typename X, typename Y>
            unspecified-type
            operator()(X const& x, Y const& y) const
            {
                return x + y;
            }
        };

    Now, we can handle the case where X and Y are arbitrary types. We've
    solved the first problem. To solve the second problem, we need some
    form of return type deduction mechanism. If we had the typeof, it would
    be something like:

        template <typename X, typename Y>
        typeof(X() + Y())
        operator()(X const& x, Y const& y) const
        {
            return x + y;
        }

    Without the typeof facility, it is only possible to wrap an expression
    such as x + y in a function or functor if we are given a hint that
    tells us what the actual result type of such an expression is. Such a
    hint can be in the form of a metaprogram, that, given the types of the
    arguments, will return the result type. Example:

        template <typename X, typename Y>
        struct result_of_plus
        {
            typedef unspecified-type type;
        };

    Given a result_of_plus metaprogram, we can complete our polymorphic
    plus functor:

        struct plus
        {
            template <typename X, typename Y>
            typename result_of_plus<X, Y>::type
            operator()(X const& x, Y const& y) const
            {
                return x + y;
            }
        };

    The process is not automatic. We have to specialize the metaprogram for
    specific argument types. Examples:

        template <>
        struct result_of_plus<short, int>
        {
            typedef int type;
        };

        template <typename T>
        struct result_of_plus<std::complex<T>, std::complex<T> >
        {
            typedef std::complex<T> type;
        };

    To make it easier for the user, specializations are provided for common
    types such as primitive c++ types (e.g. int, char, double, etc.), and
    standard types (e.g. std::complex, iostream, std containers and
    iterators).

    To further improve the ease of use, for user defined classes, we can
    supply a few more basic specializations through metaprogramming using
    heuristics based on canonical operator rules (Such heuristics can be
    found in the LL and Phoenix, for example). For example, it is rather
    common that the result of x += y is X& or the result of x || y is a
    bool. The client is out of luck if her classes do not follow the
    canonical rules. She'll then have to supply her own specialization.

    The type deduction mechanism demostrated below approaches the problem
    not through specialization and heuristics, but through a limited form
    of typeof mechanism. The code does not use heuristics, hence, no
    guessing games. The code takes advantage of the fact that, in general,
    the result type of an expression is related to one its arguments' type.
    For example, x + y, where x has type int and y has type double, has the
    result type double (the second operand type). Another example, x[y]
    where x is a vector<T> and y is a std::size_t, has the result type
    vector<T>::reference (the vector<T>'s reference type type).

    The limited form of type deduction presented can detect common
    relations if the result of a binary or unary operation, given arguments
    x and y with types X and Y (respectively), is X, Y, X&, Y&, X*, Y*, X
    const*, Y const*, bool, int, unsigned, double, container and iterator
    elements (e.g the T, where X is: T[N], T*, vector<T>, map<T>,
    vector<T>::iterator). More arguments/return type relationships can be
    established if needed.

    A set of overloaded test(T) functions capture these argument related
    types. Each test(T) function returns a distinct type that can be used
    to determine the exact type of an expression.

    Consider:

        template <typename X, typename Y>
        x_value_type
        test(X const&);

        template <typename X, typename Y>
        y_value_type
        test(Y const&);

    Given an expression x + y, where x is int and y is double, the call to:

        test<int, double>(x + y)

    will return a y_value_type.

    Now, if we rig x_value_type and y_value_type such that both have unique
    sizes, we can use sizeof(test<X, Y>(x + y)) to determine if the result
    type is either X or Y.

    For example, if:

        sizeof(test<X, Y>(x + y)) == sizeof(y_value_type)

    then, we know for sure that the result of x + y has type Y.

    The same basic scheme can be used to detect more argument-dependent
    return types where the sizeof the test(T) return type is used to index
    through a boost::mpl vector which holds each of the corresponding
    result types.

==============================================================================*/
#include <boost/mpl/vector/vector20.hpp>
#include <boost/mpl/at.hpp>
#include <boost/mpl/not.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/type_traits/add_reference.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/is_const.hpp>
#include <boost/type_traits/is_reference.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_array.hpp>
#include <boost/type_traits/is_pointer.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/static_assert.hpp>
#include <boost/preprocessor/cat.hpp>
#include <boost/spirit/home/phoenix/detail/local_reference.hpp>

namespace boost
{
    struct error_cant_deduce_type {};
}

namespace boost { namespace type_deduction_detail
{
    typedef char(&bool_value_type)[1];
    typedef char(&int_value_type)[2];
    typedef char(&uint_value_type)[3];
    typedef char(&double_value_type)[4];

    typedef char(&bool_reference_type)[5];
    typedef char(&int_reference_type)[6];
    typedef char(&uint_reference_type)[7];
    typedef char(&double_reference_type)[8];

    typedef char(&x_value_type)[9];
    typedef char(&x_reference_type)[10];
    typedef char(&x_const_pointer_type)[11];
    typedef char(&x_pointer_type)[12];

    typedef char(&y_value_type)[13];
    typedef char(&y_reference_type)[14];
    typedef char(&y_const_pointer_type)[15];
    typedef char(&y_pointer_type)[16];

    typedef char(&container_reference_type)[17];
    typedef char(&container_const_reference_type)[18];
    typedef char(&container_mapped_type)[19];

    typedef char(&cant_deduce_type)[20];

    template <typename T, typename Plain = typename remove_cv<T>::type>
    struct is_basic
        : mpl::or_<
            is_same<Plain, bool>
          , is_same<Plain, int>
          , is_same<Plain, unsigned>
          , is_same<Plain, double>
        > {};

    template <typename C>
    struct reference_type
    {
        typedef typename C::reference type;
    };

    template <typename T>
    struct reference_type<T const>
        : reference_type<T> {};

    template <typename T, std::size_t N>
    struct reference_type<T[N]>
    {
        typedef T& type;
    };

    template <typename T>
    struct reference_type<T*>
    {
        typedef T& type;
    };

    template <typename T>
    struct reference_type<T* const>
    {
        typedef T const& type;
    };

    template <typename C>
    struct const_reference_type
    {
        typedef typename C::const_reference type;
    };

    template <typename C>
    struct mapped_type
    {
        typedef typename C::mapped_type type;
    };

    struct asymmetric;

    template <typename X, typename Y>
    cant_deduce_type
    test(...); // The black hole !!!

    template <typename X, typename Y>
    bool_value_type
    test(bool const&);

    template <typename X, typename Y>
    int_value_type
    test(int const&);

    template <typename X, typename Y>
    uint_value_type
    test(unsigned const&);

    template <typename X, typename Y>
    double_value_type
    test(double const&);

    template <typename X, typename Y>
    bool_reference_type
    test(bool&);

    template <typename X, typename Y>
    int_reference_type
    test(int&);

    template <typename X, typename Y>
    uint_reference_type
    test(unsigned&);

    template <typename X, typename Y>
    double_reference_type
    test(double&);

    template <typename X, typename Y>
    typename disable_if<
        mpl::or_<is_basic<X>, is_const<X> >
      , x_value_type
    >::type
    test(X const&);

    template <typename X, typename Y>
    typename disable_if<
        is_basic<X>
      , x_reference_type
    >::type
    test(X&);

    template <typename X, typename Y>
    typename disable_if<
        mpl::or_<
            is_basic<X>
          , is_const<X>
        >
      , x_const_pointer_type
    >::type
    test(X const*);

    template <typename X, typename Y>
    x_pointer_type
    test(X*);

    template <typename X, typename Y>
    typename disable_if<
        mpl::or_<
            is_basic<Y>
          , is_same<Y, asymmetric>
          , is_const<Y>
          , is_same<X, Y>
        >
      , y_value_type
    >::type
    test(Y const&);

    template <typename X, typename Y>
    typename disable_if<
        mpl::or_<
            is_basic<Y>
          , is_same<Y, asymmetric>
          , is_same<X, Y>
        >
      , y_reference_type
    >::type
    test(Y&);

    template <typename X, typename Y>
    typename disable_if<
        mpl::or_<
            is_same<Y, asymmetric>
          , is_const<Y>
          , is_same<X, Y>
        >
      , y_const_pointer_type
    >::type
    test(Y const*);

    template <typename X, typename Y>
    typename disable_if<
        mpl::or_<
            is_same<Y, asymmetric>
          , is_same<X, Y>
        >
      , y_pointer_type
    >::type
    test(Y*);

    template <typename X, typename Y>
    typename disable_if<
        mpl::or_<
            is_basic<typename X::value_type>
          , is_same<typename add_reference<X>::type, typename X::reference>
        >
      , container_reference_type
    >::type
    test(typename X::reference);

    template <typename X, typename Y, typename Z>
    typename enable_if<
        mpl::and_<
            mpl::or_<is_array<X>, is_pointer<X> >
          , mpl::not_<is_basic<Z> >
          , mpl::not_<is_same<X, Z> >
        >
      , container_reference_type
    >::type
    test(Z&);

    template <typename X, typename Y>
    typename disable_if<
        mpl::or_<
            is_basic<typename X::value_type>
          , is_same<typename add_reference<X>::type, typename X::const_reference>
        >
      , container_const_reference_type
    >::type
    test(typename X::const_reference);

    template <typename X, typename Y>
    typename disable_if<
        is_basic<typename X::mapped_type>
      , container_mapped_type
    >::type
    test(typename X::mapped_type);

    template <typename X, typename Y>
    struct base_result_of
    {
        typedef typename phoenix::detail::unwrap_local_reference<X>::type x_type_;
        typedef typename phoenix::detail::unwrap_local_reference<Y>::type y_type_;
        typedef typename remove_reference<x_type_>::type x_type;
        typedef typename remove_reference<y_type_>::type y_type;

        typedef mpl::vector20<
            mpl::identity<bool>
          , mpl::identity<int>
          , mpl::identity<unsigned>
          , mpl::identity<double>
          , mpl::identity<bool&>
          , mpl::identity<int&>
          , mpl::identity<unsigned&>
          , mpl::identity<double&>
          , mpl::identity<x_type>
          , mpl::identity<x_type&>
          , mpl::identity<x_type const*>
          , mpl::identity<x_type*>
          , mpl::identity<y_type>
          , mpl::identity<y_type&>
          , mpl::identity<y_type const*>
          , mpl::identity<y_type*>
          , reference_type<x_type>
          , const_reference_type<x_type>
          , mapped_type<x_type>
          , mpl::identity<error_cant_deduce_type>
        >
        types;
    };

}} // namespace boost::type_deduction_detail

#define BOOST_RESULT_OF_COMMON(expr, name, Y, SYMMETRY)                         \
    struct name                                                                 \
    {                                                                           \
        typedef type_deduction_detail::base_result_of<X, Y> base_type;          \
        static typename base_type::x_type x;                                    \
        static typename base_type::y_type y;                                    \
                                                                                \
        BOOST_STATIC_CONSTANT(int,                                              \
            size = sizeof(                                                      \
                type_deduction_detail::test<                                    \
                    typename base_type::x_type                                  \
                  , SYMMETRY                                                    \
                >(expr)                                                         \
            ));                                                                 \
                                                                                \
        BOOST_STATIC_CONSTANT(int, index = (size / sizeof(char)) - 1);          \
                                                                                \
        typedef typename mpl::at_c<                                             \
            typename base_type::types, index>::type id;                         \
        typedef typename id::type type;                                         \
    };

#define BOOST_UNARY_RESULT_OF(expr, name)                                       \
    template <typename X>                                                       \
    BOOST_RESULT_OF_COMMON(expr, name,                                          \
        type_deduction_detail::asymmetric, type_deduction_detail::asymmetric)

#define BOOST_BINARY_RESULT_OF(expr, name)                                      \
    template <typename X, typename Y>                                           \
    BOOST_RESULT_OF_COMMON(expr, name, Y, typename base_type::y_type)

#define BOOST_ASYMMETRIC_BINARY_RESULT_OF(expr, name)                           \
    template <typename X, typename Y>                                           \
    BOOST_RESULT_OF_COMMON(expr, name, Y, type_deduction_detail::asymmetric)

#endif