summaryrefslogtreecommitdiffstats
blob: bf20ae924b0dd90a3c71bcfe35395f38db1ee802 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
//  mac/chrono.cpp  --------------------------------------------------------------//

//  Copyright Beman Dawes 2008
//  Copyright 2009-2010 Vicente J. Botet Escriba

//  Distributed under the Boost Software License, Version 1.0.
//  See http://www.boost.org/LICENSE_1_0.txt


//----------------------------------------------------------------------------//
//                                 Mac                                        //
//----------------------------------------------------------------------------//

#include <sys/time.h> //for gettimeofday and timeval
#include <mach/mach_time.h>  // mach_absolute_time, mach_timebase_info_data_t

namespace boost
{
namespace chrono
{

// system_clock

// gettimeofday is the most precise "system time" available on this platform.
// It returns the number of microseconds since New Years 1970 in a struct called timeval
// which has a field for seconds and a field for microseconds.
//    Fill in the timeval and then convert that to the time_point
system_clock::time_point
system_clock::now() BOOST_NOEXCEPT
{
    timeval tv;
    gettimeofday(&tv, 0);
    return time_point(seconds(tv.tv_sec) + microseconds(tv.tv_usec));
}

#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
system_clock::time_point
system_clock::now(system::error_code & ec)
{
    timeval tv;
    gettimeofday(&tv, 0);
    if (!BOOST_CHRONO_IS_THROWS(ec)) 
    {
        ec.clear();
    }
    return time_point(seconds(tv.tv_sec) + microseconds(tv.tv_usec));
}
#endif
// Take advantage of the fact that on this platform time_t is nothing but
//    an integral count of seconds since New Years 1970 (same epoch as timeval).
//    Just get the duration out of the time_point and truncate it to seconds.
time_t
system_clock::to_time_t(const time_point& t) BOOST_NOEXCEPT
{
    return time_t(duration_cast<seconds>(t.time_since_epoch()).count());
}

// Just turn the time_t into a count of seconds and construct a time_point with it.
system_clock::time_point
system_clock::from_time_t(time_t t) BOOST_NOEXCEPT
{
    return system_clock::time_point(seconds(t));
}

namespace chrono_detail
{

// steady_clock

// Note, in this implementation steady_clock and high_resolution_clock
//   are the same clock.  They are both based on mach_absolute_time().
//   mach_absolute_time() * MachInfo.numer / MachInfo.denom is the number of
//   nanoseconds since the computer booted up.  MachInfo.numer and MachInfo.denom
//   are run time constants supplied by the OS.  This clock has no relationship
//   to the Gregorian calendar.  It's main use is as a high resolution timer.

// MachInfo.numer / MachInfo.denom is often 1 on the latest equipment.  Specialize
//   for that case as an optimization.
BOOST_CHRONO_STATIC
steady_clock::rep
steady_simplified()
{
    return mach_absolute_time();
}

#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
BOOST_CHRONO_STATIC
steady_clock::rep
steady_simplified_ec(system::error_code & ec)
{
    if (!BOOST_CHRONO_IS_THROWS(ec)) 
    {
        ec.clear();
    }
    return mach_absolute_time();
}
#endif

BOOST_CHRONO_STATIC
double
compute_steady_factor(kern_return_t& err)
{
    mach_timebase_info_data_t MachInfo;
    err = mach_timebase_info(&MachInfo);
    if ( err != 0  ) {
        return 0;
    }
    return static_cast<double>(MachInfo.numer) / MachInfo.denom;
}

BOOST_CHRONO_STATIC
steady_clock::rep
steady_full()
{
    static kern_return_t err;
    static const double factor = chrono_detail::compute_steady_factor(err);
    if (err != 0) 
    {
      BOOST_ASSERT(0 && "Boost::Chrono - Internal Error");
    }
    return static_cast<steady_clock::rep>(mach_absolute_time() * factor);
}

#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
BOOST_CHRONO_STATIC
steady_clock::rep
steady_full_ec(system::error_code & ec)
{
    static kern_return_t err;
    static const double factor = chrono_detail::compute_steady_factor(err);
    if (err != 0) 
    {
        if (BOOST_CHRONO_IS_THROWS(ec))
        {
            boost::throw_exception(
                    system::system_error( 
                            err, 
                            BOOST_CHRONO_SYSTEM_CATEGORY, 
                            "chrono::steady_clock" ));
        } 
        else
        {
            ec.assign( errno, BOOST_CHRONO_SYSTEM_CATEGORY );
            return steady_clock::rep();
        }
    }
    if (!BOOST_CHRONO_IS_THROWS(ec)) 
    {
        ec.clear();
    }
    return static_cast<steady_clock::rep>(mach_absolute_time() * factor);
}
#endif

typedef steady_clock::rep (*FP)();
#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
typedef steady_clock::rep (*FP_ec)(system::error_code &);
#endif

BOOST_CHRONO_STATIC
FP
init_steady_clock(kern_return_t & err)
{
    mach_timebase_info_data_t MachInfo;
    err = mach_timebase_info(&MachInfo);
    if ( err != 0  ) 
    {
        return 0;
    }

    if (MachInfo.numer == MachInfo.denom)
    {
        return &chrono_detail::steady_simplified;
    }
    return &chrono_detail::steady_full;
}

#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
BOOST_CHRONO_STATIC
FP_ec
init_steady_clock_ec(kern_return_t & err)
{
    mach_timebase_info_data_t MachInfo;
    err = mach_timebase_info(&MachInfo);
    if ( err != 0  ) 
    {
        return 0;
    }

    if (MachInfo.numer == MachInfo.denom) 
    {
        return &chrono_detail::steady_simplified_ec;
    }
    return &chrono_detail::steady_full_ec;
}
#endif
}

steady_clock::time_point
steady_clock::now() BOOST_NOEXCEPT
{
    static kern_return_t err;
    static chrono_detail::FP fp = chrono_detail::init_steady_clock(err);
    if ( err != 0  ) 
    {     
      BOOST_ASSERT(0 && "Boost::Chrono - Internal Error");
    }
    return time_point(duration(fp()));
}

#if !defined BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING
steady_clock::time_point
steady_clock::now(system::error_code & ec)
{
    static kern_return_t err;
    static chrono_detail::FP_ec fp = chrono_detail::init_steady_clock_ec(err);
    if ( err != 0  ) 
    {
        if (BOOST_CHRONO_IS_THROWS(ec))
        {
            boost::throw_exception(
                    system::system_error( 
                            err, 
                            BOOST_CHRONO_SYSTEM_CATEGORY, 
                            "chrono::steady_clock" ));
        }
        else
        {
            ec.assign( err, BOOST_CHRONO_SYSTEM_CATEGORY );
            return time_point();
        }
    }
    if (!BOOST_CHRONO_IS_THROWS(ec)) 
    {
        ec.clear();
    }
    return time_point(duration(fp(ec)));
}
#endif
}  // namespace chrono
}  // namespace boost